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Abstract

The key exchange idea by using a reduced binary indefinite quadratic form has been introdu-

ced. This is based on the difficulty of solving the discrete logarithm problem on the class

group of a real quadratic field.

1. Introduction

Secret messages have been sent and used in mi-
litary affairs and diplomacy for a long time. Furthe-
rmore, ncwadays, because of the widespread
usage of electronic communication such as electro-
nic banking or electronic mail by computer, secrecy
has become an important issue. Hence, there is
a tremendous deal of interest in the techniques

of making messages meaningless to everyone ex-

cept the intended receiver.

Cryptograpy is the study of methods of sending
messages in disguised form so that only the inten-
ded recipients can remove the disguise and read
the message, while cryptanalysis is aimed at brea-
king these systems. The message we want to send
is called the plaintext and the disguised message
is called the ciphertext. A cipher is a method for
changing a plaintext into ciphertext using transfor-
mation f. The process of altering a plaintext to
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a ciphertext by using enciphering transformation
is called enciphering or encryption and one needs
a enciphering key kz. the reverse process is called
deciphering or decryption. In order to decipher, co-
mpute /7', one needs the deciphering key kp. With
a conventional cryptosystem anyone who knew
enough to encipher a message could, with little
effort, determine the deciphering key.

However, W. Diffie and M. Hellman® discovered
an entirely different type of cryptosystem and inve-
nted public key cryptography. A public key cryptosy-
stem has the property that someone who knows

only how to encipher cannot use the enciphering

key to find the deciphering key without a prohibiti--

vely lengthy computation. In other words the enci-
phering function f is easy to compute once the enci-
phering key k: is known, but is is very hard in
practice to compute the inverse function /' without
the deciphering key ko, from the standpoint of rea-
listic computability. Such a function is called an
one-way trapdoor function. The most important pu-
blic cryptographic problems are those of privacy
and authentication. A privacy system is preventing
a unauthorized extraction of information from com-
munications over an insecure channel. An authen-
tication system prevents a unauthorized injection
of messages into a public channel, assuring the
receiver of a message of the legitimacy of its sen-
der.

It has been known that number theory plays a
very important role in public key cryptography.
The most famous applications of number theroy
to cryptography are in the RSA system” and Diffie
and Hellmans’s cryptosystem®. The RSA system
used the difficulty of prime factorization of a large
number and Diffie and Hellmans’s cryptosystem
used the difficulty of solving a discrete logarithm

problem on a finite field. The purpose of this paper

is to introduce the key exchange idea by using a
reduced binary indefinite quadratic form. This is
based on the difficulty of solving the discrete loga-
rithm problem on the class group of a real quadratic
field.

2. Real quadratic field and Indefinite
binary quadratic forms

Let F: be the ith Fibonacci number, i.e, Fo=0,
F=1, and F,+;=F,+F,-;, where m & N. Let
KZQ(\/I%,,,_'FI) be the quadratic field formed by
adjoining \/F,, +1 to the rational Q. We first re-
view some of the properties of K. The discriminant
of a field K is given by

4(F,,+1  if m=0 (mod 3)

\ B, 1 if m=0 (mod 3)
Also, if a, BE K, we use & to denote the conju-
gate of o in K, S(a) =a+a is the trace of o, N{a)
=0da the norm of a.

The integers of K are those elements a of K such
that both S(a) and N(a) in Z5 We denote the
set of these integers by ©k. It is well known that
©«=[1, wl=Z+wZ, where

VE +1
T _l:_\’fﬂjll_

2

if m#0 (mod 3)

if m=0 (mod 3)

Let us denote an indefinite binary quadratic form

with discriminant D=5—4ac>0 as follows ;

[, y=a+rbxy+to?=f=la, b, c]
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Definition 2. 1 (1) f={a, 5. ¢] is said to be a
reduced form if a>0, ¢>0, b>a+tc, where a, b,
¢ are rational integers. Furthermore, if ged(a, b,
c)=1, we call f=[a, b, ¢] a primitive reduced from.
(2) Let fx, y)=ar’+bxy+cy with discriminant
D not a perfect square. If there exist integral p, ¢,
7, S such that ps—qr=1 with the following prope-
iy -

x=px* tqy*, y=r" +sy*,

then f(x, y) =f*(x*, y*). Then we say f is equivalent
to f*, and write f~f* © or we say f and f* are in
the same I-equivalence class.

Let us state some well known theorems without

proof.

Theorem 2. 1 (1) There are only finitely many redu-
ced quadratic forms of discriminant D, and each T-
equivalence class E of forms of discriminant D con-
tains at least one reduced form.

(2) Let us assume that the form f=[a, b, c] in
a T-equivalence class E is a reduced form.

(Note. f=La. b, ¢] is a reduced form, D=b"—4ac,

b+/D
iff w=—"7——">1 and 0<w<L.)
The reduced forms in E form a cycle fi=f, fi» for
“*y fi=fo» where each f; is related to its prodeces-

n; -1
1 0 ) Sfor so-

me integer n;22, and f ° M is defined by f °
o B
M=fax+By, yx+8), for M= ( y

sor by fi=f-1° M; with M;=

ﬁl
8) and the

M= n; -1
i 0

ntinued fraction expansion of

>are determined by the minus co-

= (11, n2,n3,..,n¢).

which is purely periodic, i.e, n=n;+;, becauses f
is reduced. Therefore, each reduced form fo, fis for
= fi=fo in E corrvesponds to a cycle

e . nl) 9

(e nz0 w5 o0 )y Gz nas

(nae nas ==y myy n2)s

(Proof) See”, for instance.

Definition 2.2 (1) Let us give a dictionary order
relation on the cycles in
s n,

{Gne w20 Mg s 1)y (n2e 1

(7‘13, Nys """y N nz), }-

In other words,

(s m2s m3 oy ) > Gmyy mys mye -5 m)
by defining n>my, or if ny=m; and n;+,>m;+1,
where 15551, And lef each reduced form in E corves-
ponds to each cycle

e m),

(10 Mz nz v n)y (M2 ma

gy mas s M M2)s 0 (s Mgy s Hymze Mimt)s
and let fi=1,. We call the reduced form f the largest
reduced form if f corresponds to the largest cycle
among all the cycles which correspond to all the redu-
ced forms in T-equivalence class.

(2) If two forms with discriminant equal to a field
discriminant, f, and f:, then a form f; with the same

discrimiant,

f:r(xay y:«) :fz(Xn ,’Vl) fz(xz, yz)
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(ordinary multiplication) is defined by special bili-
near expressions with integral coefficients A, and
B

x3= Azt Axyt Aoy, + Az,
Ys=Buxiz+ By + By + By,

Theorem 2. 2 (1) To compound f=[a, b, c] with
itself, let n=gcd{a, b), and solve by/n=1 (mod
a/n) for y. Then La, b, ¢]l°la, b, ]~ La?/n
b—2acy/n, *1 with the third coefficient computed

Sfrom the discriminant formula.

(2) To compound fi=La;, b1, ¢,] and f;=[az b
czl, let B=(b,+b)/2. Let m=ged(a;, B), and
n=gcdm, a). Solve ax+Py=m for x and
and

bz"b1

mz/n=x( )~cy (mod ax/n) for z.

The form compounded of fi and f. is then
Laaz/n? bi+2a2/n, *],

with the third coefficient being computed from the

discriminant formula.
(Proof) See page 64-65".

Remark (1) For a given form f and integer x, f*
can be computed by using the repeated squaring
method, 7, e., change x into a binary digit number
and find the composition form f* by using Theorem
2. 2. It involves only Euclidean algorithm and,
therefore, takes a polynomial number of bit opera-
tions to compute f.

(2) The largest reduce form can be found by using

the (minus) continued fraction. Once we find one

cycle which corresponds to a reduced form, it is
easy to find the largest reduced form in one I'-equi-
valence class by sorting all the reduced cycles in

the class.

3. A key exchange system

In this section we describe a public key exchange
system . a scheme by which two individuals A and
B, who never meet, can still develop a secret key
for communication over a public channel. The basic
idea is due to that of Diffie and Hellman by using
the discrete logarithm problem © Let A and B agree
on some finite group G and some element g in
G, both of which can be made public. A selects
some positive integer a(<ord(G))) at random,
keeps it secret and transmits x=g* to B. B selects
some positive integer »(<ord(G)) at random,
keeps it secret and transmits y=g° to A. A deter-
mines K=y and B determines K=#": K is used
as the secret communication key. If one could de-
termine @ or b from knowing x, ¥, g and G, one
could compute K. The problem of determining a,
given G, g and x, is called the discrete logarithm
problem in G. In this section we will present a
key exchange system when G is the class group
of a real quadratic field Q(\/F., +1), where Fs.
is the 2m" Fibonacci number. This scheme is based
on those of [2] and [61.

The real quadratic field Q(\/F.,+1) and a bi-
nary indfinite quadratic form f=[a, b, ¢] whose
discriminant is the same as the field discriminant
(see?) are publically known. The following steps
are performed to exchange a secret key between
two users A and B:

(1) A selects at random a large integer m and
d and computes the largest reduced form f; such
that f; ~ f by using repeated squaring method and
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an algorithm given in Theorem 2. 2. (m, f;) is sent
to B.

(2) B selects ¢ at random and computes the lar-
gest reduced form f; such that f> ~ f by using the
repeated squaring method and an algorithm given
in Theorem 2. 2 and sends f; to A.

(3) A computes the largest reduced form f* ~
f;- B computes the largest reduced form f** ~
f. Since /* xfix (F=(A'xfi=f", we have
the largest reduced form f* =f**=[a, b, ] this
number [a, b, ¢] can be used as the secret key
between A and B.

Remark we note that this key exchange system
prevents a cryptanalyst from attacking all files si-
multaneously, by using a different m for each user.
Even though an attacker has solved the discrete
logarithm in the field Q(/F,,+1) for a certain

m, this does not solve it for other m.

4. Complexity Result
We begin with the following remark.

Remark For given a, B in Ok, the ring of integers
of K, we say that a divides B and denote this by
a | B if there exists some v in @x such that f=ay.
If n | 1, n is called a unit of K. It is known that
there are infinitely many units in O 5 If n is one
of them, then 1 can be written as n= 1 ¢", where
n integer and €(>1) is the fundamental unit of
K.

Lemoma 4. 1 The fundamental unit of ®x can be
found by considering the smallest integer T for

which

T*—DIF==x4, T>0, U>0,

in the field K=Q(\/5). Then the fundamental

T+U/D

unit of O is 2 ——and most general unit

TUYD

9

&

is +[

(Proof) See page 101°.

The regulator log =R of K determines the num-
ber / of reduced forms in any I'-equivalence class
because [<(R+c)/y (where y=(1+./5)/2) for

some constant ¢, 7.e, {=OR).

Theorem 4. 1 Let | be the number of a indefinite
binary reduced quadratic form in T a equivalence

class of the field Q(\/F.,+1). Then | ~ 0C2m).

(Proof) We note that the fundamental unit of

Q(\ﬁ‘im +"l—) is (Fzm+\/FEm+l). Since we get
T°—P=—4, T=2F,, U=1,

the fundamental unit 8=F2m+\/1;‘§m+ 1, from the

Lemma 4. 1. So, the regulator R=loge=log

(Fow+Fot 1) ~ log 3 Fzu. Since log Fin
1+

V5
~ log(—— =) I~ 2m.

Remark (1) To get the largest reduced form f*
from given form f in the class E of Q(y/Fo 1),
we need to compute a cycle whose length is 0(2m)
which takes a polynomial bit operation of A, 1,e,
log A. So, it will take a polynomial bit operation
for user A and B to get the common public key
.

(2) This system would be broken if we could solve
the discrete logarithm problem in the class group
G of Q(ﬁim'*'l). This problem can be solved

in sub-exponential time by the index calculus me-
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thod if the class number 4 of Q(\/FE,TIT is
known. However, the best algorithm known for

1.,
determining 4 has the complexity O((A)® )y,

assuming the extended Riemann hypothesis®.
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