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ABSTRACT

We present a new parallel algorithm for extending the domain of a UOWHF. Qur algorithm is based on non-complete /
-ary tree and has the same optimal key length expansion as Shoup’s which has the most efficient key length expansion
known so far. Using the recent result [8], we can also prove that the key length expansion of this algorithm and Shoup’s
sequential algorithm are the minimum possible for any algorithms in a large class of “‘natural” domain extending algorithms.
But its parallelizability performance is less efficient than complete tree based constructions. However if [ is getting larger
then the parallelizability of the construction is also getting near to that of complete tree based constructions.

Keywords: UOWHF, hash function, masking assignment, sequential construciton, parallel construction, tree based construction.

i . Introduction notion of universal one-way hash function
(UOWHF) to prove that secure digital

Naor and Yung (6] introduced the signatures can be based on any 1-1
one-way function. A UOWHEF is a family of
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task of the adversary is computationally
infeasible. The adversary has to choose a
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x from the domain, and then given a
random A=K, he has to find a » such
that x#y but #,(x)=#4{y). Intuitively, a
UOWHF is a weaker primitive than a
collision resistant hash function (CRHF),
since the task of the adversary is more
difficult, i.e., the adversary has to commit
to the string x before knowing the actual

hash function k4, for which the collision

has to be found. Furthermore. Simon''”

had shown that there is an oracle relative
to which UOWHF's exist but not CRHFs.

A UOWHF is an attractive alternative
to a CRHF because it seems that building
an efficient and secure UOWHF is easier
than building an efficient and secure
CRHF, and in many applications, most
importantly for building digital signature
schemes, a UOWHF is sufficient. In
addition, as mentioned in (1), the
birthday attack does 1ot apply to
UOWHFs. Hence the size of the message
digest can be significantly shorter.

A reasonable approach to designing a
UOWHF that hashes messages of arbitrary
and variable length is to first design a
compression function, that is, a UOWHF
that hashes fixed-length messages. and
then design a method for composing these
compression functions so as to hash
arbitrary and variable messages. The
present paper deals with the second
problem, that of composing compression
functions. We will call the composite
method construction or domain extender
for the most part in this paper. The main
technical problem in designing such
domain extender is to keep the key length
of the domain extender from getting too
large.

Most practical signature schemes follow
‘hash-and-sign” paradigm. They take a
message M of an arbitrary length and

hash it to obtain a constant length string,
which is then fed into a signing algorithm.
Many schemes use CRHFs to hash a mes-
sage x, but as it was first pointed out in
[1) a UOWHF suffices for that purpose.
Indeed, if {k,} ,cx is a UOWHF, then to

sign a message x, the signer chooses a
random key %, and produces the signature
(k, o(k,h,(x)), where o is the underlying

signing function for short messages. As
key %k is a part of input of signing algo-
rithm ¢ we should keep key size as small
as possible. So, whenever a new con-
struction will be proposed we have to keep
in the mind the following :

1. Minimizing the key length expansion:
This 1is certainly a very important
aspect of any domain extending algori-
thm.

2. Parallel implementation: From an
implementation point of view paralleli~
zability is also an important aspect of
any domain extending algorithm.

Bellare and Rogaway'!” suggested the
XOR tree hash (XTH) construction in
order to reduce the key length expansion.
Since XTH is based on the complete (or
full) l-ary tree(/=2), it has also an
efficiency regarding the parallelizability
(the processing speed). Shoup ¥ proposed
a sequential construction (can not be
implemented by parallel algorithm) which
is more efficient than XTH with regard to
the key length expansion. Furthermore,
Mironov  had shown that the key length
expansion needed in Shoup’s construction
is the minimum possible for any sequential
algorithm. In other words, there is no
sequential algorithm which has more
efficient key length expansion than
Shoup’s. Sarkar modified the XTH
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construction which reduces the key size
together with same parallel performance
as XTH. However, his construction does
not have the same key length expansion
as Shoup’s one.

Note that all the previously proposed
parallel algorithms took more key length
expansion than that of Shoup’s sequential
algorithm. So an important question is
whether this is true in general of any
parallel algorithm. Our new construction
shows that this is not the case. The new
construction has the same key length
expansion as Shoup’s one. But the
construction does not have the same
parallelizable performance with Sarkar’s
construction (See Table 1). The construc-
tion will be called /-DIMensional construc-
tion ( ~DIM, 1=2).

We think it is difficult to say that which
one is more important than the other
between the key length expansion and the
parallel implementation. Of course, it
would be very nice to have a regular
parallel structure something like the
complete tree which also minimizes the

Table 1. Specific comparison of domain
extenders for UOWHF.

Shoup|[9] -DIM Sarkar[7]
seq/par sequential parallel parallel
message 2'n 2'n 2"~ Dn
length ~(2'=Dm] —@2'-Dm ~(2'=2m
# invocations o " 1
of &, 2
# masks t t T logotl —1

#_
# rounds 2! f2r-il t
( t=0 mod /)
i
od | 27— 1+1 9(_1
speed-up ( +=0 mod ) 2
m@g of 1 I 3
key size
ranking of
parallelizability 3 2 !

key length expansion. But at this point,
we do not have any such algorithm.
Hence. in our opinion, we should separately
consider both the above- mentioned two
points of view with the same importance.
And the present work is important in
regarding the former point of view.
Particularly, the /~DIM and Shoup’s one
are the only two known algorithms which
minimize the key length expansion. In
addition that, the reason why the /~DIM
has more meaning is that it is a parallel
algorithm which has the same key length
expansion as Shoup’s sequential algorithm
and this is the very first trial in designing
the parallel algorithms. Using the recent
result™, we can also prove that the key
length expansion of our new parallel
construction and Shoup’s  sequential
construction are the minimum possible for
any constructions in a large class of
“natural” domain extenders includ- ing all
the previously proposed methods.

Il . Preliminaries

The following notations are used in this
paper.

1. [a,bl={a,a+1,...,b} where a« and &
are integers.

2. Suppose A is a finite set. By as, A we
mean that « is a uniform discrete
random variable taking values from A.

3. v(d=;if 21 and 2/"'k 7.

4. In the 4-dimensional construction, for
integer ¢ g()={(a,b,c,d), where

a= 1 #4] 4+ | ((+ mod4)+3)/4 1,
b= 1441+t ((tmod4)+2)/41,
c= | #4) + | ((tmod4)+1)/4} ,and
d= 1441 .

Here tmod4d=t— | t/4 | n .
5. In the 4-dimensional construction let
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T,=(V,,E) be a non-complete 4-ary
tree, where V,=1{1,2,...,2" and E,= {e;
2<4<2"} where =(,i—1) for
25i<2%  e;=(i, i—2% for 2%i<
29% e=(4,i—2°"%) for 27 i<
297%*¢ and  €;=(;i—-2°""*9) for

29t e j<2' Here a,b,¢c, and d are
such that g(d=(a,b,c,d.

Let {4, sex be a keyed family of hash
functions, where each 4;{0,1}"—{0,1}",

n>m. Consider the following adversarial
game.

1. A®*() outputs an x€1{0,1}” and some
state information o.

2. Ak x,0) outputs x such that x=x
and A (x)=h(x) or reports failure,

where ke, K.

We say that A is an (e, p)-strategy for
{h,) wey if the success probability of A is
at least & and it invokes the hash
function #, at most » times. In this case

we say that the adversary has an (e, 7)
-strategy for {%,} ,ox. Note that we do not
include time as an explicit parameter
though it would be easy to do so. Infor-
mally, we say that {&,} ,cx is a UOWHF if
the adversary has a negligible probability
of success with respect to any probabilistic
polynomial time strategy. Here, the
security parameter is length of the
message i.e., the length of the input.

In this paper we are interested in
extending the domain of a UOWHF. More
specifically, given a UOWHF {4} k.

hp{0,1}"—{0,1}", =n>m. we would like to
construct extended UOWHF
{H,} op with H;{0,1}"—{0,1}", where

another

n<{N.

We say that B is an (e, 7)-extended
strategy for {H,},., 1if the success
probability of B is at least e and it
invokes the hash function #, at most »
times. In this case we say that the
adversary has an (e, n)-extended strategy
for {H,} ,.p. Note that H, is built using
k, and hence while studying strategies for
H, we are Interested in the number of
invocations of the hash function #,.

The correctness of our construction will
essentially be a Turing reduction. We will
show that if there is an (e, 7)-extended
strategy B for {H,},.p. then there is an
(&', n)-strategy A for {h,) ,ex. where ¢
is not significantly lesser than e and 7% is
not much larger than 7. This shows that
if {A ,ex is a UOWHF, then so is
{H,} jep. In this case, we say that the
domain extension is valid.

The key length for the base hash family
{h} 4k is [ logolKl 1. On the other hand,
the key length for the extended hash
{ logolA 1. Thus in-

creasing the size of the input from # bits

family {H,} ,ep is

to N bits results in an increase of the key
size by an amount | log B 1- [ log, &l .
From a practical point of view it is very
important to minimize this increase in the
key length.

For the remainder of this paper we
assume the following conventions.

1. {h,) ek 1s always the base hash family,
where K=1{0,1}* and #;{0,1}"— {0,1}™.

In case of sequential construction nd>m,

and in case of  4-dimensional
construction n>4m.

2. We will construct {H,} ,ep. H,: 0,1}"—

{0,1}™ wusing the base hash family



iR A

AT 2004, 4) 61

{h,} e where p=kllullyll.. g, for some
! and each g; is m-bit binary string
called mask and |H=K. Here, in case of
N=n(r+1) —mr
and in case of 4-dimensional construc-
tion N=#m2'—m(2'—1). Let us define
diA=p Ml Mg, where 1<:i<j</ We

sequential algorithm

will use u; instead of u[l1.7] for j<!

and define £[0] to be empty string.

3. In sequential construction input of H, is
written as y=yllyll...lly, where lyl=n
and lyi=n—m  for 1<i<y. In

4-dimensional construction input of H,

is written as x=xll... x, where Ix/=

n—dm for 1<i<2°

2°< <22~ 1),

2°2°-1DCi<2' %2 =D, Ixj=n—m for

297 M2°= 1< i<27 2D, and Ix]=n

for 2¢7°"929-=1<i<2'. Here ab.c,

and d are such that g(d=(a,b,¢,4d).

lx)=n—3m for

lxi=n—2m for

I, Sequential Construction

The best known sequential algorithm is
given by Shoup” . Let ¢[1,7]~[1,4 be any
function called a masking assignment.
Fix a masking assignment ¢, H,(y). the
extended hash function, is computed by
the following algorithm.

I. Input:  y=yilixll...ly, and p=Hlgllwll
“#1.
2. Z():hk(y[)).

3. For 1<i<r define s,=z,_®u,, and
Z;th(s,’”yi).
4. Qutput: =z,.

We say that the sequential construction
is based on the masking assignment ¢. In
Shoup’s algorithm ¢=v,+1 and [=1+

| log,»! (in his paper v, is masking
assignment but that makes no difference).
We will write s(¢,y, k), 2(i,y, ku) for s;
and z; respectively (in the algorithm with
input (y,p), where p=4Hlg). Now we will
define some terms related with masking
assignment and domain extension.

Definition 1. We say that ¢ is correct if
for all 1<i<r. Ce{0,1}", y={0,1}" and
for any hash function #, there is an
algorithm called Mdef (i, v,k C, ¢) which

outputs = gllu,l ..lg;  such  that

(i, v, k)= C. Mdef (i, v,k C,¢) is called a
mask defining algorithm. A sequential
construction based on a correct masking
assignment is called a correct domain
extension. A masking assignment is
totally correct if there is a mask defining
algorithm Mdef (i, v, k, C,

llg, for any 4,3,k C as above such that

¢) = 4u= #1“#2“. ..

s(i,y,k,)=C holds and g is a random
string whenever C is a random string and
other inputs are fixed.

Definition 2. We say that a domain
extension algorithm is valid if {H,} ,.p is
a UOWHF whenever {4} ,.x is a UOWHEF.
In case of sequential construction if valid
domain extension algorithm is based on a
masking assignment ¢ then we say that
the masking assignment is valid.

Definition 3. A masking assignment
¢[1,71=[1,41 is strongly even-free (or
even-free) if for each [a,8]<[1 ,7] there
exists c=lq,b] such that ¢(¢) occurs
exactly once (respectively, odd times) in
the sequence ¢(a),¢at+1),..., ¢(by. Call
this ¢ (also the mask ¢(¢)) a single-man
for the interval [a,d].
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Note that Shoup’s construnction has the
strongly even-free property. And Shoup’s
construction can be proved by the follow-
ing mask defining algorithm which is
totally correct.

We can define the mask defining algori-
thm Mdef . (i,v.k, C.¢) in order to prove
Shoup’s construction. (See (3] for details.
In fact, (5) also include sufficient condi-
tion for valid sequential extension. )

Mdef (i, v,k C,¢)

1. If ¢=1 then define py,;=C®hy) and
define all yet undefined masks
randomly and quit.

2. If 1 then choose any ¢ which is a
single-man for the interval [1,:]. Com-
pute j«i—c, If j=0 then goto step 4.

3. Let  ¢:[1,71-[1,1 be a
assignment such that ¢ (»)=¢(n+c)
where ne<[1,7]. Take a random string
D and then define, y=y/ll...11y/

masking

where, v, =¥,+. when =1 and
vy = Dlly.. Run Mdef ., (j,¥ .k C,¢).

4. Define all yet undefined masks except
tuo (.e. after running Mdef,, some
masks may not be defined as ¢ may
not be onto or ;j can be 0) randomly.
Compute pyo=2(c—1,y,k ©)®D and quit.

V. Non-Complete ~ary Tree based
Construction

In this section we present a new
parallel construction for a UOWHF based
on a 4-ary directed tree which is not
complete. We will first define the generic
algorithm based on the 4-ary directed tree
T,=(V,,E) for t=4. For =2 and ¢=3,
we can define the algorithm based on the
binary and 3-ary tree based construction
(See Section 4.3). respectively.
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Fig. 1 4-dimensional parallel algorithm (¢=6
and x=xl...llx,. Note that g(6)=

(2,2,1,1)  andlx|=- =lxjl=n—4m,
ltJ==lxgl=n— n—3m, |rgl=-=
Lol = n—2m, lxyzl= - =lx3l = n—m,
and lxgl=--=lx,l=n. -means k("))

Like sequential construction, any func-
tion ¢;E~[1,] is a masking assignment.
Let x=uxllx)fl...llx, be the input message
of length N. Given ¢,x, and p=Hlp., H,(x)
is computed by the following algorithm.
This is depicted in Figure 1. In this sec-
tion @, b,¢c, and & denote the output of (9.

1. Input: x=xllx)ll...llx 5 and
p=Hlp ligll. . e .
2. If 2978+<(29—1)<i<2' then z;,=hy(x).
3. If d=1 then goto step 4.
a. For 7=29-2 down to 1 do
For Ret*edis(G+12°%%e,
2;= RS iy gereecllx) where s;=28u 4.,
(This notation is also same in the
following procedure).
4. For 20%%(2°--1)i<2°%8*c 2= h,(s,, gornic
llx).
5 If ¢=1 go to step 6.
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a. For j=2°-2 down to 1 do
For R2°**i<(j+1)2¢%?,
2;=R(s ;4 gealls ;y geensdlx ).

6. For  2%2°—1)<i<2°%?,

S jygeendl).

7. If b=1 go to step 8.

a. For j=2°—2 down to 1 do

For R4<i<(j+1)2°,

;= hk(S i+ 2::”3 i+20+h”$ HZ..W‘”x,-).

2;= hyls 1y geell

8. For i=2% z,= k(s slls ;, godlls ;4 gorodlx)).
9. For i=2°-1 down to 1., z;=#n&y s, ,ll
S el iy guoolls 1y peraedlx).

10. Output: 2z,.

We say that, the above non-complete
4-ary tree based construction is based on
the masking assignment ¢,. Here, we need
some definitions in order to consider the
correctness of ¢,.

1. We will write
for s; and z;, respectively.

sCi,x ki, D), 2(d,x,k,p, D)

2. € means the empty string.
3. For each node 1<i<2°ttte(29-1),

a. Define s%(i, x,k 0,0 as s(i+1,x,kp,0
for 1<i(2® and as e for 2°<i<
2a+b+(‘(2d_1)‘

b. Define s'(i,x, k.8 ass(i+2%x,k,u, 9
for 1<i<2%(2®-1) and as & for 2°
(2°—1<i< 29% bt e24—1).

c. Define s(i+2e+?,
ok ut) forl<i<2°*%2°—1)and ase
for 2°%8(2°—1) <i< 2°%0re(29—1).

d. Define s°(i,x, k., t) as s(i+2°7%%¢ x,
koo, t) for 1<i<294074(29-1).

s%(¢, x, koit, ) as

th node can be

Therefore the input of 7
represented by s°C x, &, u, Dlls'(z, x, k, 2, Dlls

G, 2, b 1, DNSP, 2, ke, Dllx;  for  1<ggetoéte

(2¢-1).

We will say that ¢, is correct if, for
each 1<i<2°*?79(29—1), there is an algo-
rithm

Mdef ygim (i, %, ko 8, 7y, 71, 79, 73, ¢,), Where 7
is a wm-bit string if 1<#2° and e if
2°<<2%2° —1), », is a wm-bit string if
1<4i<2%2°—1) and ¢ if 2%Q2°—1Xi<
29752~1), r, is a m-bit string if
1< 4< 2°%%2°—1) and e if 297%2°—1)X
i< 297%%¢29—1), and 7, is a m-bit string
for 1< 4< 2°7%*<(29—1) which outputs
p=pllull.. Nu, such that (i, x,kut) =7;
for 0< j< 3. ¢, is totally correct if the
output # of the mask defining algorithm
is random string provided #,, r,, #; and
vy are random strings and other inputs
are fixed.

4.1 4-Dimensional Domain Extender

Our parallel construction wuses the
following masking assignment ¢;E~I[1, 4.

The map represents the assignment of
masks to the directed edges. Here we
present our definition of ¢, which needs ¢

masks for 4-dimensional construction.
Intuitively, the map ¢, is made from

expanding the mask assigning method of
Shoup’s sequential construction into four
directions. At first, we define four func-
tions e, B, 7;, and &, as follows.

1. e;[1,2°~11-[1,a] is defined by el)=
1+ 1,(2°—9).

2. B:1,2°—11-lat1,a+b]
BD=a+1+v,(2"—3.
3. y:l1,2°~1}-la+b+1,a+ b+ ] is defined

by rdd=a+b+1+1,(2°—9).

is defined by
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4. 8:11,29~11~la+b+c+1,1 is defined by

S D=a+b+ct1+v,(279—10).

Our masking assignment ¢.{e;) is defined

as follow:

1. ¢le)=oeafp if 2<i<2% and j=i—1.

2. dle)=8p if 2°¢i<2"? R
G+1n2°

3. gle)=7rdN if 2°70¢i<2°7 % ¢ and po*
i<(G+D2°t

4. ¢le)=28,)) if 2°72*(i<2' and Rt
i<(GF1ReTbre

and

Now we will prove that the above ¢, is

totally correct.

Theorem 1. The masking assignment ¢,
based on four functions e, B, 7, and &,

as above is totally correct.

Proof. We will define the mask defining
algorithm Mdef (g, .

Input: k,x,i, 7y, 7, 72, 3. &,

p=pllll e, such that

S, x, b g, D) = r; for 0< ;< 3.

output:

We can define Mdef 4. for each case
7€11,2,3,4) where

1. 1<iK2°.

2. 2°<i<292%-1).

3. 2920 —1Xi< 2°70(2°—1).

4. 207 K21 20t — ).

But we will present the specific procedure
of Mdef ;4 for only case 1 since the other
cases are very similar and much simpler
than case 1. Let 1<iK2°.

L.

a.

CLet V=3l R,

CSet =l 4

. Run Mdef (C,y* k.7, ¢)

. Let B=2%—1,

. Let  w=2°—:

Let D=2“-1. Let ¢:[1,Dl-[1,# be
a masking assignment such that
g(N=4¢,
jell, D].

(e;ipr1_j-+)  where

yi=

0<v< D-—1 and

where,
Xirp-upere for
y'p=rllrllrlix;, Note that [yl=# and
l=n—m for 1<j<D.

Run Mdef . (D, k, 73, ¢')
output g=[la+b+c+1,1].
=yla+b+cllldat+rb+c+1,
is the m(atd

to get an

A1, where pg'la+b+c]
+ ¢)-bit zero string.

. Let C=2°—1. Let ¢:[1,C1—[1,4 be

a masking assignment such that
¢"(N=9dLe s cy1_jp-) Wwhere je
[1,Cl

CLet ¥ =3 .1»%  where. =

s‘g(i-l—(C—v)2”*b,x,k,/1,t)llx”(C,m,,.k
for 0=sv=C—1 and »= rillrlirllx;.

to get an
output x={a+b+1,a+b+cl.

. Set  p=pfl=platblplatb+1l,a+b

+clllgla+b+c+1,4. where pgla+t+b]
is the m(a+ b)-bit zero string.

Let ¢":[1,Bl—[1,1 be
a masking assignment such that

¢D=dLe, (gi1_ ) where j=[1, Bl

. Let y'=3lliyill.. . lIy's where, y,=sGi+

(B— )2, x, k1, DI+ (B—0)2°, x, b, 1, Dl
X (pwp- for 0<v<B—1 and y'y=

rollrallzslla,.,

. Run Mdef . (B,v' k7, ¢"") to get an

output g=[a+1,a+dl.

. Set p=plfl =g lalllulat+1,a+bllplat b

+1,a+tb+cllplatb+c+1,4, where
#'[a] is the ma-bit zero string.
and A=2°-1. Let

¢ :[1,A1-[1,1 be a masking
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assignment such that ¢ ()= Theorem 3. The speed-up of
¢le 4.y ;) where jell, Al 4-dimensional  construction over the

b. Let =30 ..I5%  where, y)=s'( sequential  construction in  Section~\
t
A+1—v, 1,k w1, Dls2(A+1—v, x, &, 1, Dl ref{sec-seq} is by a factor of 22—+t2/4T3 if
sUA+1—v, 0,k Ollx ooy, for 0<v f=0 mod 4.
<A-1 and 4 =1%"x,.
c. Run Mdef ,(u,s" k7, #"") to get an Proof. 4-dimensional construction hashes
. seq ’ s Ity 3

output z=[al.
5. Output lll=plal lila+1,a+ bl la+b+1
sat+ b+ cllula+ b+ c+ 1,14

It is easy to check that (i, x,ku =7,
for 0< j< 3. Therefore Mdef 4, is correct
for 1<i<2°—1. If r,, 7.
random strings then so is the output g

¢, totally

r, and 7, are

and hence is correct for
1<i<24—1.

The other cases are very similar. So we
omit the proof for these cases.

The following theorem shows that if
{7} 4er i1s @ UOWHF, then so is {H,} e p.
Using the fact that ¢, is totally correct,
we can prove this theorem in a much
similar way given in (7). So we omit this

proof.

Theorem 2. (Validness of domain exten-
sion)

In case of 4-dimensional domain exten-
sion a totally correct masking assignment
is always valid. More precisely, if there is

an (e, n-extended strategy for {H,} ,»
then there is an —;—, 7+2'")-strategy

for {A;} ex whenever {H,} ,., is based on

a totally correct masking assignment.

We now show the speed-up of 4-dimen-
sional construction over the sequential
construction. For the sake of simplicity we
do not describe the case of #%#0 mod 4.

a message of length #2'—m(2'—1) into a
digest of length m using 2°+2°+2°4+29—-3

parallel rounds. Therefore, if ¢=0mod4
then 4x27*—3 parallel rounds are need to
hash a message of length #2'—m(2'—1).

The time taken by a single parallel round
is proportional to the time required by a
single invocation of the hash function #,.
The 2!
invocations of the hash function %, on a
message of length #2'—m(2'—1).
the speed-up of the
construction over the sequential construc-
Zt

sequential construction requre

Hence,
4-dimensional
if

tion is by a factor of

t=0mod 4.

By the definition of the masking
assignment of 4-dimensional construction,
the following theorem is clear.

Theorem 4. The number of masks for 4-
dimensional construction is ¢

4.2 Optimality of the 4-Dimensional Domain
Extender

(4]
the sequential algorithms Shoup’s algori-
thm

In Mironov proved that among all

reuses the masks as much as
possible. This means that among all the
sequential algorithms there is no

algorithm which has a more smaller key
expansion than Shoup’s algorithm.
In (7} Sarkar provided a generic lower
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bound on the key Ilength expansion
required for securely extending the domain
of a UOWHF. He first defined the large
class A of “natural’ domain extending
algorithms. Then he proved that for any
A €A such that A is correct for s invo-
cations of #, the number of masks required
by A is at least [ log,s1. (Details can be
found in section 4 of (7].) Note that
Shoup’s algorithm is an element of the
class A. Therefore, it follows that Shoup’s
algorithm is optimal for the class A.

On the other hand the 4-dimensional
domain extender is also an element of the
class A. And note that for 2 invocations
of 4, the 4-dimensional domain extender

uses (=1 log,2'1) masks to securely
extend the domain of a UOWHF. Hence
this shows that the 4-dimensional domain
extender is also optimal for the class A.

4.3 /-Dimensional Domain Extender

In the above we provided the 4-dimen-
sional domain extender and considered the
security and optimality of key Ilength
expansion. In fact the construction idea
can be generalized to any /-dimensional
domain extender (/=2). If n=ln, we can
define the /-dimensional domain extender.
We can start to define the /~dimensional
domain extender with setting the function
gH=(ay,...,a) exactly in the similar
way as we did for 4-dimensional. And the
whole specification of /~dimensional domain
extender can be similarly defined by using
the description method of the 4-dimen-
sional domain extender. We can also
consider the security and optimality of the
/~dimensional domain extender as in the
case of 4-dimensional domain extender.

4.4 Comparison to Known Algorithms

In Table 1| we compare the specific
performance of the different known algori-
thms with /~dimensional domain extender.
Note that the message length which can
be handled varies with each of the known
algorithms. For example, Shoup’s and !
-DIM can handle a 2%—(2'—1m bits
message, however. Sakar’s can not handle
the same length message. Therefore, we
can not fix a message length in order to
compare the different known algorithms
with  ~DIM,
describe the message length for each of

Instead, we separately

the algorithms as shown in Table 1.

The algorithms use one key for the base
hash function and some number of m-bit
mask keys. The number of masks
described in Table 1 refers to the latter.
The number of invocations of %, is the
total cost. The number of rounds reflects
the parallelizability arising via tree-based
constructions, and indicates the total time
to completion. In Shoup’s sequential
construction it is equal to the number of
invocations of k,. Speed-up (over the
sequential algorithm or Shoup) is the ratio
of the number of invocations of #, to that
of rounds. For the sake of simplicity we do
not describe the case of ¢#0mod/ in the
positions of the number of rounds and
speed for our ~DIM.

Table 1 shows the key length expansion
of ~DIM is the same as that of Shoup's
and it doesn’t have the same parallali-
zable performance with Sarkar’s construc-
tion. But if 7 is getting larger, then the
speed of the /~DIM is also getting near to
the speed of Sarkar.
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V. Conclusion

In this paper we have provided the new
parallel domain extender /DIM for
UOWHEF. It has an important theoretical
meaning in the study of efficient domain
extanding method for UOWHF. /~DIM has
the same key length expansion as Shoup’s.
Furthermore, /~DIM and Shoup’s
struction are the minimum possible for
any algorithms in a large class of "natural’
including all  the

con-

domain extenders
previously proposed constructions. But /
-DIM does not have the same paralleli-
zability performance as complete /-ary
(1=2) tree based constructions. However,
if [ is getting larger. then the speed of
the FDIM is also getting near to the

speed of Sarkar.
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