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On the non-linear combination of the Linear Feedback Shift Register
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ABSTRACT

We introduce feedback registers and definitions of complexity of a register or a sequence
generated by it. In the view point of cryptography, the linear complexity of an ultimately periodic
sequence is important because large one gives an enemy infeasible jobs. We state some results about
the linear complexity of sum and product of two LFSRs.

1. It has the long period.

2. It is unpredictable. For example, it has
Let us consider sequences of elements of a the large linear complexity.
finite fields. Those may be binary sequences.

I .Introduction

3. It has good statistical properties.
Shift register generators are used to produce
binary sequences for various purposes. These For the above cryptographical conditions,

devices are small, inexpensive, and offer a feedback  shift registers are studied.

rich variety of sequences. In cryptographic
applications, sequences produced by sequence
generators should have the following

properties:

Sequences generated by those may have
maximum period or large linear complexity.
We will state some results about the linear
complexity in Section 5.
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We consider the linear complexity of
functions of ultimately periodic sequences.
Thus, we need concepts of feedback shift
registers and minimal polynomials. In Section
2, we introduce feedback registers and some

concepts on complexity of feedback registers
or sequences generated by those. In Section
3, we describe some properties of the
minimal polynomials of ultimately periodic
sequences. In Section 4, we have results
about the least period of sequence. In Section
5, some results about the linear complexity of
sum and product of two ultimately periodic
sequences are introduced. To avoid stream
Meier-Staffelbach
correlation attack, the nonlinear combination

cipher attack, eg.,

of feedback shift registers has to be done
under the consideration of its linear
complexity. Thus our results are useful to
secure the nonlinearly combined stream cipher
using the sum and multiplication of feedback
shift registers.

2 Feedback Register

Let F, denote the finite field. A feedback
register (or simply register) of length

n is a pair (F,g) where F=(F,,--, F,)
is a function from F; to F; (the state
transition function) and g is a function from
F; toF, (the output or  feedforward
function). An initial loading of a register
F=(F,g) is an element € F;, F, with

initial loading @, generates the sequence

Fa) = (g(a),g " F(a), g F{(a),"").

The standard feedforward function} is
g(xl,---,x,,)=x1. A register (F, g) is a
feedback shift register with feedforward

function g if

F(xl.'"»xn)=(x2.x3,'“rxn,ﬂxl,"'yxn))

for some function f from F7 to F,, which is
called the feedback function. A feedback
shift register with the standard feedforward
feedback shift
register. A register is linear (resp., affine)

function is simply called a

if g and each F'; are linear polynomials

(resp., affine polynomials). We introduce two
notions of linear complexity.

Definition 2.1 The linear complexity of an
ultimately periodic sequence of elements of

F, is the length of the shortest linear

feedback shift register (LFSR) generating the
sequence. The weak linear complexity of a
register is the maximum of the linear
complexities of sequences generated by the
register.

Definition 2.2 The strong linear complexity
of a register is the length of the smallest
linear feedback shift register such that the
LFSR generates all sequence generated by
the register. :

The linear complexity of a sequence
measures the possibility which a sequence
can reproduce by one. But the definitions of
weak or strong linear complexity are related
with a register itself. Those consider the
worst case of linear complexities of
sequences generated by a register. Obviously,
the strong linear complexity of a register is
greater than or equal to its weak lnear
complexity. For details about the above

definitions, see [1].
3. Minimal Polynomial

Every ultimately periodic sequence can be

"generated by a LFSR. Thus, we will concentr

ate on a LFSR. An ultimately periodic sequen
ce is characterized by its minimal polynomial.
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Now, we define a LFSR and aminimal polyno
mial, rigorously.

Through Section 3, 4, 5 we use the
following notations. Let F, be a finite field.

Let L be a positive integer, let

€0, Cr-1,89, ", A 1EF,, and let

Cp—— 1.
Suppose that {a,}%-¢ satisfies a linear rec

urrence relation
=1
a,= 2) Cit y—r+iform=L
&

and # is the least peried of {a,}. Note that
{a,} is ultimately periodic. We will assume

that {a,,} is a nonzero sequence. Put

I .
1. A)=x"—cp_xt ' —vimox— =~ gc,x’
&

(It is called a characteristic polynomial of the
linear recurring sequence {a,}.),

2.f‘(x)=xL/('};)=- gc;xki
(Note that deg(f)<L.)
aW=ax  ‘tax e +a, xta,

= ga;x"l”}
4.4 (x)=x"" a(l)= gdﬂi,

5.
h(x) = aaytcat+-tcerap,
+x[c2a0+ aa,++crap_ol
+x [c3a0+ +cLaL 3]+ R
e, 1a0+cLa1]+x “lerag
1 L-1—i
= EU 120 C14+a', and
6. B (x)=xt" ]k ?‘_,0 ZLCL Ty
=07

We will first state about generating functions

of a given ultimately periodic sequence.

Let G(x)= ioa,,x

Consider the following equalities:

FRGE = ~ ,th»x“')( go“""")

= —[crag+(co_yap+ crax
+ (CL_2a0+ Cr-1Qy + cLaz)x2
+ ot (crap+ -t erap-Pxt N
~[(cpag+ cr1a)+ -+ crar)xt
+(]Coal+clag+"' +cra L+1)xL+1
+...

Then G(x)= —f(—g)—land if {a,} is periodic,

G =-21a
1—x""

Hence we obtain a theorem.

Theorem 3.1 ‘
Let Ax),dx)eF[x] be polynomials with
A0)=1.

S o Kx)
Let ;Og,,x o) Then

{g,} is a sequence that generates by an d-stage
LFSR where d= max(deg(c),1+ deg(®)).

In particular, if Ax) and (x) are relatively
prime, then {g,} is generated by the unique

shortest d-stage LFSR.

Proof 3.1
Let ox)= g}— ¢i’'x? " such that
¢y =r=¢ d-degta-1=0 and ¢,/ =-1.

From above paragraph and gog,,x"———ii(;)l

gc',-g,,;,: 0 for n=0.

Thus {g,,} is a sequence that genefates by

an d-stage LFSR where
d= max(deg(c), 1+ deg(®).

Suppose that k(x) and c(x) are relatively
prime.

If {g,} is generated by another LFSR such

that gog,x"——i(% then s(x)k(x)=c2)Kx).
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Since Kx) and c(x) are relatively prime,

co(DIs(x) and A(x)|#(x).

If the LFSR is shortest, then deg(c)= deg(s)
and deg(k)=deg($. Then c(x)=s(x) and so
k(x) = Kx).

The proof is complete.

The following fact follows Theorem 3.1.
Let {g,} be a ultimately periodic sequence

of elements of F, with the least period 7

and the preperiod n,.

Then

]
oy
i{a

I
M

gx"+ 2 gx”
n=mg

n=0 0
"y Bo+r—1
_ n—lg"xﬂ+ gnox +...+g”0”~lx
a=0 1—x"
I nyy .
r
>, g — 2. gux”
— n=0 n=0
1-x"

that is, {g,} 1s a sequence generated by an
ny+ r-stage LFSR.

From Theorem 3.2, we define the minimal
polynomial of a given sequence.

Theorem 3.2
There exists a uniquely determined minic
polynomial m(x)eF[x] having the following
property: a monic polynomial

dx)eF,[x] of

characterisitic polynomial of {z,} if and only

if m(x) divides c(x).

positive degree is a

Proof 3.2 Let d(x) is the monic greatest
common divisor of Ax) and #&(x). Then
m(x) = Rx)/d(x) satisfies the statement of

this theorem. For the complete proof, see [2].

Definition 3.1

In Theorem 3.2, m(x) is called the minimal
polynomial of the sequence.

In Theorem 3.1, if kAx) and o(x) are

relatively prime, then xdc(%) is the minimal

polynomial of {g,}.

4. Period of Sequence

In this Section, we state some facts on the
least periods of ultimately periodic sequences.
It only depends on the finite field theory.

0 0 0 Co
1 0 0 (5]

Put A=10 1 0 G and
0 0 1 ¢,

an= (arn Cptls"""s an+L'1)'

Then a,=ayA” and, if c#0, AeGL(F,).

Lemma 4.1
If ¢y#0, then {a,} is periodic and its least
period r divides the order of AeGL(F,).

Proof 4.1. Let m be the order of A. Then

.
Apim=a A" "=gyA"=a,

Definition 4.1.

Let k(x) inF,[x]. If Ax) = x"s(x) and
s(0) * 0 ,then
ord( A(x)) = min{e | s(x) divides x°"}.

From Lemma 4.1 and the fact that A° = I
if and only if Ax) divides x° — 1, we see
sufficient conditions that a sequence has the
maximum least period.

Theorem 4.2.
1. r divides ovd(f).

2. If f is irveducible, then v is equal to ovd(f)
and » divides g~ —1.

3. If £ is the minimal polynomial of a, then
v is equal to ord(f).
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Proof 4.2.

1.If ¢y = 0, then it is clear.

Let ¢ = 0.

Then we write Ax)=x'c(x) with <(0)=0.

Consider a sequence
{b,=a,+in=0,1,2,---}.

2. If Ax)=x, then ord(f)=1 and r=1.

Otherwise, the results follow 1 and

Corollary 3.4 in [2].

3. Let #ny be the preperiod of {a,}

such that a,,,=a, for al nzng

Then x™""—x™ is acharacteristic
polynomial of @, and so Ax) divides
PRCIEDY

Therefore Ax) is of the form Ax)=x'c(x)
with <n; and (0)+0.

Hence ord(Ax)) = ord((x))<7.

5 Linear Complexity of Sequence

First, if the linear complexity of a sequence
is small, we show that one can easily
reproduce the sequence

under the assumption that one know a

consecutive subsequence of length 2L. This
means that a cryptographically secure
sequence should have the large linear
complexity.

That Ax) is the minimal polynomial of a,
is a necessary and sufficient condition of that

Q. a,,°**,a - are linearly independent over

F, Thus we obtain the following theorem.

Theorem 5.1

If ¢;#0, then Ax) is the minimal
polynomial  of a, if and only if
linearly

Auy @ p+1s""" A p+r-1 are

independent over F, for n=0,1,2, .

If ¢;=0, then Theorem 5.1 is false.

Let ¢=0,=1, =1, a;=0,a,=0,a;=1

in Fy. Then the LFSR generates

0011011011---.  Since  Ax)=x+x+x and
h(x)=1, Ax) is minimal. In this case,
(0,0,1),€0,1,1),(1,1,0) is an independent

set and 0,1,1,(1,1,0,(1,0,1) is a

dependent set.

Theorem 5.1 implies that if one know a
consecutive subsequence of length 2L,then
he can solve the linear equation

system such that he finds a characteristic
polynomial Ax).

Now, we consider the linear complexity of
sum and product of two ultimately periodic
sequences.

Let us define vector spaces of ultimately
periodic sequences.

=1 .
Definition 5.1 Let A(x)=— :g)b,-x’+x"' be a

nonconstant monic polynomial over F,
We define that

Q) = (8,gs= 53 b - s sTor n2m).
Convetionally, £(1)={{0})}.

Note that &(k(x)) is a vector space over F,

with the componentwise operations.
We need two lemmas.

Lemma5.2

Let A x) and s(x) be monic polynomials over
F, Then Q(kx))CQ(s(x)if and

only if A(x)|s(x).

proof 5.2
If Ax)=1, then it is clear. Let Ax)+1.
Suppose that 2(k(x))C2(s(x)). Let {g,} be a
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sequence in (X k(x)) generated by an initial
loaded vector (0,--,0,1). Then k(%) is the
minimal polynomial of {g.}). Since
{g.}eAs(x)),

R(0)ls(x).

Conversely, suppose & x)|s(x). Let {g,} be a
sequence in (A x)) and let m(x) be the
minimal polynomial of {g,}.

Then m(x) divides Akx) and s(x). Hence
{g.}=2(s(x).

Lemma 5.3

Let A(x) and s(x) be monic polynomials over
F, and let d(x) = gcd(k, s) and
Ax)=lom(k,s) where d(x) and Kx) are
monic. Then ANAs)=Ad) and

(k) + s)=D.

Proof 5.3
The result follows Lemma 5.2.

From the above two Lemmas, we have a
result about the linear complexity and the
least period of sum of two ultimately periodic
sequences.

Let {g,} and {g,’} be ultimately periodic
sequences of elements of F, Let m(x) and
m’(x) be minimal polynomials of {g,} and

{g,’}, respectively. Then {g,+g,} is a
ultimately periodic sequence
whose the minimal polynomial divides

lem(m, m'). In particular, if » and
are relatively prime, then the minimal
polynomial

of {g,+g,} is m(x)m'(x) and so the
{gn+gn'} is
ord(mm’) = lcm( ord{(m), ord(m")).

least period of

Proof 54 From Lemma 5.3, the first
statement is true.

Let m and » be relatively prime and let
m*  be the
{g.+& ).

It m*(x) is 1, that is, {g,+&,}= {0},

minimal  polynomial of

then m(x)=m'(x). In this case,
m(x)=m'(x)=1.

Suppose that

m(x) = xF—b,_xt b _xl?

_"'_blx— bO
and L=]. Then

—~1
Z‘h b{garitg ntd)

—1 —1
= 2 bg,it be,g' nti
for n=0.

grint 8 14n =

-1
So &iL+s— anign-fi ,
—1
=—g [at be,-g' ati for n20

that is,
{vn} = {gL+ n} - g)lbz{g n+i} .
= —{g r+a}+ gbi{g’ ati)

Since {gr+4}, {g.+€2(m) and
(& 1+a}, (& arite2Am),

{v.}e 2m)NAm’) = A1) = {{0}}.
Hence {g,}, {g.}=2m*) and so mm",
m'|m*, ie, the minimal polynomial of

{g.tg,} is m(x)m'(x).
The last statement follows Theorem 4.2-3.
The product of two sequences is more

complicated. We start with the following
criterion:
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Let E be a set of sequences of elements of
F,. There exists

a monic polynomial A(x) over F, such that
E=Q(Kx)) if and only if

E is a finite vector space, and

E is closed by the translation such that
{g.}€E implies {g,.;}eFE for any i>0.

From the above criterion, we obtain Theorem
5.5,

Theorem 5.5
Let #x) and s(x) be monic polynomials
over F, There exists a monic polynomial

Kx) over F, such that

2 (K(x)) - 2(s(x))t={ Ele{gngn'}l. {g.}eQ(k(x))
and {g, }e2(s(x)} = 2A«x).

Thus, we can find a characteristic polynomial
of a product sequence.

But, in Theorem 5.5, we do not have an
explicit formula of Xx).

If chracteristic polynomials of two sequences
have only simple roots, we obtain an explicit
formula of Xx).

Definition 5.2
Let kx) and s(x)  be
polynomials over F,. We define

that Ax)Vs(x)= dﬁ&ﬂﬂ(x* aB)

nonconstant

where @ and S are roots of A(x) and s{(x)
in the splitting field of Ax)s(x) over F,,
respectively.

Note that Hx)Vs(x)eF [x].

Theorem 5.6

Let k(x) and s(x) be nonconstant monic
polynomials over F, without multiple roots.

Then Q(&x) - Q(s(x))= QK x)Vs(x)..

PROOF 5.4 See [2].

In general, the product of two sequences
does not have maximum linear complexity
such that the linear complexity may be not
the product of two linear complexities. For
example, let A x)=x"+x+ l.and

s =x8+x+ P+ x+1

#(x) and s(x) are irreducible polynomials.
Since

MoOVvsx) =22+ + 0+ 28+ Pt + P+ 2+ 1,
the product of any two sequences generated
by &x) and s(x) does not have the
maximum linear complexity 18.

From the results by Zierler and Gottfert, we
can know that A(x)Vvs(x) in Theorem may be
the minimal polynomial of product of two
sequences generated by the
polynomials #(x) and s(x).

minimal

Definition 5.3
Let » and m be positive integers and let F,

have the characteristic p+0. We write

n—1=20,p"0<j,(p,

m—1=2%i,p",0<i,<p.

We let A be the smallest nonnegative integer
such that j,+i,{p for all v=A, and we set

nm=p'+ 20, +i)p"

In Definition 5.3, #Vm has an equvalent
definition.

For any positive integer » with p-ary

expansion n= 2.;,9",

(x+D*=(x+1) i’
EH(xﬂ'+1)f“(mMp)



10 HEHREE RGEE (199. 6)

ST R

Therefore ( ;'2) = H( ;”)( mod p) where

n=21jp" and m=2i,p™ are pary
expansions. Thus we get the following
necessary and sufficient condition:

(n-;m)$0(mod1)) if and only if

7, + i, for all v

This implies that

nNVm = max {i+;+ 1|( Hi—j) 0( modi)),'
0<i<n—1,0</<m—1}

We state an useful Lemma. Its proof is in

[31.

Lemma 5.7
Let 0+aesF, and n,msZ'. Let kx) be a

monic polynomial over F,.

L.A(x—a)") = Ax— ) A (x—1)").

2.If %k has distinct nonzero roots, then
Q") = 2ARNA(x—1)").
3.Ax—DNUx— D™ =2((x~1) "™).

Theorem 5.8 gives us an upper bound of the
linear complexity of a product sequence.
It follows Lemma 5.7 and Lemma 5.3.

Theorem 5.8 .
Let Kx), s(x) be nonconstant monic
polynomials over F,

with irreducible decompositions A(x) =[1#"x"

and s(x)=IIs"x™ where &, and s; have

nonzero roots. Then

2ARAs) = 2Tk xITs %™
(A keyix (e 1y) + AT Ks))

LA x—=1)"™ +2x™)

=2 kNs) "+ Qx m )

NVm;
=00x ™" lem ; A(kjpeesy™ ™).

Now, let us see a lower bound by R. Gottfert
and H. Niederreiter.

Definition 5.4
Let #x) and s(x) be nonconstant monic
polynomials over F, with only nonzero roots,

let a,..a, be

roots of % with corresponding multiplicities

ay,...ay, and let By .. B, be roots of § with

corresponding multiplicities & .. 5,. We put
C={(i, e N*|,1<i<t 1<i<t), Let v, .. 7,

be the distinct elements among the products

a8; with (4,))eC and let C and let C.
d={G,)edapi=7rs for 1<d<t

We define

Atk 9= T (x-7) “eFx

where the asterisk indicates that the product
is extended only over those d satisfying the
following property:

the set C, contains a pair (i,7) for which

(“;_b’l”)sé()(modp) and a;Vb;<a;Vb; for all
(7, 7)eC,; with (7,7)*, 7).

Via this uniquely determined pair (7, 7)) C,
we define

eyg= a,‘\/b,‘Z a;+ bi—- 1.
As usual, an empty product has the value 1.

One may be interested in the following
theorem.
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Theorem 5.9
Let %4 and seF/[x] be nonconstant monic

polynomials with &(0)s(0)#=0 and let {a,}
and {b,} be sequences generated by the
minimal polynomials %, and S, respectively.
Then the minimal polynomial of {e,b,} is
divisible by A(k,s).

Proof 59 see [2]

With the notations in Definition 54 and
Theorem 5.8,

tem ; ACkN5) ™™ = T (= 7)™

where z,_max (; jec(n;\Vm,) for 1<d<t.

Therefore we get the following fact:

If k(x) and s(x) are irreducible polynomials
and every product of roots of A(x) and
roots of s(x) is distinct

such that a8#a;8; where a;a;

are any roots of k(x) and

B;B; are any roots of s(x), then, by
Theorem 5.8 and Theorem 5.9, the product of
two sequences generated by &x) and s(x)
has the minimal polynomial g(x~ 7.;) where

7i;= @B

are products of each roots of Hx) and s(x).
Thus in this case, the product has the
maximum linear complexity.

6 Concluding Remarks

A sequence of elements of F, generated by
a LFSR with stage L may have the
maximum least period ¢*—1.

From Theorem 4.2, if a characteristic
polynomial of a sequence is primitive such

that its order is ¢f—1,

then the least period of the sequence is
L
qg —1

Let {a,} and {b,} be sequences of elements
of F, generated by LFSRs with stage L,
and L,,

respectively and let f, and f, be the

minimul polynomials of {a,}and {b,},

respectively.

If f, is primitive, f, is irreducible, and
ged(L, L) =1, then we have the following
result:

deg(foVfo) =L,L,

Thus, by theorem 5.8 and Theorem 5.9, the

product of the above two sequences has
the maximum linear complexity.

To avoid Meier-Staffelbach correlation attack,
the nonlinear combination of feedback shift
registers has to be done under the
consideration of its linear complexity. Thus
our results are useful

to propose the nonlinearly combined stream
cipher using the sum and multiplication of
feedback shift registers.
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