BEFRRESREHLE
W74 B3IW. 1997. 9

Managing the Heterogeneous File System

for Anti-Virus

Kyung Su Kim*, Seung Jo Han*, Pan Koo Kim*

Abstract

Computer viruses are increasing in number and are continually intellectualized as well. To cope

with this problem, anti-virus tools such as a scanner and the monitoring program have been

developed. But it is not guaranteed that these softwares will work in safety under MS-DOS’ control.

If the virus is run first, it can avoid the monitoring of anti-virus software or even can attack the

anti-virus software. Therefore, anti-virus programs should be run before the system is infected. This

paper presents a new PC starting mechanism which allows the PC system to start from a clean state

after booting. For this mechanism. we build a new disk file system different from DOS’ file system,

and manage the two file systems heterogeneously. Our system is strong against boot viruses and

recovers from infections automatically.

1 Introduction

At the beginning of 1994 the number of
known MS-DOS viruses was estimated at
around 3,000. A year later, in January 1995,
the number of viruses was estimated at about
6,000. Several anti-virus experts expect the
number of viruses to reach 10,000 by the end
of the year 1996. This increase of viruses,
which grows rapidly, does cause problems to
anti-virus software, especially to scanners. To
the present, users mainly depended on

scanning programs which have ability to scan

virus’ character strings and fix the infected
program. The rapid growth in the number of
viruses means that scanners should be updated
frequently enough to cover new viruses. Also,
as the number of viruses grows, so does the
size of the scanner or its database. In some
implementations the scanning speed suffers.
This approach is vulnerable to unknown
viruses, especially such as polymorphic and
stealth viruses which are a big burden to the

vaccine programmers.

It was always very tempting to find an

ultimate solution to the problem, to create a

T el

*

i

B
2
2

@

FE 10059 E 2AYGE FEATH Y AL Pob ATHAE

4 BIEFRIEBLARHGE (1997, 9)

generic scanner which can detect new viruses
automatically, without the need to update its
code and/or database. However, heuristics
suffer from a moderate false positive rate.
This type of software is reactive rather than
proactive, in that, a virus attack will be
detected after it happens. So, it is necessary
for the system to monitor virus activities, and
be detected before it is infected. To do that,
some softwares have been developed such as
virus monitoring systems which install
themselves as memory-resident TSR
(terminate-stay-resident) programs in a
manner similar to some PC utilities like
Borland’s Sidekick. They intercept and
monitor disk I/0, trying either to monitor the
systems integrity or to detect virus activity.
However, these program themselves have some
holes and are not safe because of the
characteristics of MS-DOS, which does not
have a protection mechanism for the systems
resources. A new system mechanism which can
start the PC from a clean state(i.e. virus—free)

is needed.

This paper presents a new system
mechanism which can start the PC system at
a clean environment after booting. For this,
we build a new disk file system different from
DOS’s file system and manage the two file
system heterogeneously. This new mechanism
enables detection and recovery of the boot
viruses automatically and also performs the

anti-virus program itself with integrity.

2 Anti-Virus Technologies

2.1 Scanners

A scanner relies on the knowledge of the
known virus “pattern”’. When a new virus
appears in the wild, it is analysed, and a
characteristic pattern of some 10 to 16 bytes
is recorded within a database. The virus
scanning program will scan all the executable
on a disk, including the operating system and
the bootstrap sector(s), and then compares
their contents with the known virus patterns.
Of course, this type of program can only
discover known viruses and as such it has to
be continually updated with new patterns
when new viruses appear. This is the main
problem with this type of program. At the
moment there is no national or international
databank of virus patterns. Also the growing
number of viruses means that scanners should
be updated frequently enough to cover new
viruses. This approach is vulnerable to
unknown viruses, especially such as

polymorphic and stealth viruses, and it is a

big burden to the vaccine programmers.

Computer scientists have been trying to
find an ultimate solution to this problem, for
creating a generic scanner which can detect
new viruses automatically. It is based on
analysing a program for features typical or
untypical for viruses. The set of features,
possibly together with a set of rules, is known
as heuristics. Heuristics are added to the anti-
virus and attempt to infer whether a file is
infected or not. This is mostly often done by
looking for a pattern of certain code fragments
that occur mostly often in viruses, but not in

bona fide programs. Heuristics suffer from a

Managing the Heterogeneous File System for Anti-Virus 5

moderate false positive rate. This type of
software is reactive rather than proactive, in
that, a virus attack will be detected after it
happens. To make matters worse, most
scanning programs are slow. And the crucial
flaw of scanners is that some viruses bypass
or deceive the control of anti-virus programs
and attack the anti-virus software itself, if
system has been infected already. So, it is
necessary that anti-virus program should be
run first before it is infected to protect system

against virus infection.

2.2 Monitoring System

Computer viruses must replicate to be
viruses. This means that a virus is observable
by its mechanism of replication. A monitor is
a memory-resident(TSR) program which
monitors system activity and looks for virus-
like behaviour. In order to replicate a virus
needs a copy of itself. Most often viruses
modify existing executable files to achieve this.
So, in most cases, monitors try to intercept
system requests which lead to modifying
executable files. When a suspicious request is
intercepted, a monitor typically alerts a user
and, based on the user's decision, can prohibit

such a request from being executed.

While this approach is attractive in theory,
unfortunately there are no fixed sets of rules
regarding what a virus should do or should
not do. As a result, false alarms can result
from legitimate program activity which is
misinterpreted by the anti-virus program.
Conversely, any virus which does not comply

with the monitoring program’s concept of virus

activity will be ignored. The monitoring
activity also degrades system performance and
can be incompatible with network software,
certain application programs and so on. The
greatest drawback of memory-resident
programs is that any intelligent virus program
can easily bypass or disable them if it has
been infected already. The mechanism used by
anti~-virus programs for intercepting disk read
and writes, i. e. to change the vectors in the
DOS interrupt table, is éxactly that used by
most virus programs. Also, some virus use
quite effective and sophisticated techniques,
such as tunneling, to bypass possibly present
monitors. So, it is requested that monitors
should be started first before system is

infected.

2.3 Integrity Checker

This relies on the calculation of a checksum
of any executable on the system followed by
periodic recalculations in order to verify that
the checksum has not changed. If a virus
attacks an executable, it will have to change
at least one bit inside the executable, which
will result in a completely different checksum.
This means, when an integrity checker is first
installed to your system, you need to run it
to create a database of all files on your
system. Then, during subsequent runs the
integrity checker compares files on your
system to the data stored in the database and
detects any changes made to the files. Also,
the results of the checksumming algorithm
must not be easily reproducible. Unlike a
monitoring program, it is much more difficult

for a virus to bypass an integrity checker,

6 BEFHRGERRERIGE (1997, 9)

provided you run your integrity checker in a
virus clean environment, i. e. having booted

your PC from a virus free system.

3 A New System Mechanism

Since the computer virus is one of the
programs, it can act free under DOS’
permission. Observing the bounds of virus'
activity, we notice all virus programs can
access any part of disk and change or ruin
them. Also, because of the absence of a
protecting mechanism for use of memory, virus
can control any program at its will. So, it is
not possible to set a perfect program to
protect from virus attack. To prevent the
onset of a virus, the monitoring program or
checking program should work out of virus’
interruption. However it is not ensured that
programs in DOS are processed in safety for
there is no protection mechanism in DOS.
Consequently, if we won't modify the DOS,
we have to protect them with external system

or installation.

The purpose of this study is to make it
difficult for virus’ to access, while maintaining
information for an integrity checking by using
a different file system from a DOS file's,
instead of using other operating system or

without any modification of DOS.

Now, how can it be possible to check or
prevent infection out of DOS control? The
answer is that virus checking or monitoring
mechanism can run free from DOS control. In
the sequence of DOS booting, the master boot

loader is the program which runs first before

DOS’ loading. If this loader makes the DOS
booting virus-free, it is possible that an anti-
virus program can be run from a clear
environment. If there are anti-virus programs
which run in DOS control, those programs can
start from the clear state and can be secured.
All programs that are needed for monitoring
or checking can be secured before DOS runs.
To do this work, we divided the disk into two
parts and made one part a safe zone to
maintain security information. This partition is
treated with different way from the DOS disk
file system. To manage the new disk file
system, we modify a master boot loader and
implement an installation program which sets

up the security zone.

3.1 Disk File System

We divide the disk into two parts, one for
DOS partition and the other for security
part{zone). Partition I is same as DOS's disk
file system. Partition II is a simple disk file
system different from DOS’s that has different
structure. The content of all files in the
second partition is encrypted to be veiled by
virus programers. Partition II includes all
information to be secured and files for backing
up. And also this area can be only accessed
by our set-up program which knows its
structure. Therefore, any other programs could
not access this partition for they do not know
the structure of file system and the position of
data, thus do not infer the content of disk by
using Disk Editor, due to the encrypted data.
Consquently, partition II is a safe area. Figure
1 shows the whole situation in partitioned

disk file system.

Managing the Heterogeneous File System for Anti-Virus 7

Region Name Contents Remarks
Moedified master bootstrap loader
Modified Master Boot Sector Check-sum informations Safe
Partition table
DOS bootstrap loader
Partition} Boot Sector DOS related informations Safe
DOS versions, etc
FAT 1 Disk usage(bad,use,free)
FAT 2 Copy of FAT1
Root Directory Root directory file information
Data Region Data storage area
Simple disk file system
Partition 1! Security Zone(Region) (different from DOS) Safe
Files to be secured (veiled)
Backup files

Figure 1. Partitioned, new disk file system

3.2 Modified Master Boot Loader

The function of the modified master boot

loader i8 as follows:

® Checks the integrity of the RAM-resident
program, as comparing the file in DOS
with that in security zone, and then loads
it into memory.

® Before loading DOS boot loader in DOS
boot sector, checks the integrity of DOS
boot sector or DOS system programs(IO.
SYS, MSDOS.SYS, COMMAND.COM).

® Checks the integrity of the other important

programs and data files

To guarantee the safety in that function,
we save and maintain information in a
different format from DOS’ in partition II of

the Figure 1. It also keeps check-sum

information to check contents of DOS boot
gsector and checks whether the files are
infected before booting or not. Adding to this,
it makes integrity checking possible by keeping
check-summing information on DOS files such
as JO.8YS, MSDOS.SYS, COMMAND.COM.
Because virus programs don't know the
mechanism of partition II, it can not infer

security information within the partition II.

The state of the system can be a safe one
after booting with these functions. The master
boot loader can be changed by a virus
program, but the routine for protection is
added to the ROM BIOS that has been made
recently. If users fix “virus enable” by using
Setup program in booting, they can have
warning message when the master boot sector
is going to be changed. By this way, any boot
virus can not change the master boot sector.

Consequently, this modified loader cannot be

8 BEHREEREHE (1997, 9)

changed once it occupies the master boot sector
without user’s permission. If master boot loader
works connected with ROM BIOS, system can
be booted in a safe state for virus can not
attack ROM BIOS. Functions for the modified

master boot loader are like Algorithm 1.

Algorithm 1. Modified Master Boot Loader

Algorithm : Modified Master Boot Loader
/* Integrity checking for all system files */
/* Loading RAM-resident programs into memory */
/* Loading DOS boot loader into memory */
{
Read security information(from part.IT) into mem.;
if (there exists DOS boot record)
{
if (check-sum of DOS boot record
1= stored check-sum)
{/*DOS boot sector is infected by boot virus */
Alert the modification of boot record to user;
goto recv;
}
else
{ /* Integrity checking : compare security
inform.(partitionII) with check-sum inform.
for the system files and
some important files*/
10.SYS file is modified or not?:
MSD 0S.8YS file is modified or not?:
COMMAND.COM file is modified?;
RAM-resident programs are modified ?.
Load RAM-resident programs into mem..
Load DOS boot loader into memory;
Control over the DOS boot loader;

}

else
{/*Recover the destructed DOS boot regions*/
recv: Copy DOS system files of PartIl to part. I.
Rebooting:

3.3 The Management of Security
Zone

After we divide the disk into two parts, we
install a simple file system foy the security
zone and move some files or information there.
Our installation program functions as follows:
@ It puts a modified master boot loader into

the master boot sector.

@ 1t registers some files at the security zone
such as I0.8YS, MSDOS.SYS, COMM-
AND.COM, installation program itself and
so on, encrypts their content, and copies
the encrypted file to the security zone. It
can also add or delete some files at any
time.

® It calculates the check-sums for all
registered files and writes them at the

fixed area of the master boot sector.

4 Experiments

In experiments, we focus on whether or not
the PC is booting safely. So, we have
modified the existing master boot loader to
check whether DOS’s system files(10.8YS,
MSD 0S.8YS, COMMAND.COM) are changed
by virus programs or not. The modified
master boot loader reads some information
from security zone(partition II) and checks
the changes of the DOS’s system files. To do
these, we first have partitioned the hard disk
into two parts using the free software(what
we call, FIPS'™), and then, moved some
security information to the security =zone.
Second, we have replaced the existing master

boot loader with our modified master boot

Managing the Heterogeneous File System for Anti-Virus 9

loader to the first sector of hard disk. Third,
we just add some strings to the DOS’s system
files. Lastly, when we have rebooted the PC
system, we have found the master boot
loader’s message that system files have been
changed by any other programs. Our system
is coded by assembly language on MS-DOS
environment. Up to now, we have
implemented our system to the extent that
booting related files are safe in booting time.
Especially, our system is strong against boot
viruses. More study is under implementation

for the perfect system of anti~virus programs.

5 Conclusion

Scanning programs and monitoring
programs are under development to cope with
the increasing number of computer viruses.
However, it is not guaranteed that these
programs perform in a satisfactory manners
because the program, which run first, controls
the other program due to the absence of
protection mechanism for DOS. We present a
technique to start the PC booting safely and
then could be run anti-virus programs based
on a secure environment without modification
of DOS. We modified the master boot loader

for this system. Our system is strong against

boot viruses. More study is wunder
implementation for the perfect system of anti-
virus programs with possible new

developments because of this study.

References

[1] S.R.Lee, Power Hacking Techniques,
PowerBook, 1995, in Korean.

[2] M.S.Park, Computer Viruses - Analysis,

(3]

(4]

(s]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

Production and Prevention -, Kihanje,

1992, in Korean.

C.S.Ahn,

Production,

Virus Analysis and Vaccine
Chungbosidae, 1995, in

Korean.

C.H.Yoo,

Chungbomunhwasa, 1993, in Korean.

PC System Programming,

S.K.Han, IBM PC Description
Dictionary, Gipmundang, 1991, in
Korean.

D. Russell & G.T. Gangemi Sr,

Computer Security Basics, O'Reilly &
Associates Inc, 1992,

F.B.Cohen, Protection and Security on
the Information Superhighway, John

Wiley & Sons Inc, 1995.

J. Hruska, Computer Viruses and Anti-
Virus Warfare, Ellis Horwood, 1990.

Morton Swimmer, “A Virus Intrusion
Detection Expert System”, Proceeding of
the eicar Conference '95, Zuerich, Nov.

1995.

Igor G. Muttik, “Viruses against
Antivirus World”, Proceeding of the

eicar Conference ‘95, Zuerich, Nov. 1995.

Fridrik Skulason, “The Evolution of
Polymorphic Viruses”, Proceeding of the

eicar Conference 95, Zuerich, Nov. 1995.

Igor Daniloff, “New Polymorphic
Random Decoding Algorithm in
Viruses”, Proceeding of the eicar

Conference '95, Zuerich, Nov. 1995,

Dmitry O. Gryaznov, “Scanners of The
Year 2000: Heuristics’, Proceeding of the

eicar Conference ‘95, Zuerich, Nov. 1995.

“Automatic and
Code

Marko Helenius,

Controlled Virus Execution

10 BEBBRARBRERGE (1997, 9)

System”, Proceeding of the eicar shifting antivirus technology”, Proceeding

Conference '95, Zuerich, Nov. 1995, of the eicar Conference ‘96, Linz Austria,
[15] Pan Koo Kim, S.C.Kwon, B.M.Lee, “A Nov. 1996.

new PC Starting Method to cope with [18] M. Lardschneider, “Virus Protection for

Computer Viruses”, Proceeding of the eicar Software Distribution in PC-Networks’,

Conference ‘96, Linz Austria, Nov. 1996. Proceeding of the eicar Conference ‘96,

. e Linz Austria, Nov. 1996.
{16] T.Tachibana, K.Mochizuki, Implement-

ation of Anti-Viral Integrity Check [19] Free Software Foundation, “The First

System Based on Digital Signature”, nondestructive Interactive Partition

Proceeding of the eicar Conference 96, Splitting”, WWW page at http://www.

Linz Austria, Nov. 1996. student.informatik. th-darmstadt.de/ ~
schafer/fips.html.

[17] Morton Swimmer, Jeff Kephart, “The

SR

19924 29 A E ARE T FA}
1904 89 Fopistm AFE| T HA}
19964 99 ~ WA =Aldetm ARpA AL} whab

NN

B4 Bob : AFHASD Bk AREpol L, A, HFE
EEES

& & =

“

19804 29 24T AATE} A}
19824 29 AN ® A WAL} A
1904 29 SHGE e AAA S A

19974 @A =ANEm AA A FTHY 2

% FBA Bob 1 BAML SAFA. ASIC AA

7

o,

19881 29 =AAEE FFE| T3} st}
19909 29 AM-&ddm HFE T3 HAL
19944 8Y M-t m FHFE|Fh3} A}
19959 29 ~ A A E AAA A 2as

* ZRA Fob 0 A, AFE N2 U, AFEuole) 2, PelniH ol
2 H)

