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ABSTRACT

Group key agreement protocols are designed to solve the fundamental problem of securely establishing a session key
among a group of parties communicating over a public channel. Although a number of protocols have been proposed to
solve this problem over the years, they are not well suited for a high-delay wide area network; their communication
overhead is significant in terms of the number of communication rounds or the number of exchanged messages, both of
which are recognized as the dominant factors that slow down group key agreement over a networking environment with high
communication latency. In this paper we present a communication-efficient group key agreement protocol and prove its
security in the random oracle model under the factoring assumption. The proposed protocol provides perfect forward secrecy
and requires only a constant number of communication rounds for any of group rekeying operations, while achieving optimal
message complexity.
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I . Introduction

Group key agreement protocols enable a
group of parties communicating over an
open network to reach an agreement for a
common secret key (called a session key).
Typically, this session key is used to
facilitate standard security services, such
as confidentiality and data integrity, in
numerous group-oriented applications in-
cluding audio/video conferencing, repli-
cated database, and various collaborative
computing systems. That is, the goal of
group key agreement protocols is to
efficiently implement secure group com-
munication channels over untrusted, pu-
blic networks. To this end, it is of prime
importance for a group key agreement
protocol to satisfy the property referred to
as implicit key authentication, whereby
each member is assured that no one other
than the group members can obtain any
information about the value of the session
key. Therefore, as a result of the in-
creased popularity of group-oriented appli-
cations, the design of an efficient authen-
ticated group key agreement protocol has
recently received much attention in the
literature. "™

Many problems related to group key
agreement have been tackled and solved,
especially over the last ten years, re-
sulting in some constant-round proto-
cols®®  with provable security in a
concrete, realistic setting. However, all
provably-secure protocols achieving for-
ward secrecy so far are too expensive for
dynamic groups, where current members
may leave the group and new members
may join the group at any time in an
arbitrary manner. A group key agreement
scheme for such a dynamic group must
ensure that the session key is updated
upon every membership change, so that

subsequent communication sessions are
protected from leaving members and
previous communication sessions are
protected from joining members. Although
this can be achieved by running any
authenticated group key  agreement
protocol from scratch whenever group
membership changes, alternative appro-
aches to handle this dynamic membership
more efficiently would be clearly pre-
ferable. Indeed, several dynamic group key
agreement schemes have been proposed to
minimize the cost of the rekeying opera-

tions associated with group updates.®'®
1.1 Related Work

The original idea of extending the
2-party Diffie-Hellman scheme to the
multi-party setting dates back to the
classical paper of Ingemarsson et al.,'®
and is followed by many works
(1618171962090 offering various levels of
complexity. However, regardless of whe-
ther they explicitly deal with the case
where group membership is dynamic, all
these approaches simply assume a passive
adversary, or only provide an informal/
non-standard security analysis for an
active adversary. As a result, some of
these protocols[lg'zm have been found to be
flawed in (21]) and (4], respectively.

Research on provably-secure group key
agreement in a formal security model is
fairly new. It is only recently that Bresson
ot g 21011
key agreement protocols proven secure in
a well-defined security model which
extends earlier work of Bellare et al.'*?¥
to the multi-party setting. The initial
work® assumes that group membership is
static, whereas later works "' focus on
the dynamic case. But one drawback of
their scheme is that in case of initial key

! have presented the first group
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agreement, its round complexity is linear
in the number of group members. More-
over, the simultaneous joining of multiple
users also takes a linear number of rounds
with respect to the number of new
members. Consequently, as the group size
grows large, this scheme becomes imprac-
tical particularly in a wide area network
environment where the delays associated
with communication are expected to domi-
nate the cost for group key agreement.
More recently, Katz and Yung'” have
proposed the first constant-round protocol
for group key agreement that has been
proven secure against an active adversary:
the protocol requires three rounds of

communication and achieves provable
security under the Decisional Diffie-
Hellman assumption in the standard

model. Specifically, they provide a formal
proof of security for the two-round protocol
of Burmester and Desmedt,"'” and intro-
duce a one-round compiler that transforms
any group key exchange protocol secure
against a passive adversary into one that
is secure against an active adversary with
powerful capabilities. In this protocol ‘all
group members behave in a completely
symmetric manner: in a group of size 7,
each member sends one broadcast message
per round, and computes three modular
exponentiations, nlog# modular multipli-
cations, and O(n) signature verifications.
While the protocol is very efficient in
general, this full symmetry negatively
impacts the protocol performance in a
scenario similar to our setting: the com-
munication overhead is significant with
three rounds of » broadcasts, and further-
more, the protocol has to restart from
scratch in the presence of any membership
change.

In (4], Boyd and Nieto have introduced
a one-round group key agreement protocol

which is provably secure in the random
oracle model.”®™ This protocol is computa-
tionally asymmetric and thus, as is the
case with other asymmetric proto-
cols, 1% appears to be easily extended
to address the dynamic case. But unfor-
tunately, this protocol does not achieve
forward secrecy even if its round
complexity is optimal. It still remains an
open problem to find a forward-secure
group key exchange scheme running in a
single round.

Most recently, Bresson and Catalano™
have presented another provably-secure
protocol which completes in two rounds of
communication. Interestingly. unlike previ-
ous approaches, they construct the proto-
col by combining the properties of the
ElGamal encryption scheme®™ with stan-
dard secret sharing techniques.’”” How-
ever. this protocol suffers from a signi-
ficant communication overhead both in
terms of the number of messages sent by
all members during the protocol execution
and in terms of the number of bits
protocol.
Moreover, like the protocol of Katz and
Yung."” this protocol intends to exchange
a session key in a scenario where the

membership is static.

communicated throughout the

1.2 Our Contribution

In this paper we propose a new cons-
tant-round group key agreement scheme
for dynamic

groups. Our scheme is

provably-secure in the random oracle
model against an active adversary who
controls all communication flows in the
network and even executes an unbounded
number of concurrent instances of the
protocol. The concrete security reduction
we exhibit in the ideal hash model is

tight: breaking the semantic security of
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Table 1. Complexity comparison among group key agreement schemes that achieve both provable

security and forward secrecy

Communication Computation
Rounds | Messages | Unicasts | Broadcasts Modular Ver.

TKA n n n—1 1 O(n)Exp o n)

(10) Join j+1 j+1 j 1 O(jn)Exp O(n)
Leave 1 1 1 O(m)Exp An)

(3) 3 3n 3n O(m)Exp+ (n’log m)Mul | O(n?)

IKA 2 n n—1 1 O(n)Exp O(n)

Here Join 2 jt1 j 1 (n)Exp o(n)
Leave 1 1 1 O(n)Exp O(n)

IKA : Initial Key Agreement, Modular :

n: the number of users in a newly updated group

7 the number of joining users
Exp : modular Exponentiation
Mul : modular Multiplication

our protocol always leads to solving the
well-studied factoring problem, provided
that the signature scheme used is
existentially unforgeable. Our group key
agreement scheme also provides perfect
forward secrecy:® i.e., disclosure of long-
term secret keys does not compromise the
security of previously established session
keys.

Almost all provably-secure group key
agreement schemes so far are somehow
generalizations of the Diffie-Hellman key
agreement scheme. As a result, their
security is based on the Computational
Diffie-Hellman (CDH) problem or the
Decisional Diffie-Hellman (DDH) problem,
or both. In contrast, we provide a proof of
security for our scheme relying on an
alternative intractability assumption: the
factoring assumption. Finding alternative
to existing solutions is not only a common
practice in cryptography but a line of
research of fundamental importance in
practice.

Despite meeting all the desired security
properties, our construction is surprisingly

Modular computation, Ver :

_rounds

signature Verification

simple and very efficient in terms of
communication complexity which includes
both round and message complexities. For
any of group rekeying operations, our
scheme takes at most 2 communication
while
complexity. While minimizing communi-
cation overhead, our scheme requires that
one special user perform exponentiations

achieving low message

linear in the number of users. But, this is
not a fundamental problem for current
computing environments where the rapid
increase in computational power of com-
puters exposed high network delay and
congestion as a major bottleneck for the
performance of group key agreement proto-
cols (see (9] for a compelling argument on
this issue).l) In Table 1, we compare the
efficiency of our scheme with other pro-
vably-secure schemes that provide forward

1) For example, the computation of a modular
exponentiation x?mod z with ld=IM=1l2d=
1024 takes about 9 ms wusing the big
number library in OpenSSL on a Athlon XP
2100 + PC, whereas a 100—300 ms round-
trip delay in wide area networks is common.
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secrecy.[10‘3] As for computational costs,

the table lists the total amount of compu-
tation that needs to be done by users.

In situations where users with equal
computational capabilities communicate
over a broadcast network, the fully-
symmetric scheme of Katz and Yung might
be more favorable than our scheme which,
in contrast, is well suited for more
realistic settings where users with asym-
metric computing powers are spread across
a wide area network. However, as pointed
out in (29], it is impossible in most
networks to send #» broadcast messages
simultaneously. Even in a broadcast LAN
environment, only one broadcast message
can be sent at any given time. Thus, one
round of # broadcasts is much more ex-
pensive than one round of broadcast, not
to mention that a Dbroadcast is more
expensive operation than a unicast since it
requires many acknowledgments within
the group communication systems. Fur-
thermore, as already mentioned, the Katz-
Yung protocol always has to restart anew
in the presence of any membership update.

The remainder of this paper is organized
as follows. We begin with some notations
and background in Section 2. We continue
with a description of the standard security
model for group key agreement protocols
in Section 3. Then, in Section 4, we define
the security of an authenticated key
agreement protocol for a dynamic group,
and describe the underlying assumptions
on which the security of our scheme is
based. Finally, we introduce a dynamic
group key agreement scheme in Section 5
and give a security proof for this scheme
in the random oracle model in Section 6.

. Preliminaries

In this section we first set up some

notations and then describe some number
theoretic properties of the finite cyclic
group over which we must work.

2.1 Notations

Let N be the product of two large
distinct primes p and ¢ of equal length
such that p=2p"4+1 and ¢=2¢ +1, where
p and ¢ are also prime integers. Then
such an N is a Blum integer since
p=¢=3(mod 4). We denote by Zy the mul-
tiplicative group modulo N. An element
v € Zy is called a quadratic residue
modulo N if there exists an & € Zy such
that x*=v(mod N). If no such x exists,
then v is called a quadratic non-residue
modulo N. We denote by g+1 a quadratic

residue that is chosen uniformly at
random in the set of quadratic residues in

Zy. Using this quadratic residue g we
define the finite group G to be G={g
where <g> is the cyclic subgroup of Zy

generated by g.

2.2 Background

Jacobl Symbol. The Jacobi symbol (—1%‘

of an element v € Zy is a polynomial time

computable function which is defined as

where the symbols on the right are the
Legendre symbols. However, the Jacobi

symbol _11\1]) can be efficiently computed

even if the factorization of N is unknown,
and moreover, it provides some informa-
tion about the quadratic residuosity of v
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in Zy. If () is 1, then (p)— 1 or
(—Z)= —1 and thus » is a gquadratic non-

residue modulo N. If » is a quadratic
residue modulo N, then the Jacobi symbol

v Uy
N) evaluates to 1. However, N)—l
does not imply that ¢ is a quadratic
residue modulo N. In summary, v is a

quadratic residue modulo N only if (—K,)

is 1, and —K,) is —1 only if » is a

quadratic non-residue modulo N.

Blum Integers. It is well known that a
Blum integer N=p-¢ has the following
properties.

¢ Among four square roots of each
quadratic residue modulo AN, there
exists exactly one square root that is
also a quadratic residue modulo N. In
other words, squaring is a permutation
over the set of gquadratic residues in
Zy. To see this, it is enough to note
that _Tl)=-1 and (—Ly=-1,
q
and for v € Zy, v is a quadratic resi-

due modulo N if and only if (-%)=1
Ly
and (q) 1.

eFor u,v €Zy let —]'\‘,=1 and

-11{;)=—1, and let #%=v%(mod N).

Then u+tv mod N and therefore
Prlgcd (u—v, Ne{p,q}]=1. To see
this, it suffices to observe that

FH=1.

Quadratic Residues. We now describe
some properties of quadratic residues in

Zy observed by Biham et al. in (30). Let
QR 5 denote the set of quadratic residues
in Zy. Then the cardinality of QR y is odd

which is evident from
1QR \l = o(N)/4=1p"q 1

where ¢(-) denotes the FEuler Phi
function. From Eq. (1) and since QRy
forms a multiplicative subgroup of Z;v, it
follows that the order of any quadratic
residue in Zy is odd (i.e.. 1, #. 4. or
2'¢’). Then, because 2 is relatively prime
to m=I6I=<® (..,
know that 2 € Z,. Namely, 2 !mod m
(m+1)/2.

g2 mdmpod N is equal to

ged (2, m)=1), we

exists and is nothing but
Therefore,
g™ V2 mod N which is not only a
quadratic residue modulo N, but also a
square root of g. Similarly, g2 ™™ mod N
= g (mtUDImdmmod N is  the

square root of g2 '™ ”mod N that is a

unique

quadratic residue modulo N.

t, The Model

Since the work of Bresson et al.,'” the
formal security model described here has
been widely used in the literature
(1011.123432) 1, nroperly analyze the security
of group key agreement schemes. In this
work we slightly modify the model of
Bresson et al.'” which is the first formal
security model that explicitly deals with

the dynamic case.

Participants. Let the polynomial-size
set U={U,...,U,} denote the universe
of all users that can participate in a group
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key agreement scheme. Let MG be a
subset of U called a multicast group, the
users of which wish to establish a session
key among them. Then, in MG, one user
plays a special role which will be made
clear in the description of the scheme in
Section 5. We call this user the controller
and each of the other users in MG a
non-controller. Users may execute the
protocol multiple times concurrently and
thus each user can have many instances

called oracles. We use /I to denote
instance s of user U, In initialization
phase each user U; in U obtains a long-
term public/private key pair (PK; SK) by
running a key generation algorithm

Gen(1*). The set of public keys of all
users is assumed to be known a priori to
all parties including the adversary A.

Partnering. Intuitively, the partner ID
for an oracle is the set of all the oracles
that should compute the same session key
as that oracle in a protocol execution. The
partner ID is defined via the session ID
which in turn is defined as a function of
the messages exchanged among oracles in
that protocol execution.

Before we define partnering among
oracles, we first need to describe the basic
structure of our scheme. The scheme
consists of three protocols IKA1l, LP1, and
JP1 for initial group formation, user leave.
and wuser join, respectively. In each
protocol, participants are one controller
and one or more non-controllers: the
controller exchanges messages with all
other non-controllers whereas a non-
controller exchanges messages only with
the controller.

With the above in mind, we now define

the session ID for each oracle II% which is

denoted by sidj. The session ID for an

oracle is initially set to @ in a protocol
execution and is defined when the oracle
computes a session key in that execution.

In a protocol execution, let P be the set
of all oracles with which oracle I has
exchanged some messages, and let M% be
the concatenation of all messages that
oracle IIi has exchanged with oracle I7%.

Then we define sid} as
sid={M% |11\ P}

Using the session ID defined above, we
now define the partner ID for oracle II
which is denoted by pid}. Let acc’ be a
variable that is frue if IT° has computed a
session key, and false otherwise. Then we

define pid? as

pidi={ 1" | sid:Nsidi+= > N
pids\sid'+ o A
pid’, = acc’t= acc'=true ,
for some pid%}

Note that in the above definition of
pids, it s = 11;.

Therefore, the conjunction simply says

possible  that

that oracle IT% is a partner of oracle II5 if
sid3(sid’#® and acc’=acc'=true, or they
share a same partner. All sids and pids

are public and hence available to the
adversary A.

Adversary. Along with a set of protocol
participants, the model also includes the
adversary A who controls all communi-
cation flows in the network. The adversary
interacts with oracles through various
queries, each of which captures a cap-
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ability of the adversary. Listed below are
the queries which are allowed for
adversary A to make.
eSend( 7%, m) : This query models the
ability of adversary A sending a
message m to an oracle [I% Upon
receiving the message m, the oracle
I, is assumed to proceed as specified
in the protocol in which it is partici-
pating: the oracle updates its state
and sends out a response message as
needed. The response message is
returned to adversary A. Queries of
the form Send (IS, protocot MG), where
protocol e {IKAl, LP1, JP1l}, allow
adversary A to initiate a protocol
execution among the users in MG.

¢ Reveal( IT%) This query returns the

session key K computed by oracle IT}
if acc’ is true.
o Corrupt( U ;)
long-term private key SK; of a user U,.
o Test( IT%)
semantic security of the session key K
and is answered as follows: one flips a

. This query outputs the

This gquery models the

secret coin &, and returns the real
session key K if b=1 or a random
string chosen from {0,1}' if &=0,
where [ is the length of the session
key. This query can be made at most
once, only to a fresh oracle (see below
for the definition of “fresh oracle’).

Freshness. As mentioned above, the
query Test(IT5) can be asked only when
oracle IT5 is fresh. We say that an oracle
IIS is fresh in the current protocol
execution if all of the following conditions
hold : (1) acci=true, (2) No one in pid}
has been asked for a Reveal query (note

that IIepids unless pid’+®), and (3) no
one in MG has been asked for a Corrupt
query before oracle T’ receives a Send

query.
N. Security Definitions

In this section we first define what it
means to securely distribute a session key
within the security model given above and
then explore the underlying assumptions
on which the security of our scheme rests.

Authenticated Key Exchange. The
security of an authenticated group key
agreement scheme P is defined in the
following context. The adversary A,
equipped with all the queries described in
the security model, executes the protocols
IKA1l, LP1, and JP1 as many times as she
wishes in an arbitrary order, of course,
with IKAl being the first one executed.
During executions of the protocols, the
adversary. A, at any time, asks a Test
query to an fresh oracle, gets back an !
-bit string as the response to this query,
and at some later point in time, outputs a
bit ¥ as a guess for the secret bit b. Let
GG (Good Guess) be the event that the
adversary A correctly guesses the bit b,
i.e., the event that 4 =5. Then we define
the advantage of A in guessing the secret
bit & as

Adv®*(A)=2 - Pr[ GG]-1

We say that a group key agreement
scheme P is secure if Adv¥(A) is
negligible for any probabilistic polynomial
time adversary A.

Authentication. The fundamental secu-
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rity requirement for a group key agreement
protocol to achieve is the property referred
to as implicit authentication. In protocols
providing implicit authentication, each
user is assured that no one other than the
intended parties can learn any information
about the session key. The security
definition above already incorporates this
requirement. Another stronger kind of
security goal for a group key agreement
protocol to achieve is explicit authenti-
cation, the property obtained when both
implicit authentication and key confir-
mation hold.

In common with previous works
do not provide explicit authentication or,
equivalently, confirmation that the other
users have computed the common session
key. Indeed, we do not define any notion
of explicit authentication in our security
model even if the security definition is
standard for the analysis of group key
agreement protocols. However, one can
transform any group key agreement
protocol with implicit authentication into a
protocol providing explicit authentication
by -applying the well-known approach
described in (2].

[3,4]‘ we

Secure Signature Schemes. We review
the general definition of a digital
signature scheme. A digital signature
scheme I'=(Gen, Sign, Vrfy) is defined by
the following triple of algorithms

e A probabilistic key generation algo-
rithm Gen, on input a security par-
ameter 1°* outputs a pair of matching
public and private keys ( PK, SK).

s A signing algorithm Sign is a (possibly
probabilistic) polynomial time algo-
rithm that, given a message m and a
key pair ( PK, SK) as inputs, outputs a
signature ¢ of m.

¢ A verification algorithm Vrfy is a
(usually  deterministic)  polynomial
time algorithm that on input
(m, 0, PK), outputs 1 if ¢ is a valid
signature of the message wm with
respect to PK, and 0 otherwise.

We denote by Swucc(k) the probability

of an adversary A succeeding with an
existential forgery under adaptive chosen
message attack®®. We say that a signa-

ture scheme I’ is secure if Swucc?(k) is
negligible for any probabilistic polynomial
time adversary A. We denote by Swucc £
the maximum value of Swucc™(k) over all

adversaries A running in time at most ¢

Factoring Assumption. Let FIG be a
factoring instance generator that on input
a security parameter 1°, runs in time
polynomial in ¢ and outputs a 2z-bit
integer N=p-g¢, where p and ¢ are as
defined in Section 2.1. Then. we define
Succ4(7) as the advantage of adversary A
in factoring N=p-¢ chosen from FIG(17.
Namely,

Succi(1) =
Pr[A(N) € p, ¢IN (= pg)— FIG(1 9]

We say that FIG satisfies the factoring
assumption if for all sufficiently large =,

Succ4(r) is negligible for any probabilistic
polynomial time adversary A. Similarly as
before, we denote by Succ(# the maxi-

mum value of Swucc4(?) over all adver-

saries A running in time at most ¢
V. The Scheme

We now present a dynamic group key
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agreement scheme consisting of three pro-
tocols IKA1l, LP1, and JPI1 for initial group
formation, user leave, and user join,
respectively.

Let N be any possible output of FIG(17),
and let g+1 and G be as defined in
Section 2.1. For the rest of the paper, we
denote by U . the controller in a multicast

group MG, and by H:{0,1}—{0,1}' a
hash function modelled as a random oracle
in the security proof of the scheme. For
simplicity, we will often omit ‘mod~N” from
expressions if no confusion arises.

5.1 Initial Key Agreement : Protocol IKA1

Assume a multicast group MG={U,,...,
U,} of n users who wish to establish a

session key by participating in protocol
IKAl. Then IKAl runs in two rounds, one
with n#—1 unicasts and the other with a
single broadcast, as follows:

1. Each U, picks a random ».,=[1,N]
and computes z;,=g *mod N. U+U,
then signs U,llz; to obtain signature
g; and sends m;=U;llz;llo; to the
controller U ..

2. Upon receiving each message m,;, U,
verifies the correctness of m; and
computes y,;=z7° mod N. After recei-
ving all the #»—1 messages, U,

computes Y as Y= y; if =

ice{l,n], i+c
is even, and as Y= ie](')[’“]y,- if = is
odd. U, also computes the set 7=
{Tdis(1,n], i#c} where T,=Y - -y7'.
Let Z={z;|:ie[1,#]}. Then, U, signs
MGIIZIIT to obtain signature o, and
broadcasts m . =MG Il ZIITllo, to the

entire group.

@

Upon receiving the broadcast message
m ., each U U, verifies the correct-
ness of m, and computes Y=z7- T,
All users in MG compute their
session key as K=(TI|Y), and store
their random exponent 7»; and the

set Z for future use.

To take a simplified example as an
illustration, consider a multicast group
MG={U,,...,U,;} and let U_.=U,. Then,

the controller U, receives {g7.g27%, 27}
from the rest of the users, and broadcasts
Z={g™g",g7,g"} and T={g""""
g g "t} ANl users in MG
compute the same key: K=H(T|Y), where

Y= g r,(rl+rz+73)'

rr +ry)

5.2 User Leave : Protocol LP1

Assume a scenario where a set of users
L leaves a multicast group MP, Then

protocol LP1 is executed to provide each
user of the new multicast group
MG ,=MG ,\ L with a new session key. If
UL, the user with the highest-index in
MG, is selected as the new controller of
MG, (but, in principle, any remaining
user can act as the controller). LP1
requires only one communication round
with a single broadcast and it proceeds as
follows :

1. U, picks a new random # .=[1,M
and computes 2z .=g modN. Using
¥. 2, and the saved set Z, U,

then proceeds exactly as in IKAI,
except that it broadcasts m.=MG, |

z Mz’ T llo, where z. is the random
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exponential from the previous controller.
2. Upon receiving the broadcast message
., each U#U, verifies that : (1)

Vefy(MG 1zl 2 I T, o,, PK,)=1 and

(2) the received =z, is equal to the

m

one that is received in the previous
session. All wusers in MG, then

compute their session key as
K=H(T|Y) and update the set Z.

We assume that in the previous example,
a set of users L={U,} leaves the mul-
ticast group MG ,={U,...,U,} and hence
the remaining users form a new multicast
group MG,={U,,U,,U;}. Then user U,
acts as the controller in the new multicast
group MG,. The controller U, chooses a
new random value 7’3, and broadcasts z,,
Za=g” and T={g”\t"V, g in+rV}
All users in MG, compute the same key:

K=H(T ||Y), where Y= g (ntnt7y
5.3 User Join : Protocol JP1

Assume a scenario in which a set of J
new users, J, joins a multicast group MG,
to form a new multicast group MG ,=
MG ,\JJ. Then the join protocol JP1 is run
to provide the users of MG, with a

session key. JP1 takes two communication
rounds, one with ; unicasts and the other
with a single broadcast, and it proceeds as
follows:

1. Each U;eJ picks a random r;€[1, N
U] then

generates signature o; of U,llz;,

and computes z,=g”".

sends m;=Ullzllo; to U., and stores
its random 7;.

2. U, proceeds in the usual way, choo-

sing a new random # ., computing
2., Y, T and K, updating the set
Z with new z;’s, and then
broadcasting m ,=MG ,llz | ZIT o ..
3. After verifying the correctness of m
(including the verification by U=
MG \{U,} that the received z, is
equal to the one received in the
previous session), each U, #U, pro-
ceeds as usual, computing Y=2"/ T;
and K=H(TI| ). All users in MG,

store or update the set Z.

Consider the same example as used for
LP1 and assume that a set of users
J={Us} joins the multicast group MG,=
{U,, Uy, U} to form a new multicast group
MG,={U,, U,,U,,Us}. Then, the controller
U, receives {g”} from the users in /. and
broadcasts z;, Z={g",g".2” .g”*} and
T={g7 Wratr9 g raritrd L7y (o
rest of the users, where 73 is the new
random exponent of controller U;. All

users in MG, compute the same key:

K=H(T|Y), where Y=g #"¥7:t79
V. Security Analysis

Theorem 1. Let Adv(tqg..q, be the
maximum advantage in attacking P,
where the maximum is over all adversaries
that run in time ¢ and make ¢, Send
queries and ¢, random oracle queries.

Then we have

Adv p(t,q 4, q ,)<2Succ (') +2wSucc (t’)

where £ =1t+ O(qwtey, T ahtesy). ¢ =t+0

(qewtop), and ¢, is the time required to
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compute a modular exponentiation in G.
In the following we briefly outline the
proof of Theorem 1. The proof is divided
into two cases (1) the case that the
adversary A breaks the scheme by forging
a signature with respect to some user’s
public key, and (2) the case that A
breaks the scheme without forging a
signature. We argue by contradiction,
assuming that there exists an adversary
A who has a non-negligible advantage in
attacking P. For the case (1), we reduce
the security of scheme P to the security of
the signature scheme I', by constructing
an efficient forger F who given as input
a public key PK and access to a signing
oracle associated with this key, outputs a
valid forgery with respect to PK. For the
case (2). the reduction is from the facto-
ring problem : given the adversary A, we
build an efficient factoring algorithm B
which given as input N=p- ¢ generated by

FIG(1 9, outputs either p or q.

Proof. Assume by contradiction that
there exists an adversary A who has a
non-negligible advantage in attacking the
scheme P. Then we will show that either
an efficient signature forger F against I’
or an efficient factoring algorithm B for N
can be constructed from the adversary A.

6.1 Signature Forger F

Assume that the adversary A gains its
advantage by forging a signature with
respect to some user’'s public key. Then
we build from A a signature forger F
against the signature scheme I'. The
forger F, given as input a public key PK
and access to a signing oracle associated
with this key, outputs a valid forgery
(m,0) with respect to PK, ie., Vrfy

(m,0,PK)=1 such that ¢ has not been
outputted by the signing oracle as a
signature on the message m.

F Dbegins by choosing at random a user
Us,eU, and setting PK, to PK. For all
other users, F honestly generates a pu-
blic/private key pair by running the key
generation algorithm Gen(1*). F then
invokes A and simulates the queries from
A as follows :

e Send(7%, m) : If i+f F knows the
private signing key of U,, and hence
can answer the queries following the
scheme exactly as specified. If i=/,
then F does not have the private
signing key of U;. Nevertheless, F
can obtain signatures of any mess-
ages it wants by accessing the
signing oracle associated with PK.

» Reveal( IT5)/Test(IT5) : These queries
are answered in the obvious way.

¢ Corrupt( U;) If U#U,; then F
simply hands the private key SK;
which was generated by F itself.
However, if A corrupts U;=U,, then
F does not have the associated

private key, and so halts and outputs
“fail”.

The simulation provided above is
perfectly indistinguishable from the real
execution unless adversary A makes the
query Corrupt( Uy). Throughout this simu-
lation, F monitors each Send query from
A, and checks if it includes a valid
message/signature pair (m, o) with respect
to PK. If no such .query is made until A
stops, then F halts and outputs ‘fail’.
Otherwise, F outputs (m,0) as a valid
forgery with respect to PK.

Now, we quantify the success probabili-
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ty of F in outputting a forgery in the
simulation above. Let Forge be the event
that A outputs a valid forgery with
respect to the public key PK; of some user
U,eU before making the query Corrupt
(U;). Then, since Succ{k)=Pr[ Forgel /w,
it follows by definition that

Pr[ Forge]<w - Succ {t"’) (2)

In .the simulation above, F performs at
most w modular exponentiations to answer
a Send query, and all other queries
(Reveal, Corrupt or Test) can be trivially
answered. Since the running time of F is
the running time of A plus the time
required to process all the queries from
A, we have ' =t+ O(q  wt .,).

6.2 Factoring Algorithm B

The basic idea of the proof given here is
inspired by the technique of Biham et
al.,®” where they showed that breaking
the generalized Diffie-Hellman assumption
modulo a Blum integer is at least as hard
as factoring Blum integers.

Assume that the adversary A breaks
the scheme P without forging a signature.
Then, we construct from A an efficient
factoring algorithm B which given as
input a Blum integer N=p-g¢ chosen from
FIG(17), outputs either p or ¢. B begins
by running Gen(1*) to generate (PK; SK))
for each user U,eU, and setting g=0v?
mod N where v is an integer chosen

uniformly at random in Z;V such that the

Jacobi symbol (Tf/) is —1. Because N is

a Blum integer, ¢? is a wuniformly dis-

tributed quadratic residue in Zy and

furthermore, squaring is a permutation on
the set of quadratic residues in Zy.
Therefore, g is also a uniformly distri-
buted quadratic residue in Zy. Let d be

the order of g in Zy, which is unknown to

B. Then, since d is always odd, we have
that 2 € Zg: ie.. 2 'mod d exists. For

brevity, we use g% mod N to denote
g ™ 9med N for i=1,2. B now invokes
A and simulates all the queries from A
as follows.

Send queries. B handles all the Send
queries of A as per the specifications of
the protocols, except that it computes
each z; as follows. B first selects a

random e¢,£[1,N] and then computes z; as

Notice that the random exponent #;
denotes the value a;+2 !mod d which is
unknown to B. B records the tuple
{z,ap for its own use.

We now show that B can correctly com-
pute the set 7 even if it knows none of
the random exponents. Without loss of ge-
nerality, let MG={U,,...,U,} be the mul-
ticast group of users who are participating
in the current protocol execution and
assume that B has obtained all the tuples
{z;ap for i€[1,n]. Then if = is odd, B

computes each T ; as follows:

— T,
Ti= 1 epn,i=i%

R Y
je LS i

=g
r,)(n—l)ﬂ+ JF[I;/’]GJ

= (z,)n "2 Ojen]j=i-
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The equation for the case of even 7 is
similar to the equation above and we omit
it here.

Random oracle/Reveal queries. B simu-
lates the random oracle H by assigning a
random string &, from {0,1} to each fresh
query &. and then adding the tuple <8,k
to the random oracle simulation list HL. If
the query ¢ is not new, then the answer is
retrieved from the list HL.

We now describe how to answer Reveal
queries. Even though there is no session
key available to B in this simulation, all
Reveal queries can be simulated by using
the fact that the session keys distributed
in the scheme are outputs of random
oracle H. To aid the simulation, B main-
tains a special list RL which contains
information related to all the revealed
(fake) session keys. To be concrete,
suppose that A has made the query
Reveal(II%) when no one in pid% has been
asked for a Reveal query. Then B selects
a random string %, from {0,1}' to repre-
sent the genuine session key H(TIY),
answers the query Reveal(IT%) with hy,
and adds the tuple <T,% > to the list RL.

If some oracles in pid’ have been revealed

before the query Reveal( IT%) is made, then
RL must contain a tuple <T,% . In this
case B simply returns the random string
ky taken from the list RL.

Before proceeding further, we consider
the following potential problem. Observe
that H may have been queried on T|Y at
some time before the query Reveal( IT%) is

made, or vice versa. This means that
there is a possibility of inconsistency
between answers of Reveal queries and
random oracle queries. In other words, to

represent the same value H(TI|Y). B
could end up using two different values:
one as the answer to the random oracle
query TI|Y and the other as the answer
to the query Reveal(I%). The main diffi-
culty in providing the solution to this
potential problem is the fact that the
value Y is unknown to B. But fortunately,
we can circumvent this difficulty by using
the following observation. Assume again a
multicast group MG={U,,...,U,} of users.

Then, since for some i € [1,n] s.t. i # ¢,

Y

(z) " T=g ™ T;
-1 . -1
g(ac+2 a;+271) | T

i
. -1 +a; -
ga‘a,+2 (@ +ap+27% Ti(mod M,

Ii

[

it is immediate that

gz—z =v- (gaca,.gZ—l(ac+a,) . Tx) -1 (3)
EY' (ga,a, . (1)2) a,+a,. T,) 71.

2‘2
From (3) and since (—g——r]{}&M)=l, it

follows that given a value Y € Z}, the

unknown value Y is equal to Y ' only if
u?=v%(mod N) and (—K,)=1 (4)

where u=Y (g% - (v®) - T)" ! modN.

2

Put succinctly, if (—X,)= —1 or u? is not

congruent to #*modN, then Y=Y’

Otherwise, since —1’<,)=—1 and N is a

Blum integer., it must be the case that
utty mod N and thus Pr[ged(u—ov, N)
={p.q}l=1

This implies that B remains always able
to answer correctly all the random oracle
queries and Reveal queries of A as
follows. Suppose that the query Reveal
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(IT%) is made by A. If no one in pid’ has
been asked for a Reveal query, then B
searches all tuples in HL such that
8=TI|Y  for some Y €Zy For each
such a tuple <8,%,, B can either factor
N or conclude Y=Y ', by using Ea. (4).
In the former case, B halts all the
simulations and outputs ged (u—v, N) as
the final outcome. In the latter case., B
proceeds to answer the query in the usual
way, i.e., by returning a random string %,

from {0,1} and adding the tuple <T,%
to RL.

The case that the adversary A makes the
random oracle query & of the form TIY”’
can be worked out in an analogous way.

Corrupt queries. These queries are
answered in the obvious way.

Test queries. B simply returns a

random string chosen from {0,1}’.

Now, given the simulation above, let’s
consider the success probability of B in
factoring N. Without loss of generality, we
assume that A has made the Test query
to an oracle whose unknown (real) session
key is H(T JIY,). Let Ask be the event
that A makes a query to H on T ,lY,.

At some point, when A terminates and
outputs its guess &, B simply checks the
list HL to see if the event Ask has
occurred, using the same way as it did for
Reveal queries. If so, then B succeeds in
factoring N. This is true because we are
assuming here the case that A gains its
advantage without forging a signature.
Therefore, we have

SuccE(t)= Pr{ ForgeA Ask] (5)

where the inequality is due to the
possibility that B can succeed in factoring
while answering Reveal queries or random
oracle queries. Furthermore, since A
cannot gain any advantage in guessing the
bit & without making a query to H on
T.lY,. we obtain that Pr[GG| ForgeA

"Ask] =1/2 and thus Pr[GGA TForgeA
"Ask] <1/2. Now, from the assumption
that the advantage of A in breaking P
without forging a signature is non-negli-
gible, it must be the case that Pr[ ForgeA
Ask] is non-negligible. But then, by Eq.
(5). this leads to the contradiction that
there exists an factoring algorithm B
whose success probability in factoring N is
non-negligible. Therefore. we arrive at the
conclusion that the advantage of A in
breaking P without forging a signature is
negligible.

Regarding the running time of B, we
see that processing the Send queries from
A takes O(q g wt.,). In addition, the
amount of time required to simulate
random oracle queries and Reveal queries
is bounded by O(g,f.,). Hence we have

that ¢ =t+ O(g owt o, +q,t ). since the

running time of B is the running time of
A added to the time needed to simulate
all the queries from A.

Now, it remains to quantify the
advantage of A in attacking our scheme.
A straightforward probability calculation
shows that:

Adv*(A)= 2 - Pr[ GG]—1

« Pr[GGA Forge] +

- Pr[GGA Forge] —1

+ Pr[ Forgel+

- Pr{GGA Forge] —1

- Pr[ Forgel+

- Pr{GGA ForgeNAsk]+

+ PrIGG/\ Forge/ Ask]—1.

I

A
DO D BN B DS DD DD DD

Since Pr[ GGA ForgeA Ask]<1/2, we have
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Adv¥(Ay< 2. Pr[ Forgel+
2+ Pr[GGA Forge/NAsk].

Finally, it follows from Egs. (2) and (5) that
Adv¥(A) <2w - Succ {£")+2 - Suce ().

This completes the proof of Theorem 1.

M. Conclusion

In this paper we have presented a
dynamic group key agreement scheme. The
scheme is simple and practical while
meeting strong notions of security. Com-
pared with other provably-secure schemes
published up to date, our scheme incurs
much lower communication overhead for
initial group formation and for group
updates, both in terms of the number of
communication rounds and the number of
messages sent by all users. Due to its
communication efficiency, our family of
protocols for dynamic group key agreement
is well suited for a lossy and high-delay
network environment.
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