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ABSTRACT

We describe the problem of reducing the key material in the Even-Mansour cipher without security degradation.
Even and Mansour proposed a block cipher based on XORing secret key material just prior to and after applying
random oracle permutation P such that C=k, ® P(M & kl).m Recently, Gentry and Ramzan showed that this scheme
in the random permutation oracle can be replaced by the four-round Feistel network construction in the random function
oracle and also proved that their scheme is super-pseudorandom.m In this paper we reduce the key size from 2n to
n, which is the optimal key size of Even-Mansour cipher in the random function oracle model and also give almost
the same level of security.

Keywords : Block Cipher, Provable Security, Feistel Scheme, Even-Mansour Cipher, Pseudorandomness, Random Oracle.

I. introduction nitions for pseudorandomness and super-pseudor-
andomness(or strong-pseudorandomness) and also show-

Luby and Rackoff” suggested the formal defi- ed a method for constructing a pseudorandom permu-
tation from a pseudorandom function. A block cipher

B4Y: 2006 129 5Y; ALY 20079 29 229 is called pseudorandom if it is indistinguishable from
* o] =EE 2006085 AEAHUSw StedAF2AIN ] 9 a random permutationunder the chosen plaintext at-
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tack model. Furthermore, it is called super-pseudoran-
t A2l ZAAA : jesung@uos.ac.kr
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{(Fig. 1) Even-Mansour cipher and its variants

dom if it is indistinguishable from a random permuta-
tion under the chosen plaintext and ciphertext attack
model.

Even and Mansour®’

proposed a block cipher
based on XORing secret key material just prior to and
after applying random oracle permutationm P such
that C= k, ® P(M@® k) where M is the plaintext, C
is the ciphertext, and k, .k, are the key materials. In
the random permutation oracle model, the permuta-
tion P and its inverse are computable by all parties.
The only secrete components are k; and k,, which is
XORed at the beginning and the end. Except this key
XORing operation, every component is publicly ac-
cessible in this model.

In 2004, Gentry and Ramzan gave the formal proof
of the Even-Mansour cipher recently.m This implies
that the scheme is super-pseudorandom. Furthermore,
they replaced the random permutation oracle by ran-
dom function oracle, which does not need bijective
anymore. They just replaced the random permutation
P by the four-round Feistel permutation (g, f, f,9),
where ¢ is the Feistel permutation and f, g are ran-

dom function oracles. We will define the formal defi-

nitions of these in the following section.

The advantage of the construction of Gentry and
Ramzan over that of Even-Mansour is that the ran-
dom permutation oracle is replaced by the random
function model. Also they permit to access publicly
not only to an inner four-round Feistel permutation
oracle ¥(g, f, f,g) but also two random oracles f and
g. This model comes from the security notion of
(12], which is called the round security.

However, in two generic models, it is required that
the size of key materials is 4n-bit, where the message
space is {0,1} > (See the Fig. 1). We do concentrate
to reduce the key size in the random oracle model
without security degradation. It means that we hope
to prove super-pseudorandomness for the con-
structions of Even-Mansour and Gentry-Ramzan with-
out security degradation just by reducing the key
size. Actually, the full paper of (4), they proposed
some methods to reduce the key materials as the fol-

lowings;

(i) In (b) of Fig.l, set k, = k, .
(i1) Two key materials are XORed into the right
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half of the input to the Feistel Networks ((c)
of Fig. 1).

(iil) By replacing XOR operation by ‘+’ and ‘-’
group operations in the (c) of Fig. 1, set
Ki=k,.

The first two methods already needs 2n-bit key
material. The third method which uses the technique

in Patel et al.”"”

seems to have an optimal key size.
However, it needs other group operations rather than
an XOR operation, which is not a bit-wise operation.
Can we reduce the key size up to n-bit without re-
placing XOR operation by others?

In this paper we give an answer of it. We reduce
the key size only by replacing ¥, by c- &', where
c(={0,1}) is publicly known constant (such as 2 or
3) and - means the multiplication in GF(2"). We
know that the multiplication with the fixed constant
can be calculated by some shift operations and XOR
operations. In the random function oracle model of
the Even-Mansour cipher, our construction has opti-
mal key size. Also we give an explicit proof of ours
using the almost same way in (4].

RELATED WORKS : Luby and Rackoff provided a
construction of (super) pseudorandom permutations
from pseudorandom functions with the three(four)-
round Feistel construction. Later there were many ap-
proaches to obtain more efficient construction of su-
per-pseudorandom permutation than that of Luby and
Rackoff, #482101412) Ameng them, Naor and Reingold
gave an formal model of this construction and sim-
plified its proof of security. In 2000, Ramzan and
Reyzin introduced a new security model, which is
called round security. In this model, the adversary can

access to some of internal round primitives.

ORGANIZATIONS : In Section 2 we give some
preliminary definitions and security notions. In
Section 3 we survey the generic model of (4] and its
proof skill. In section 4 we proved that our con-

struction is super-pseudorandom without security deg-

radation in comparison with that of (4] and this con-
struction has an optimal key size in random function

oracle model of the Even-Mansour cipher.
II. Notations and Standard Definitions

For z € {0,1}**, z¥ means the left n-bit of z and
z® means the right n-bit of z. We denote all func-
tions from {0,1} ™ to {0,1} ™ by F, and the set of
all permutations on {0,1} ** by P,,. For a set S,
s<—%.$ means the process of picking an element s
from § uniformly at random. For two functions f and
g, g ° f denotes the composition of f and g.

We call a function family keyed if every function
in it can be specified by a key a. We denote the
function given by @ as f,. For a given keyed function
family, a key can be any string from {0,1} * where
s is known as key length. For a function f € F,, we
define basic Feistel permutation ¢, € 7, as ¥.(z",
z%) = (oF, 2*@f (7).
Feistel permutation 9(f,,  f,)=¢, o= < ¢,

Also define the r-round

Let @ be a permutation family on {0,1} **. Then
we say that & is pseudorandom if it is indistinguish-
able from P,,, where the adversary is allowed adap-
tive chosen plaintext attacks. Moreover, we call that
@ is super-pseudorandom if it is indistinguishable
from P, ,

chosen plaintext and ciphertext attacks. In this paper

where the adversary is allowed adaptive

we will only consider super-pseudorandomness. Other
definitions and notations follows that of (1, 4).

In the general super-pseudorandomness attack mod-
el, the adversary have two oracles, the forward direc-
tion of the permutation and the backward direction of
the permutation. The adversary A is a program for
RAM(Random Access Machine) with black-box ac-
cess to some number two oracles. We assume that the
adversary’s computational power is unlimited, but the
total number of oracle calls is limited to ¢. After
making at most ¢ queries to the oracles, 4 outputs 0
or 1.

Now let us define an advantage of the adversary in
the general super-pseudorandomness attack model.
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(Definition 1) (SPRP)

Let & be a permutation family on {0,1} *". For an
adversary A with two-oracles, we define A’s advant-
age as the following,

Advp(4) =

|Prige®o: 4% =1]—Pr[pf B, : 47" =1} |.

For any integer ¢t(=0), we define Advy"*(qt)
= Advf'*(A), as an insecurity function, where the
maximum is taken over choices of adversary A such
that A makes at most q oracle queries, and the run-
ning time of A, plus the time necessary to select

¢<~F & and answer A’s queries, is at most t.

The notion of round security[m is an extension of
the general definition of pseudorandomness. Let
&, F',---, F" be permutation family on {0,1} ?*, such
that for a function ¢E &, ¢= f -« fl. Then
F',--, F" is called r-round decomposition for . The
adversary A is a program for RAM(Random Access
Machine) with black-box access to some number r+2
oracles. In this model the adversary can access to r
oracles f1,---, /" and two oracles ¢,¢ 1.

Since we will consider the Even-Mansour cipher in
the random function oracle, we do not consider i —j
in(12], which means being able to give inputs to
round i of the forward direction of a block cipher and
view outputs after round j. We simplify the definition
of [12].

(Definition 2) (Round Security)

Let & be a permutation family on {0,1} ** with
r-round decomposition F',---,F". For an adversary
A with (r+2)-oracles, we define A’s advantage as
the following;

AdE  (A)=
IPI‘ [¢(_R¢ ‘A4 L SRS Pr [p(_RPzn . APvP"af',"'uf= 1] l

For any integer ¢t(>0), we define Adv¥™”(qt)
specifies our insecurity function analogous to
Definition 1.

. Gentry-Ramzan's Generic Model vs. Ours

In this section we briefly consider the frame of (4,
12). We denote ¥/ the Gentry-Ramzan construction
when the internal permutation is replaced by a
four-round Feistel network with outer round g and in-
ner round f, ie, ¥f =k ®v(gff.9)(zDk)
where k,k, are the key materials and f,g are mod-
eled as random function oracles.

The main theorem of the Gentry and Ramzan in

the round-security is as the following.

[Theorem 1] (4]

Let f an g be modeled as random function oracles,
let k, and k, be pricked randomly and independently
from {0,1} ™. Let ¥¢ =k, ®¢(9.f.f,9)(z® k),
and R be a random element in P,,. Then, for any
Jour-oracle adversary A that makes at most q, quer-
ies to its first two oracle queries (either ¥, V™' or R,
R™') and at most g and q, queries to its f and ¢

oracles respectively, it follows that :
| Pr[a¥¥ /9 =1]— Pr[4®R o =1]|
< (qf +2g;, +29,9, +qf —qc) 2"

-1
+qc(%2 ) g+t pgmtny,
Actually, though the theorem is true itself, we can
improve the upper bound. The upper bound can be

replaced by as the following ;

[Pr{a¥¢™Fo=1]—Pr[aRE F9=1]]

— 1)
< (¢+29q+2qq+tg—q) 2" +£(gc2——2'2"+1.

Let z=(z%2%) be in {0,1} > and ¥ be a key in
{0,1} . Let /¢ be the generic Gentry-Ramzan
construction. Then our modification can be defined as

the following :
V(e 2,) = (c- KB W(g.f.f.9) =Pzt @K )",

¥l f.f,.9) @Bz DK )T),
where ¢(={0,1}) is be an fixed known constant

and - means the multiplication in GF(2")(See the



TERIRES LG (2007, 6) 39

Fig. 1). Then we have the following main result.

(Theorem 2) (Main Result)

Let f an g be modeled as random function oracles,
let ¥ be picked randomly and independently from
{0,1} . Let W[, means our construction which is
defined above, and R be a random element in P,,.
Then, for any four-oracle adversary A that makes at
most q, queries to its first two oracle queries(either
¥, V™' or B R™') and at most q; and q, queries to
its f and g oracles respectively, it follows that .

|Prla¥ ¥ s =1]— Pr[A®E e =1] |
< (¢ +2qch+2ngc+q§ —-¢)2 "
%@—U(

2
Our upper bound is as same as the previous one,

+ 2—n+1+2—2n+1)_

even though we only use one fourth of that of
Gentry-Ramzan's construction. We think that this key
size is optimal in the random function model of the
Even-Mansour cipher. Also this result reduce the siz-
able gap between the best known key-recovery attack
and the security bound in the above.

IV. Proof of the Main Results

Our construction is almost same as that of the
Gentry-Ramzan except the key materials. Therefore,
we can directly apply the frame of proof in (4] to
our construction. The only different part is the defi-
nition of the BAD events and their probabilities.

To begin with, let 7 be the permutation oracle,
which is either % or R. Let O’ and O° be the oracles
that compute the functions f and g, respectively. The
adversary 4 can makes two types of queries to the
oracle P, (+,z) which asks to obtain the value P(z),
(=, ) which asks to obtain the value P~ (x), where
z,y< {0,1} ®. This is called the cipher queries. We
assume that A makes g, queries such that <x y, >,
o <x,,y, > p. We also denote oracle queries f and
g as (0%, 2') and (0% 2z") which ask to obtain f(z’)
and g(z")respectively, where 2’,z"e {0,1} ™. Let

{<z' ¥/, > <z ¥ >}0 lbe f-oracle-transcript of
A and {<z"1’y"1 >,

”

<x"qg,y 0 >}0g be g-oracle
-transcript of A. For the formal definitions, see (4,
8].

We denote the (i+j+k+1)* query A makes as a
function of the first (i+j4k) query-answer pairs in
A’s cipher and oracle transcripts by C,loy, 8%,
where o = {<z,y >, <z,4,> }p, B; =
{<z' vy >, <z'j’y'j >} %= {<a" ¢y >,
<z". y"% >}, and either i< g or j< g or k<g,.

Let ¥ denote the process in which the cipher quer-
ies and f-oracle queries answered as they would be
¥, however the g-oracle queries are answered by an-
other independent random function oracle h. Further-
more, R denote the process that answers all oracle

h

queries as ¥ would, but answers the " cipher query

of A as follows:

1. If A’s query is (+, ;) and for some 1< j<i the
" query-answer pair is <;,y;>, then R an-
swers .

2. If A’s query is (—,y;) and for some 1< j<i the
#* query-answer pair is <g,,y,>, then R an-
swers z;.

3. If neither of the above happens, then & answers
with a uniformly chosen element in {0,1} "

Note that R may be inconsistent. However, if R is
consistent, it behaves as same as R which is uni-
formly chosen from the set of random permutations.
Now we give the formal definition of these.

(Definition 3] Let o=<x,y, > <x,y, >p be
any A-cipher transcript. Then we say that o is incon-
sistent if for some 1<j<i<gq, the corresponding
query-answer pairs satisfy z,=gz; but y, #y,, or

z; = z; but y, = y,. Otherwise o is consistent.

[Definition 4) The random variables T,, T

Y Th

and T denote that the cipher and oracle transcripts
seen by A when its cipher queries are answered by

v, ¥, R R respectively, and its oracle queries are
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answered by O and O°.

Using the above definitions and the definition of

¢, (T,), we can obtain 4%Y ™59 and C,(7;) denote
the same random variable. The same is true for the

other random variables. Then we have the followings.

(Proposition 1)

[Pr[C,(T;) =1]-Pr[C, (T)—1]|<((

) . 2—2n'
2

The proof of the proposition can be seen in (4, 8].

Now we want to have an upper bound of the advant-

age between 7, and T

(Definition 5) For any k¥ €{0,1} ™, we define
BAD(K') to be the set of all possible and consistent

transcripts  o=(T,T; T,), with Tp=<xy >,
_ v . ’ ’
<ch:ch>}” 7}— {<z1,y1 >, 7<ij1yq,>}0ﬂ and
_ U ” 7 . .
T, ={<z" y| > <z Ve >}0g satisfying at least

one of the following events:
® BGL : there exist 1<i<g and 1<j<g st
T; oK —z , or

® BG2 : there exist 1<i<g and 1<j<gq st

F@c- K =a/.

(Propesition 2) Let k¥ be randomly chosen from
{0,1} ™. Then, for any possible and consistent A
Tp=<Xy; >

~transcripts o=(T, T, T,), with

7 7 ’ !
<Xy Yo > e {<z' ¥, >y <a >}0,, and
_ v ” "
T,= {<=z W e <a Ly >}0,' we have the fol-
lowing;

Prkr[cr € BAD(K')] < 2q4q, - 27"

Proof. Since ¥ is randomly chosen from {0,1} ",
for any fixed i and j, BGL and BG2 happens with
probability 27".
directly.

So we can have the desired result

Using the above the proposition, we now can show
that 7, and T} are identically distributed if the fol-
lowing BAD(kK') does not happen.

(Lemma 1) Let o be any possible and consistent
transcripts defined as proposition 2. Then we have

the following.
Prq,[ —a|aEBADG(k)]-—Pr [T =g].

The proof of this lemma is identical to that of (4].
Now, in order to have a bound of the advantage that
4 in distinguishing between T and T, we need to

define another bad event BAD(k,g).

(Definition 6) For any k¥ € {0,1} ™ and random
function oracle g, we define BAD(K ,g) to be the set
of all possible and consistent transcripts o=(T, T, T,),
with Tp=<xy, {<2'1y, >

..,<.7:'q!,y'ql >}0f and T, ={<a"y" > < I"qg’y"q, >}0,

satisfying at least one of the following events:

>y, < xqcach > P

® Bl ! there exist 1<i<j<gq, s.t
9(&f oK )Pz = gz} DK )Day, or

B2 : there exist 1<i<j<gq, 5.t
WBgy®c- k)= ©glyi®c- k), or

¢ B3 : there exist 1 <4,j<gq, st
gzfak) dal = f ®glyf ®c- k), or

B : there exist 1<i<gq and 1<j<g; sl
9f OK) &z} = z], or

®Bi : there exist 1<i<q and 1<j<gq; st

oy e k)= z].',

(Proposition 3) Let k¥ be randomly chosen from
{0,1} *. Then, for any possible and consistent A

-transcripts o=(Tp T; T,), with Tp=<xy >,

_ v . ’ ’
<xo¥e Ze I = (<, ¥, > <z Y >}0,, and
. v ” ”
T, = {<2" ¥\ > <z WY, >}ov' we have the fol-
lowing;

Pr,,lo€BAD(K ,g)]
< (g +2qq+qlg—1))-27"

Proof. For each Bl and B2, the probability is

bounded by ((qzc)) 27" since k' is randomly chosen

from {0,1} . Similarly, For each B and 55, the
probability is bounded by gg,-27" since ¥ is ran-



HRREEGSROCGE (2007, 6) 41

domly chosen from {0,1} ™ For the case of B3, since
¥ is randomly chosen from {0,1} ", we can not dis-
tinguish the two functions, g(z®k’) and glz Bc- k).
So the probability is bounded by ¢ -27".

Furthermore, if BAD(K,g) does not happen, then

T

lemma.

and T; are identical. So, we have the following

(Lemma 2] Ler o be any possible and inconsistent
transcript as defined Proposition 3. Then

Pr@[T;,: olo& BAD(K ,g)l= Pr@,[TL;. =g).

With the above lemma, the rest of the proof of our
construction can identically follow that of Gentry-
Ramzan. The followings are the brief summary of our

proof.
| PrlA¥V ™o =] pr[4RE o =1]|
=|Pr[Cy(T) =1]—Pr([C, (Tg) =1]|
< |Prlg, () =1} - Pr[Cy(Tp) =1]|
+|PrlC,(Ty) =1] - PrlC,(Ty) =1]|
+|PrlC,(T5) =1] - Pr[C,(T,) =1]|

< Pr [0€BADG(K)] + Pr,, [cEBAD(K,g)]

g+
2qq, - 27" + (¢ +2q0,+2 - ((‘g))) con

()

(ﬁ +2qch+2ngc+f -—qc) 27"

IA

A

N g(g.—1)

—n+1y g-2n+1
2 (2 +2 ).

This completes the proof of our main theorem. So
we proved that our construction is as secure as that
of Gentry-Ramzan.

V. Conclusion

We considered how to reduce the key size of the

Even-Mansour cipher in the random function model.
With compared to generic model of Gentry and
Ramzan, we reduce the key size from 4n to n, which
is the optimal key size of Even-Mansour cipher in the
random function oracle model. Also this work reduce
sizable gap between the best known key recovery at-
tack and the security bound in the Even-Mansour
cipher.
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