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Abstract

The Goldreich-Goldwasser-Halevi(GGH)’s signature scheme from Crypto '97 is cryptanalyzed, which is based on the
well-known lattice problem. We mount a chosen message attack on the signature scheme, and show the signature scheme is
vulnerable to the attack. We collects # lattice points that are linearly independent each other, and constructs a new basis that
generates a sub-lattice of the original lattice. The sub-lattice is shown to be sufficient to generate a valid signature. Empirical
results are presented to show the effectiveness of the attack. Finally, we show that the cube-like parameter used for the
private-key generation is harmful to the security of the scheme.

Keywords: Public-key cryptography, Lattice, Closest Vector Problem, GGH’s Cryptosystem, Chosen message attack

public-key cryptography. The CVP was sh-
own by van Emde Boas to be NP-hard in
1981." In 1996, Ajtai introduced a func-
tion that is provably one-way if approxi-
mating the shortest non-zero vector(SVP)

I . Introduction

Recent researches have found that Clo-
sest Vector Problem(CVP) and Shortest

Vector Problem(SVP) may be useful in the
in a lattice is hard in the worst case., and
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invented a public-key cryptosystem using
the lattice problem."?
Being motivated by Ajtai’s work, Gold-
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reich, Goldwasser, and Halevi proposed a
public-key cryptosystem using lattice re-
duction problems.w Their cryptosystem shed
light on the possibility of new cryptosy-
stems based neither on the factorization
nor on the discrete logarithm problems.
Even better, their cryptosystem is superior
to existing schemes in that it encrypts a
message and writes a signature in O(#?)
operations, while RSA encrypts a message
in O(»® operations for security parameter
7, at the expense of key sizes. The speed
gain obtained by long key sizes looks quite
attractive for the upcoming high speed
network environments such as ATM(Asyn-
chronous Transfer Mode). Also, it has a
novel property that it can process an
analogue signal. In (6], their encryption
scheme was attacked and P. Nguyen
showed that it would be dangerous to use
a dimension less than 400 even though we
fix the flow, which limits our interests in
the encryption scheme. P. Nguyen’'s attack
depends on two weaknesses: one is that
the error vectors are always quite shorter
than the vectors in the lattice, and the
other is the regular form of the error
vectors. These two weaknesses do not
appear in GGH's signature scheme. Thus,
their signature scheme still works well. As
far as we know, there has not been any
published challenge on GGH's signature
scheme.

In this paper, we cryptanalyze the GGH’s
public-key signature scheme, of which se-
curity depends on the approximability of
the close lattice point within a bound. A
key observation of the cryptanalysis is
that for a message which consists of small
elements. a signing oracle returns as a
signature a lattice point whose Euclidean
length is short. Properly collected # la-
ttice points with a signing oracle may be
used as a new basis for the lattice. Unfor-

tunately, randomly collected = lattice po-
ints do not make the same lattice as that
generated from the public or private basis.
but they are likely to generate a sparser
lattice than the original one. The second
observation is that we do not have to use
the same lattice as the lattice generated
from the public or private-key to write a
valid signature. That is, we can make use
of the sub-lattice as a private-key. Espe-
cially, we show that in case of a private
basis with non-zero cube-like parameter,
the original private basis can be com-
pletely restored(The cube-like parameter
represents how cube-like a private basis
is. A private basis is generated as R=k-1I
+rand(£1), where k is the cube-like parame-
ter.).

Set of real numbers and set of integers
are denoted by R and Z, respectively in
this paper. We denote real numbers by
small Greek letters and integers by lowe-
rcase letters such as ik .... Column
vectors are denoted by bold-face lowercase
(e.g. b, ¢. e etc.). and matrices are deno-
ted by capital letters (e.g. B,H R, etc.),
all of which are n Xn matrices.

Il. Brief Survey of GGH’s Public-key
Cryptosystem

GGH's cryptosystem encrypts a message
by encoding it into uneL and adding a
small noise to u, where L is the carefully
selected lattice. Decryption is the process
to eliminate the added noise from the
lattice point and decode the result. Before
we summarize the GGH's cryptosystem,
let’s define the lattice.

Definition 1. Lattice Given a set of = li-
nearly independent column vectors in R”",
B={bi1. ...bn}. we define the lattice spa-
nned by the basis B as the set of all linear
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combinations of the bi's with integral coe-
fficients, namely

LB 25 kbi ki € Z for all i)

One of the important facts about lattice
is that all the bases of a given lattice
have the same determinant.

Definition 2. Orthogonality Defect Let B
be a non-singular nxxn matrix. Then the
orthogonality defect of B is defined as

11 1 by |l
orth-defect(B) = aelB)

where [ bill is the Euclidean norm of the
i'th column in B.
Definition 3. Dual Orthogonality Defect
Let B be a non-singular #xz matrix. Then
the dual orthogonality defect of B is de-
fined as

IT; I b |l

orth-defect*(B) = de B )

=det(B)- 1 lIbi I

where IIbill is the Euclidean norm of the
i'th row in B™".

The dual orthogonality defect plays a
crucial role in the security of GGH’s cryp-
tosystem.

GGH’s cryptosystem uses two bases B
and R of the same full rank lattice in Z”,
and a positive real number o. Here, B has
a high dual orthogonality defect, whereas
R has a low dual orthogonality defect.
(B, o) is the public-key, and R plays a role
as the private-key in their settings. Refer
to (4] how (B, R, ) are generated.

The ciphertext corresponding to an en-
coded plaintext v is obtained by compu-
ting c=Bv+e, where e is a randomly cho-
sen vector from R” whose each entry has

zero-mean and variance o°. Deciphering is

performed by evaluating T[R'c], where T=
B'R is a unimodular matrix.

They also provided a public-key digital
signature scheme. Their scheme signs a
vector u in R” by finding a lattice point v
that is sufficiently close to the vector. The
lattice point is represented as a linear
combination of the columns of B, and the
verifier can verify the signature by com-
paring ¢ and the distance between the
message vector and the vector v.

To sign a message s, we encode the me-
ssage into u € R” by an encoding function
Enc(s)=u. Now, a lattice point near u is ea-
sily found by computing v = T|R'u], where
(T=B'R, R Vis a private-key. A signature
is verified by computing Euclidean dist-
ance of Bv-u and comparing it with 7. If
the distance is shorter than =z, the signa-
ture is regarded valid. otherwise not. r must
be carefully determined, since it takes
greatly effect both on the security of the
signature scheme and on the verification
error probability.

. Cryptanalysis of GGH’s Signature
Scheme

3.1 Idea: Sub-lattice Attack

We begin with the simple fact that a
GGH's signing oracle returns a sufficiently
close lattice vector for a given random
vector u € R”. For a vector u€ R" whose
element ranges from -k to k, the signing
oracle gives a signature, or a lattice point
of which Euclidean distance from u is
smaller than the public value 7. In this
setting, we mount the chosen message att-
ack against the signature scheme by pro-
viding many short messages and collecting
the results. The collected signatures can
be used to construct a new private basis,
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even though they are likely to generate a
different lattice from the lattice generated
from the original public-key or the private
-key. More exactly, they have large pro-
bability to make a sub-lattice of the ori-
ginal lattice. Even though the newly con-
structed basis spans only a subset of the
original lattice, we can still utilize it as a
private-key. Using the new basis, we can
write a valid signature for an arbitrary
message. Define the “error vector’

e=[H"]-H",

and, Roundy(u)=H[H'ul, where H is an
nxn basis of a lattice. Then the distance
between u and Roundy(u) is 1 Hell, the Eu-
clidean norm of the vector He. Clearly, the
i'th entry & in e is less than or equal to
1/2 for all i, because of the rounding-off.
Thus, we would prefer to the sub-lattice
whose elements are small enough to make
I Hell smaller than z. The effort to find
another basis H can be taken by gathering
many short signatures. Intuitively, submi-
tting a short random vector u to a signing
oracle gives us a short lattice point.

Now, the problem how short the vector
must be is solved. Given a message u, a
signing oracle returns v=B'R[R"ul, and
the cryptanalysist can collect many signa-
tures Bv=R[R"'u}. Note that if u is
carefully selected, the vector d=[R™ul will
consist of almost 0's except one or a few
+1’s. Then, the signature of the u is either
exactly one of the columns of R or a sum
of a few columns of R, the private basis.
From now on, sum of several vectors ri
means

Z}Ci X 1;, where ¢i {0, £1},

where &/n portions of ¢'s are *1 for a

small constant e.

With # signatures collected in this way,
we can construct a new basis, though the
basis is likely to generate the sub-lattice
of L(R) rather than L(R) itself.

To make d= [R'u| have almost 0's and
only a few of *1's, we must constrain the
range of elements of u. We use the Hoe-
ffding bound. Let's denote the i'th entry
in d and u by §é: and g respectively.
Also, we denote the i,j 'th element in R!
by i, and the maximum L~ norm of the
rows in R by Y/Va where Y will be
roughly estimated by any randomly gene-
rated basis with the maximum entry size
of R and its cube-like parameter.

Pr( 18] >1/2)<2exp(- 2n—(k1v%72)_2)=5/" 1

where 8; =2 jpjuiand | pi| <k.

Pr( 1681 >3/2)<2exp(- =8, @

9/4
2n(kYIV n)?

where B is set to a very small value
such as 1077,

If we limit k¥ such that it satisfies equa-
tion (1) and (2), §: will be composed of al-
most 0's and & number of *1’s, and entries
whose absolute values are greater than 1
will be occurred with B probability. By gi-
ving a random vector whose element ran-
ges from -k to k to a signing oracle, we
can extract either exactly one of the colu-
mns of R or a sum of a several columns of
R.

To get a numerical sense, consider the
parameters n=140, =5 B=10" Y=1/30.
Evaluating the equation (1), (2) yields |k |
<6 and |k | <7, respectively. However, the
effective value of |k | in the experiment
is twice as large as those values.

Let H be the newly constructed basis.



N IR

L (2004, 2) 51

To write a signature, we need another ma-
trix, that is T=B'R. the unimodular ma-
trix. But in our case, we can construct T’
=B'H. Our T is not a unimodular matrix,
but it is composed of only integer ele-
ments. This is because L(H) is a sub-
lattice of L(B) (sometimes, L(B) itself), and
H's determinant(equally, the volume of the
parallelepied of L(H)) is the integer mu-
Itiple of B’s determinant(the volume of the
parallelepied of L(B)). Now. we can write a
signature for any message with the newly
generated private-key.(H.T'). For a mess-
age m, the distance between m and the
signature T/H'm| is expressed in the follo-
wing equation.

Im-BT" [H'm| il = im-H [H'm] I
= HH'm [H'm| Il =i Hell

To make ! Hellmuch smaller. we can ap-
ply a lattice reduction algorithm like LLL
reduction to H.”

It is high time to estimate the distance
between the message and the signature
that is written by (HT') .

Let’s denote L norm of i-th row in R
and that in H by Yw and Yu respectively.
Every column of our newly constructed
basis H is constructed from the vector d=
[R'ul that has less than or equal to &
number of +1's and at least one *1. For
the worst case analysis, we assume that d
consists of exactly € number of *1's. Un-
der the assumption of uniform distribution
of *1 in d, we can obtain

Yui =€*Yp
Thus,
iHell=¢ IIRe (3)

As seen in the equation (3), a signature

generated with (HT) is ¢ times farther
from the message than the signature gene-
rated with (R,T) is. Equation (3), however,
is the worst case estimation for the dis-
tance between a message and its corre-
sponding signature. As stated previously,
d has less than or equal to & number of
+1’s. Furthermore. many of them contain
only one *1. Thus, the distance in the
experiment is much nearer than that in
the above estimation.

3.2. Description of the Procedure

We describe the cryptanalyzing proce-
dure of GGH's signature scheme that finds
H, a basis for a sub-lattice of L(R) and T'.
Fig. 1 describes an algorithm to find out a
new private-key.

The parameter ¢ determines when the
algorithm stops. The more columns are sub-
stituted, the lower the probability for B to
remain fully ranked is. Because we repla-
ced longer columns first, a few remaining
columns will not degrade the quality of H.

Writing a signature with (H.T) for an en-
coded message m is the same as that with
(R.T). For a message m to be signed, a si-
gner generates the signature v=7"[H'm].
The signature is verified by comparing
with Ilm-Bvl (= IHel).

Instead of using the Babai’'s round off
algorithm to get the lattice point near the
message, we can use his nearest plane al-
gorithm to decrease more distance between
the signature generated by H and the me-
ssage.”

Now. we estimate the algorithm’s run-
ning time.

First, we approximate the number of re-
petitions of the main loop. We must con-
sider the probability for B’ to remain fully
ranked after substituting Bv for one of its
columns, b.. Assume the matrix U obta-
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ined by substituting zero column vector
with one of columns of U, which is R'B’. If
we transform U into echelon form, every
i-th column has a non-zero i-th entry ex-
cept one column, which is a zero column
vector.

lnput: A signing oracle A, a signature verifving box ¥,
A public-key {B. ). ¢ the trade-off parameter hetween
the running time and the quality of H.
Output: A new private-key (H.T")
1. Perform » lattice reduction algorithm such as LLL
reduction to B, and let the result B.
2. Compute by . the Euclidean distance of every
column of B and assign the smallest one 1.
3. Sort b; with decrensing order according to by
and store the sorted index to piil.
4 H=B.¢= 1
5. Do the following until ¢ columns of H are replaced.
{n} Generate a random vector u. of which elements
are uniformly distributed over Tk k] where k is
determined by equation (1){2i.
{b} Evalunte & signature v = A{u) by submitting
u to the signing oracle A.
{c} Check whether the signature v is zero-veetor.
If su. guto step (a).
{d} Check whether the signature v is valid.
1f not. goto step {(ah.
(e} U Bv s larger than or equal to 7, goto step {a).
{f} Check whether B obtained by substituting
the plc-th colunn of H with Bv forms a basis.
That is, check whether the rank of B’ is n or not.
{3 If B’ forms a basis, then let H = B,
amd crease ¢ by one.
{hy If not. then B' = H.
6. Apply the Lattice reduction algorithm to H.
7. Compute T' = B"'H.

Fig. 1 Algorithm 1 to find out an equivalent pri-
vate key

500

Thus, when we replace the zero column
with a new vector d=[R'ul] that has only
0's and ¢ number of *1’s, d would make
U be fully ranked with high probability if
the i~th element of d is not zero. Thus, if
we assume that & number of *1's are uni-
formly distributed in d, the probability for
one of *1 to hit the i-th position is &/xn.

Within the loop 4, the most time consu-
ming part is an operation to check whe-
ther the resultant matrix is fully ranked
or not, and it takes O(n%).

Finally, we get the average running
time of our algorithm.

4
n
o) (4)

3.3. Empirical Results

In this section, we show empirical resu-
Its of our attack. To get the empirical re-
sults, we used the LiDIA package.™ In the
experiments, we let =4, the entry size of
R and the cube-like parameter =IX[1+V x].
To generate the public basis from R, we per-
formed 2n number of mixing steps, where
each step is performed by a uni-modular
matrix whose all elements in its diagonal

400

300

Distance

200

1 5 9 13 17 21 25 29733 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

Message

-t k=10 withH —e—withR —a—k=15withH e.tau

Fig. 2 Quality of signatures generated with H, Dimension=80
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are 1 and one of its columns is composed as those of.* The messages are uniformly
of {-1, 0, 1}. The column has a bias to- distributed in the range of (-200,200].
ward 0 and Pr(1}=Pri-1)=1/7. Fig. 2-5 show ¢ (for ¢=2") distances
These parameter settings are the same between 100 messages and corresponding
600 e
500
400
g: 300
a2 ] A Y
A 200 /L( s | AMMW/\,A“JM;AV‘W uw W[mﬁuwm
oo e oo es P P s et o e B P L s
100 ;
0
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
Message
- k=10 withH —@—withR —pg—k=15withH tau
Fig. 3 Quality of signatures generated with H, Dimension=100
700
600
500
8 400
é 300
A
200
100
0 —
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101
Message
i k=12 WithH —¢—withR —p—k=15withH tau
Fig. 4 Quality of signatures generated with H, Dimension=120
700
600
8
8
z
0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 8 8 91 96 101

Message

g k=12 withH g With R~ k=15 with H tau

Fig. 5 Quality of signatures generated with H, Dimension=140
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Table 1. Summary of the Experiments

(Dimension. k, re) | pe | ADIHYADIR) | Det{H)/Det( R} (B/R. H/R)
(80. 10, 80) 2534 I 1 [0.33¢19, 1)
(80, 15, 80) 563 2.53 = 0.24e15 {0.33e49, 0.19¢31)
(100, 10, 99} 1991 1 I (0.13¢84, 0.45¢12)
{100, 15, 100} 289 171 673 (0.13e84, 0.66¢21}
(120. 12, 120) 1633 1.09 2 (0.34e120. 3857.66)
(120, 15, 120) 183 2.24 = 01215 {0.34¢120. 0.64¢39)
(140,12, 137 1445 Lov 16 {0.14e1 72, 0.61e10)
{140, 15, 130} T87 1.49 36 {0.14e1 72, 0.21e21)
120
100 T
%0 —e— Dim=80, k=10
g " \\ —s— Dim=100, k=10
3 \ | —4— Dim=120, k=12
= an | —— Dim=140, k=12

i

N
S
L

f
|

#of +/-1's

8 9 10 11 12

Fig. 6 Cardinalities of M(H, k) for varying parameters

signatures with H and R for dimensions
80, 100, 120 and 140. For dimension 80 and
100 with k=10, the algorithm found the
same basis as R. With k=15, the distan-
ces between the signatures with H and the
messages are short enough for the signa-
tures to be regarded as valid ones, though
they are rather longer than those with R.
With k=10 or k=12, signatures with H can-
not be discriminated from the signatures
with R.

Table 1 summarizes various metrics reg-
arding the quality of signatures generated
with H. In the table, AD(B) is the average
distance from the messages and the sig-
natures generated by the basis B, and
Det(B) is the determinant of B. r¢ and pc is
the number of replaced columns in each

trial and the number of messages con-
sumed, respectively. We didn’t count me-
ssages that derive signatures to be zero.
B/R means the orthogonality defect ratio
between B and R, and H/R means that
between H and R, where both B and R are
LLL-reduced.

From these empirical results, we can
conclude that the new basis obtained in
the way of section 3 has enough quality to
generate a signature that is sufficiently
close to the submitted message.

Finally, fig. 6 shows that the cardinality of

M(H, k)={column|S(H, column)=k}

has a light-tailed distribution. The light-
tailed distribution means that almost every
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columns of H are those of R and only a
few columns are sum of several columns of
R. This property of M(H k) takes a positive
effect not only on the quality of the signa-
ture with H, but also on the restoration of
the private basis in the attack of the
signature scheme, which will be described
in the following section.

3.4 Complete Restoration of the Private Basis

In this section, we show that with a re-
ctangular private basis, the signature sch-
eme may reveal its private basis. Regar-
dless of the cube-like parameter, we can
attack the signature scheme by the sub-
lattice. and we showed by experiment that
it generates the basis with enough quality.

However, as pointed in,"” non-zero cube
-like parameter is preferable to zero cube
-like parameter. because that much incre-
ases the dual orthogonality defect ratio of
public basis and private basis. In this sec-
tion, we show that we can completely res-
tore the original private basis R if the sig-
nature system uses the non-zero cube-like
parameter.

We can obtain the exact R from the
approximated H by solving a simultaneous
equation. For the establishment of simul-
taneous equation, we take advantage of the
fact that the cube-like parameter is [1+V xl
times larger than I. The key observation is
that Bv=R[R'ul. that is the signature for
u is a sum of several columns of R, and
we can observe in a Bv several peaks
resulted from the biased diagonals of R.

As shown in section 3.1, the vector [R™ul
has only a few *1's and other large por-
tions are filled with 0’s. Also, note that
the i-th element of the i-th column of R is
biased by the cube-like parameter. while
others are not. Thus, by counting the peak
elements of Bv, we can guess how many

columns are combined to construct the
signature Bv, and by observing positions
of the peaks, we can guess which columns
of R are involved to make a signature. By
collecting n-linearly independent pairs of
such Bv, we can establish the following
simultaneous equations and recover R by
solving it.

RX=H (5)

where X is an »xX#un matrix whose columns
are made up of {0,*1} and constructed
from linearly independent Bv's by Algo-
rithm 2 and 3.

In this scenario, however, we must not
disregard that the number of combined
columns of R to make Bv does matter in
the attack. If the number of columns
combined exceeds a certain threshold, that
is, lots of columns are linearly combined,
we cannot discriminate the peak points in
the vector Bv because every elements in
get equally large.

Following is the worst case approxi-
mation for the number of columns to be
combined, x. In the worst case, the biased
point is subtracted by xI, while others are
added by xI, where ! is the maximum entry
size of R. Thus. to make the peak points
still greater than others, following must
be satisfied.

IM+Vau-xl >xl

Rewriting the above equation for x, we
get

x<——[1+\/_nj

2 (6)

For dimension 100, x=5, for 120, x=6, and
for 200, x=8, etc. Equation(6) is the worst
-case approximation for x. Since all ele-
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ments in R are unformly distributed in (-,
1] except the diagonal, each element in the
vector that is made by summing x number
of columns of R up would likely to be aro-
und 0 except the peak points. So, we can
set x much larger than the approximated
value in equation(6).

Because the permitted x is proportional
to e of the equation(4), we can attack fa-
ster with a larger x.

Let us describe how to find the peak
points. It consists of two phases. One is
finding how many columns of R are com-
bined to be Bv, and the other is searching
the positions where the peaks are located.
Followings are those procedures.

First, we describe how columns the num-
ber of columns combined can be found. By

equation(6), we assume that columns is

[1+V )
less than — 73—

Now. the following procedure outputs
positions and polarities of the peaks.
From #» linearly independent Bv’'s, we can

Input : Bv. { and n
Output : colwmns
1. Set columns = 14*21'_
2. Do the following loop while colwmns > 0
{a} Count the number of clements of Bv whose
absolute vahie is less than or equal to | < colunmms
wid set it to .
(by If n - w is not equal to colimns,
then colemns = colummns - 1 and goto step {a).
(¢} else return columns =n - w
3. If colupmns = .
then Print “Bv is not an appropriate vector.
Choose nnother one.”.

Fig. 7 Algorithm 2 to find out columns

Input : colmnns and Bv
OQutput : Cobunn vector X = {21 02, ... 0y}
1. =1 and set X to be a zero vector.
2. Do the following loop while i © colwnns
{a) Find the element m whose sbsolute value is
i-th Iargest and its position p in Bv.
{hY if i = 0, then set o, = |
{cy else set rp =
3. return the vector x.

Fig. 8 Algorithm 3 to find out x

get n linearly independent x's (equally, |
R'al’s) and make the matrix X in equa-
tion(5). Since X is fully ranked. its in-
verse does exist and we can easily find
the exact R from equation(5).

Fig. 6 shows that M(H, k) has a light-
tailed distribution, and it ensures that our
attack should succeed to restore the
private basis. Consequently, the cube-like
parameter is not desirable for the security
of GGH's signature scheme.

N. Conclusion

In the paper. we presented an effective
attack against GGH's signature scheme.
The chosen message attack against the
signature scheme wuses the fact that a
signing oracle returns a short lattice point
for a short message vector and gathering
those lattice points can construct a good
basis to write a valid sign. Especially, the
cube-like parameter is shown to be harm
for the security of the cryptosystem.

We believe that the running time can be
reduced by starting from the null basis,
filling columns of it one by one with a
short lattice point while checking whether
the lattice point increases the rank of the
basis. Also, the attack has inherently very
high parallelism and its running time can
be easily improved by the distributed
computing.
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