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ABSTRACT

Iwata et al. analyzed the pseudorandomness of the block cipher Serpent which is a SPN-type transformation.” In this
paper, we introduce a generalization of the results, which can be applied to any SPN-type transformation. For the purpose,
we give several explicit definitions and prove our main theorems. We will also apply our theorems to several SPN-type
transformations including Serpent, Crypton and Rijndael.
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I . Introductionc Roughly speaking, the security of the
structure is analyzed after the main func-

Luby and Rackoff'" introduced a theo- tions{(such as round functions in Feistel-
retical model for the security of block cip- type transformations or S-boxes in SPN-
hers by wusing the notion of pseudoran- type transformations) is replaced with a
domness. The purpose of the security ana- pseudorandom function or pseudorandom
lysis using the notion of pseudorando- permutation. With this model, Luby and
mness is to measure the security of the Rackoff showed that the three round DES
structures used in the block ciphers. is a pseudorandom permutation and the

four round DES is a super-pseudorandom

A4 20039 129 269 A= 20049 29 39 permutation,:]j Maurer gave a simpler proof
T wonil@cist.korea.ac.kr for non-adaptive adversaries.”” Since the
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structure of Twofish has the same as DES,
the three round Twofish is a pseudoran-
dom permutation and the four round Two-
fish is a super-pseudorandom permutation.
MARS has a so called Type-3 Feistel str-
ucture. At the rump session of AES2, Vau-
denay and Moriai claimed that the five
round MARS is a pseudorandom permu-
tation.® The block ciphers such as RC6,'*
MISTY®™ and KASUMI® were also ana-
lyzed by many people on the view point of
pseudorandomness.mg] Note that these bl-
ock ciphers are not SPN-type transforma-
tions.

In this paper we will focus on analyzing
SPN-type transformations by using the no-
tion of pseudorandomness. Actually, there
was a result about Serpent which is a
SPN-type transformation.'”
proved that the two round Serpent,“m in
which the diffusion layer is left untouched
and only the S-boxes are replaced with
pseudorandom permutations, is not a pse-
udorandom permutation but the three ro-
und Serpent is a pseudorandom permu-
tation. The reason that they did not touch
the diffusion layer is very natural because
the structure of a SPN-type transforma-
tion completely depends on its diffusion
layer. So it seems that there is no way to
obtain a generalizd result which can be

Iwata et al.

applied to any SPN-type transformation
because there are many different diffusion
layers in this world. In other words, it
seems that the analysis should be diffe-
rently treated depending on the shape of a
diffusion layer. But, in this paper we will
show that there is a generalized result
which can be applied to any SPN-type
transformation. A specified SPN-type tran-
sformation depending on a diffusion layer
will have an effect on the assumption of
our theorems. The details will be expla-
ined with several definitions. At the end

of the paper, we will also apply our
results to several SPN-type transforma-
tions including Serpent, Crypton and Rij-
ndael.

ll. Preliminaries

We denote by I, the set of all =n-bit
data. Let £, be the set of all permuta-
tions from I, to itself.

Definition 1. 2, is called a TPE(truly
random permutation ensemble) if all per-
mutations in 2, are uniformly distributed.
That is, for any permutation 7 € ,, Pr{n) =

1

2m

We consider the following security mo-
del. Let D be computationally unbounded
distinguisher with an oracle O. The oracle
O randomly chooses a permutation z from
the TPE &, or from a permutation ense-
mble ¥, € 2,. For an #»-bit block cipher,
¥, is the set of permutations obtained

from all the secret keys. The purpose of
the distinguisher D is to distinguish whe-
ther the oracle O implements the TPE @,

or ¥, We give several definitions in order
to measure the ability of the distinguisher.

Definition 2. Let D be a distinguisher,
2, be a TPE, and ¥, (€ 2,) be a permu-

tation ensemble. The advantage Advp of
the distinguisher D is defined by

Advp=1p"—p "1

where

pg”= Pr(D outputs 1| O — R,)
p%: Pr(D outputs 11 O — ¥,)

Assume that the distinguisher D is re-
stricted to make at most poly(n) queries to
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the oracle O, where poly(n) is some poly-
nomial in #. We call D is a pseudoran-
dom distinguisher if it queries x and the
oracle answers y=na(x), where x is a ran-
domly chosen permutation by O.

Definition 3. A function 2:N — R is negli-
gible if for any constant ¢>0 and all suffi-
ciently large meN,

1
m(‘

h(m)<

Definition 4. Let &, be an efficiently com-

putable permutation ensemble, where “effi-
ciently computable” means that all permu-
tations in the ensemble can be efficiently
computed. We call ¥, is a PPE(pseudor
andom permutation ensemble) if Advp is
negligible for any pseudorandom distin-
guisher D.

Throughout this paper. we consider a
non-adaptive distinguisher which sends all
the queries to the oracle at the same time.

ll. Pseudorandomness of SPN-type tra-
nsformations

In this section we define formally a po-
pular class of block ciphers, known as SPN
-type transformations. It is well known
that a diffusion layer palys an important
role in a SPN-type transformation. The
diffusion layer provides an avalanche eff-
ect which is a desirable property of any
encryption algorithm. So we give a explicit
definition which expresses an avalanche
effect in a SPN-type transformation. The
definition will be very useful in proving
our theorems.

Definition 5. For any »-bit permutations
fis oo SmE 2, a mn-bit SPN-type transfor-

Fig. 1 mn-bit SPN Structure (s * k = n)

mation G € 2,.,( g2 (f,...,f,)) is defined
by

Gg€x1 s e .,Xm):D(fl(xl)y- . .,fm(xm))

where x,...,x,€ I, and D is any diffusion

layer from I, to itself.

In this paper an element of I, will be

called by a word. In the above definition,
D is any diffusion layer. So. for example
D can be the bit-wise diffusion layer used
in Serpent. the 2-bit-wise diffusion layer
used in Crypton or byte-wise diffusion la-
yer used in Rijndael(See'” '™ for the deta-
ils). So we will describe each #»-bit input
word to a diffusion layer as s A-bit data
in order to model arbitrary diffusion layer
including that of Serpent, Crypton and
Rijndael(See Fig. 1). As you know, this
modeling is a basic step to analyze struc-
tures used in block ciphers on the view
point of pseudorandomness. The values of
m and s will be determined by a given
SPN-type transformation but 4 will be a
variable included in the domain N of the
function # in Definition 3. As examples,
we can actually model diffusion layers of
Serpent, Crypton and Rijndael. As you can
see in those figures. it is determined that
(m=32,s=4). (m=16,s=4), and (m=16,s=1)
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for Serpent, Crypton and Rijndael respec-
tively. It is obvious that these values are
determined by their internal structures.
We will explain the details about these ex-
amples in section 4. In Section 4, we will
also apply our theorems to these models of
the block ciphers.

Definition 6. Let Z1=A1..... uwr.... &,
=(fn, .... ) be given. Then the » ro-
und mmn-bit SPN-type transformation G’ is
defined by

G, =Gy oo oG (xy,...,%p)

where x,....,x, 1, .

The following definition expresses an
avalanche effect in a SPN-type transfor-
mation. It is well known that the avalan-
che effect is completely determined by the
diffusion layer of the SPN-type transfor—
mation. The definition will be very useful
in proving our theorems.

Definition 7. Let a » round mn-bit SPN-
type transformation G” be given. Let (x;,

.., x,) be a plaintext to G”. We denote by
Avalanche(x;) the number of words which
are influenced by x; after the j-th round
(1<i<m ,1<j<r). At this time, MAX; and
MIN; are defined by

MAX,;= max ;<< {Avalanche,(x;)}
MIN; = min |¢;<.{Avalanche(x;)}

Definition 8. Let a » round mn-bit SPN-
type transformation G” be given. If MIN,=m,
then RMIN is defined by

RMIN= min ,;<,{i| MIN;= m}.

In the following we introduce our main
results which can be applied to any SPN
-type transformation.

Theorem 1. Let a »round mn-bit SPN-type
transformation G” in which f£y,....fm are
independently chosen from a #-bit PPE
be given. If RMIN=r, then the G” is not a
pseudorandom permutation.

Proof : Let ¥,, be the set of all permuta-

tions over I,, obtained from the G" and the

J-th round output of this transformation

is denoted by 6;=(5;, ..., 8im). Since RMIN=r,

MIN,_ <{m. So there exist » and w (1<v,

w<m) such that §(,-, is not influenced by

x, after ( r—1)-th round. Consider a distin-

guisher D such as follows.

1. D chooses two plaintexts, x V= (xV, ...,
) and x®P=(x?,....x¥) such that
P52 and £V =x2 for i#v.

2. D sends them to the oracle and recei-

ves the corresponding ciphertexts y =

(yl(l) y(l)) and y(Z):(yl(2) y(2)).
3. D computes yP=D"'(3P) and y@=
D—l(y(Z))
4. D outputs 1 if and only if V=7,
where 7 is the w-th word of y™ for
u=1,2.

Suppose that the oracle implements the
TPE @,,. Then it is clear that p*~=2""
Next suppose that the oracle implements
¥,,. Then the input to f(-1, is not infl-
uenced by the output of f1,. So 8 .=

[4Y)

6 1, because xV=2x? for i+v. Hence

»""=1. Therefore
Advp= [pg’""—b "”’"[:1_ 9-n

Consequently, Adv, is non-negligible. He-
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nce the » round mn-bit Idealized SPN-type
transformati on is not a pseudorandom per-
mutation.

Theorem 2. Let a (»+1) round mn-bit
SPN-type transformation G’*' in which
fu,....fm are independently chosen from
a n-bit PPE be given. If RMIN= r, then the
G™*' is a pseudorandom permutation.

Proof : Without loss of generality, we can

assume that fy,...,.f,» are independently

chosen from the TPE &,.
Let @,, be the set of all permutations
over I,, obtained from the (»+1) round

mn-bit SPN-type transformation G™*! and

the j-th round output of this transfor-

mation is denoted by 8;=(8,,...,8,x).
Suppose that D makes ¢ oracle calls. In

the i-th oracle call, D sends a plaintext x

P x) to the oracle O and rece-

*(x
ives the corresponding ciphertext v = (",

Y.

At this time, we can assume without loss
of generality that =, ... x"“are all dis-
tinct. For each u:I,...,m, we let E[6,,]
be the event that 8%,...,6% are all dis-
tinct. And we let E[8,] be the event that
all E[8,4] ..., E[§&,,.] occur.

If E[6,] occurs, then vy, ...,y are com-
pletely random since f,+p1,.... G+ym are
truly random permutations. Therefore, Adv
is bounded above as follows:

Advpy=1p°"—p "<1-Pr(ELS,]).

Further, it is easy to see that

Advp<1—Pr(E[d,])
< l<§;‘ Pr((Si{)— (1))+

+ 20 Pr(%,=20%)

1< (<t

Fix 7 and j (##j) arbitrarily. We now
show that Pr(6¥=¢{),...,Pr(s\%=5%) are
all sufficiently small. Since x“P+x", there
exists 1<v<m such that x7+x. For this
v, f1, has sk(=mn) output bits. In the foll-
owing we will assume that each inter-
mediate word influenced by some previous
word contains at least ck bits of the pre-
vious word, where 1<c<s.

Case 1l : r=1.

By the assumption r=1, the sk output bits
of fi, are distributed among exactly m &,
‘s, say u=1,...,m. Since f,, is truly ran-
dom permutation, the following inequation
holds.

Prel=6%) <2°% for u=1,..., m.

Therefore the following upper bound is
obtained.
Ady p< 1§,-S,Pr(51(10= S+ ...

(0 — 5 (=1 1
+ 1{2 P(a ) = m 2 2c‘k

Consequently. Advp is negligible, since
t= poly(mn) =poly(msk) and m, s, and ¢ are
all constants depending on the given 2
round m#n-bit SPN-type transformation G?.

Case 2 : »=2

Depending on the property of Diffusion
Layer, the sk output bits of f,, are distri-
buted among at most MAX, 8,,'s, say u'=
i, ..., u'max,. Since f), is truly random per-

mutation, the following inequation holds.
Pr(a(’) = (ﬁ) <2 ok for U *ul,...,ulMAXl

Next each &,, becomes the input to 7,,.

The output bits of f,,1,....7 5., are dis-
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tributed among at most MAX, 8,,.’s, say
uzzu?, . .,HZMAX:.
Let E[6,] be the event that &%+

#'yax,. Then we have

) ;Ju)l for

all w'=ul,...,
Pr (6(21;_8(1))

<2 % Pr(E[§,]) + (1 - Pr(E[8,])
<2 %+ Pr(8V, =8V0+...

+ Pr(é\(] b, = 8(11)14 m\)
| | MAX, MAX,+1
< ch + zck = 2ck
for wt=di, ..., uZMAXZ.

Next each &,, becomes the input to f,..
The output bits of f4,,.... 3., are dis-
tributed among at most MAX; &8,,'s, say

3__ 3 3
U =Uuy,... ,Upax,.

Let EI8,] be the event that &82+8 for

all &=, ..., u’nax,. Then we have

Pr(4:= 6
<27 “Pr(E[&]) + (1~ Pr(E[8))
<2 %+ Pr(dyh =0 +...
+Pr(8%,, =08 )

"uwn ZuM\\

< 21ck+ MAXZ(;lz:lX1+1)

MAXg(MAXl +1)+1
2ck

3 3
fOI" u =u?,...,uMAXJ.

Using mathematical induction and si-
milar notations as above, we can formu-
late the security of the » round mn-bit SPN
~type transformation. As a result, the foll-
owing upper bound is obtained.

Advp < Z Pr(6@=6M+..

+ 2; Pr(s'%,=6%) < mHE=1)
1<7<t 2

MAX ,_(MAX, > (MAX,_4(..

J+D+D+1
ch .

Consequently, Advp is negligible, since t=
poly(mn) =pol(msk) and ». m, s, and ¢ are
all constants depending on the given
(r+1) round mn-bit SPN-type transfor-

mation G,

Note that the case »=1 in the above
theorem indicates the two round mn-bit
SPN-type transformation G? in which its
diffusion layer has the maximal branch
number, i.e., MAX,= MIN,=

N. Applications
4.1 Serpent

@ Pseudorandomness In [7], Iwata et al.
proved that the two round Serpent is
not a pseudorandom permutation but the
three round Serpent is a pseudorandom
permutation. The results are also deri-
ved by our Theorem 1 and 2. Since Ser-
pent has a bit-wise diffusion layer, Iwa-
ta et al. decided that s=4(The notation
s can be seen in the previous part of
this paper).

In this subsection, we don’t explain the
details about Serpent and its modeling
because those can be found in (7].
the modeling of Serpent, we can know
that RMIN=2 in our notation by the pro-
perty of the Serpent diffusion layer. So
we directly obtain the following coro-
llary using our Theorem 1 and 2.

Corollary 1. (7] The two round Serpent.
in which the diffusion layer is left un-
touched and only the S-boxes are replaced
with pseudorandom permutations is not a
pseudorandom permutation but the three
round Serpent is a pseudorandom permu-
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tation. transposi tion. So we can assume that
the Crypton diffusion layer is a 2-bit
4.2 Crypton -wise diffusion layer. Then we can mo-
del Crypton as following way in order to

@ Description of Crypton Crypton"'" is analyze the security of the structure :

a SPN-type transformation. The length
of the block and the length of the key
are 128 bits. A 128-bit data is usually
represented in 4 x4 matrix in descrip-
tion of Crypton. The component func-
tions 7, 7. r, and o are as follows.

* 7y is a nonlinear byte-wise substitution.
There are two versions of y: y, is for odd
rounds and 7, is for even rounds.

* 7 is a linear bit permutation. [t bit-
wisely mixes each column(4 bytes). There
are two versions of x: x, is for odd ro-
unds and 7z, is for even rounds.

* z is a linear transposition.

* ¢ is an operation in which a round key
is applied to the intermediate data by
a simple bitwise XOR. We will use nota-
tion ox when the given key is K.

The 2n-round encryption of Crypton can
be described as
¢U°p(',\,nto{1;“ ° Dpy,\ opn,\vco_[{” ’
where 0,, =0k > 7,° 7, for odd rounds and
0., =0T, 7 for even rounds and the

linear output transformation ¢ .,=r-7z.° ¢ is
used at the end.

@® Modeling We can assume that r-7 is
the diffusion layer of Crypton. Note that
the linear bit permutation =z in the di-
ffusion layer can be regarded as a 2-bit
-wise permutation because a data is di-
vided into a bundle of 2-bit slices and
then these 2-bit slices are mixed by the
permutation. And ¢ is a simple linear

* Fix m=16.
» Replace each S-box with an independent
pseudorandom permutation over I,.

» We can assume that the Crypton diffu-
sion layer is a 2-bit-wise diffusion layer.
So fix s=4.

@ Pseudorandomness In the modeling of
Crypton, we can know that RMIN=2 by
the property of the Crypton diffusion
layer. So we directly obtain the follo-
wing corollary using Theorem 1 and 2.

Corollary 2. The two round Crypton. in
which the diffusion layer is left untouched
and only the S-boxes are replaced with
pseudorandom permutations is not a pseu-
dorandom permutation but the three round
Crypton is a pseudorandom permutation.

4.3 Rijndael

@ Description of Rijndael Rijndael’™ is
a SPN-type transformation. The length
of the block and the length of the key
can be specified to be 128, 192, or 256
bits, independently of each other. In
this paper we discuss the variant with
128-bit blocks and 128-bit keys. In this
variant, the cipher consists of 10 ro-
unds. A 128-bit data is usually repres-
ented in 4x4 matrix in description of
Rijndael. Every round except for the
last consist of four transformations:

* ByteSubstitution is a non-linear byte sub-
stitution, operating on each of the bytes
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independently.

« ShiftRow is a cyclic shift operation of
the bytes of each row by 0, 1, 2. 3 re-
spectively.

* MixColumn is a linear transformation
applied to columns of the matrix.

« AddRoundKey is an operation in which a
round key is applied to the intermediate
data by a simple bitwise XOR.

Before the first round AddRoundKey is
performed. In the last round the MixCo-
lumn is omitted.

@ Modeling We can assume that the diffu-
sion layer of Rijndael consists of the
ShiftRow and the Mixcolumn transfor-
mation. We can model Rijndael as foll-
owing way in order to analyze the secu-
rity of the structure :

* Fix m=16.

* Replace each S-box with an independent
pseudorandom permutation over I1,.

* In the MixColumn transformation, each
column MDS opertation using a 4x4 ma-
trix L=(a ) 4. where a;eGF(2% is re-
placed with a new column MDS opera-
tion using a 4x4 matrix L= (a;) 44, Where
a;=GF(2". So we can decide that s=1.
Hence, it is determined that k= ux.

@ Pseudorandomness In the modeling of
Rijndael, we can know that RMIN=2 by
the property of the Rijndael diffusion
layer. So we directly obtain the follo-
wing corollary using Theorem 1 and 2.

Corollary 3. The two round Rijndael, in
which the diffusion layer is left untouched
and only the S-boxes are replaced with
pseudorandom permutations is not a pseu-
dorandom permutation but the three round
Rijndael is a pseudorandom permutation.

V. Conclusion

In this paper it was shown that there
are generalized theorems for the pseudo-
randomness of SPN-type transformations.
And we showed that our results can be
applied for the security analysis of the
block cipher Serpent, Crypton and Rijn-
dael. We emphasize that the results can
be applied for any other SPN-type tran-
sformations.
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