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ABSTRACT

An application-layer attack can effectively achieve its objective with a small amount of traffic, and detection is difficult
because the traffic type is very similar to that of legitimate users. We have discovered a unique characteristic that is produced
by a difference in client intention: Both a legitimate user and DDoS attacker establish a session through a 3-way handshake
over the TCP/IP layer. After a connection is established, they request at least one HTTP service by a Get request packet. The
legitimate HTTP user waits for the server’s response. However, an attacker tries to terminate the existing session right after
the Get request. These different actions can be interpreted as a difference in client intention. In this paper, we propose a
detection algorithm for application layer DDoS attacks based on this difference. The proposed algorithm was simulated using
traffic dump files that were taken from normal user networks and Botnet-based attack tools. The test results showed that the
algorithm can detect an HTTP-Get flooding attack with almost zero false alarms

Keywords: Application-layer DDoS$ attack; layer-7 attack HTTP-Get flooding; CC attack; Botnet
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Various Internet services are available to also introduced wvarious hacking tools.
users due to the development of commu- These tools can disturb a system's
provision-related services or cause the
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system to malfunction. Hacking tools have
been advanced to provide various types of
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attacks for economic profit. One of the
well-known cyber attacks is a distributed
denial-of-service (DDoS) attack(1). A DDoS
attack causes a victim to malfunction and
no longer supply normal service. DDoS
attacks have been growing stronger through
the abuse of botnets{2], which are network
groups of zombie.

Several DDoS detection algorithms have
been developed to detect an attack. Howev-
er, most of these algorithms have been lim-
ited to detecting and blocking network-level
DDoS attacks such as SYN flooding{3}(4].
But DDoS attacks targeting at the net-
work-layer are giving way to sophisticated
application-layer (layer-7) attacks. DDoS
attacks are increased against applica-
tion-layer services, particularly HTTP Web
services. In one instance, an online mer-
chant employed the ‘DDoS Mafia” to launch
an HTTP flood on his competitors Web sites
after a regular SYN flood failed to bring the
sites down.

DDob attacks against an application-layer
disturb servers providing application-layer
services. Typically, DDoS prevention sys-
tems employ a rate limit to reduce the num-
ber of packets arriving at the Web server.
However, a rate limit can result in false
alarms. Some DDoS attack packets are still
input into a related server by a false
negative. A detection system’s false positive,
i.e., legitimate packets that are interpreted
as malicious and hence dropped, is detri-
mental to real users of the system. In other
words, DDoS prevention technologies cannot
protect a related server precisely due to
such false alarms. Signature-based packet
filtering is also used to protect against
DDoS attacks. However, such filtering can-
not prevent an attack in real time because
attacker can change their payload easily.

In previous works, the research starts
from the assumption that an attacker's

traffic does not have unigue characteristics
that can be distinguished from legitimate
traffic. However, we have found that attack
traffic has a unique characteristic that is
generated slightly within legitimate HTTP
traffic. Therefore, a new application-layer
DDo8 detection algorithm is proposed that
can detect an HTTP-Get flooding attack
with almost zero false alarms.

The remainder of this paper is organized
as follows. Related works are reviewed in
section II. In section III, our proposed algo-
rithm, which detects HTTP-Get flooding at-
tacks based on client intention, is
introduced. Results of a performance evalu-
ation are shown in section IV. The im-
plementation and test results are given in
section V. And finally, we offer a conclusion
including a brief summary of our proposal
in section VI.

Il. RELATED WORK

In prior works, simple threshold-based
application-layer DDoS attack detection
methods have been proposed. These pro-
posed methods detect HTTP-Get flooding
attacks that increase Web server load. They
limit traffic bandwidth whether it comes
from a legitimate user or an attack-
er(5)[6)(7)(8). However, false alarms can
be generated by a bandwidth limit.

Another detection algorithm detects a cli-
ent as an attacker when the same page is
requested more than a threshold number
during a given time(9). The threshold num-
ber was determined using historical data,
and was compared with current data to im-
prove the detection rate(10). However, all
detection methods based on a threshold
have false positives and false negatives de-
pending on the threshold value and opera-
tional conditions.

A pattern classification method has also
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been used to detect application-layer DDoS
attacks. An HTTP-Get flood detection
method based on a Web page access behav-
ior analysis was proposed(11). The pro-
posed method used two detection algori-
thms. The first algorithm detects an
HTTP-Get flood when clients request pages
same sequence order. Second, it detects a
client as an attacker when the pages are
browsed very briefly. However, attackers
can change their page requests very easily,
and thus the proposed methods cannot de-
tect attacks precisely.

A Web-browsing pattern-based attack de-
tection method was also proposed(12). The
method uses Hidden Semi-Markov Models
(HSMM) to describe Web-browsing patterns
and detect HTTP-Get flooding attacks. The
method uses a large number of legitimate
request sequences to train an HSMM, and
then calculates the interval of likelihood for
legitimate sequences against the norm.
After obtaining a normal likelihood inter-
val, the model can be used in detecting an
HTTP-Get flooding attack. However, it cre-
ates false alarms because the reasonable
interval of the average log likelihood can
contains the abnormal user’s traffic.

A DDoS-Shield was proposed to detect
DDoS attacks based on a counter-mecha-
nism(13]). This paper considered sophisti-
cated attacks that were protocol-compliant,
non-intrusive, and utilized legitimate ap-
plication-layer requests to overwhelm sys-
tem resources. The method consists of a
suspicion assignment mechanism and
DDoS-resilient scheduler. A suspicion as-
signment mechanism used a session history
to assign a suspicion measure to every cli-
ent session, and a DDoS-resilient scheduler
decided which sessions were allowed to for-
ward requests depending on the scheduling
policy and scheduler service rate. However,
the proposed method also provided miti-

gation against attack traffic. It did not pro-
vide precise protection methods. Therefore,
a new application-layer DDoS detection al-
gorithm is needed to protect a server from
an attack with almost zero false alarms.

[ll. PROPOSED DETECTION ALGORITHM

The detection researches in previous
works start from the assumption that traf-
fic from a layer-7 attacker does not have
unique characteristics that could be dis-
tinguished from legitimate traffic. A layer-7
attack based on the TCP protocol cannot
fake the attacker's IPs because it has to es-
tablish a session through a 3-way hand-
shake. An attack can be blocked by the
ACL when the attacker's IP is detected. For
this reason, we focused on the session,
where we found that the difference of ac-
cess intention will be expressed. Attack
traffic has a unigue characteristic that is
rarely generated in legitimate HTTP user
traffic. The characteristic was discovered in
various DDoS tools including NETBOT,
Black-Energy, Fungwon, and zombie codes
that provoked the DDoS attack in Korea on
the 7th of July, 2009. An algorithm was
proposed to find the application-layer DDoS
attack. Usually, a false alarm is generated
by the probability distribution of the de-
tection model. In our algorithm, entire ses-
sions were mapped into two states based on
the client's access intention. The proposed
algorithm is the first approach to detect an
application-layer DDoS attack by classify-
ing sessions through user intention. The
proposed algorithm is shown in section 3.1.
The difference in client intention between a
legitimate user and an attacker is ex-
plained in section 3.2 through the viewpoint
of socket programming. The proposed algo-
rithm is reviewed in section 3.3 based on
the HTTP protocol standard.
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3.1 Proposed Layer-7 DDoS attack detection
algorithm based on client intention

To start HTTP service, both a legitimate
user and DDoS attacker establish a session
through a 3-way handshake over the
TCP/IP layer. After a connection is estab-
lished, they request at least one HTTP
service by a Get request packet. The proce-
dures are exactly the same up to this point.
The legitimate user waits for the server's
response. After the server replies, the next
an attacker
tries to terminate the existing session right
after the Get request. The different action
can be interpreted as a difference in client
intention. A legitimate user’s intention is to
be provided a service from the server. But
an attacker's intention is to disturb the
service. The attacker is not interested in
data from the server, so the attacker does
not need to wait for such data. The differ-
ence between these sessions is shown in
(Fig. 1],

The left box of [Fig. 1] is a sample of a
legitimate user’s session. They established
a session by a 3-way hand shaking. They
then generated an HTTP-Get request pack-

step is processed. However,

et, and waited until the server downloaded
the requested pages. The session was ter-
minated by the server or client after the
server's response packets. This behavior

Legitimate User HTTP Get attacker
chient server | |chent server
SYN SYN
\w
SYN-ACK SYN - ACK
YN-ACK
ACK €Ak

o

Response

g

(Fig. 1) The session state of a legitimate user
and DDoS attacker.

appears when they have the intention of re-
ceiving a service from the server. The right
box of [Fig. 1] shows a sample of an
HTTP-Get attacker's session.

The session states were exactly the same
as in legitimate sessions until the
HTTP-Get request. However, an attacker
terminated the session with a Fin or Reset
packet right after the Get request packet
because they did not need the service.

Examples of a packet dump are shown in
(Fig. 2) and (Fig. 3). The traffics in the fig-
ures were captured with a WIRESHARK
packet dump program. The legitimate user’s
traffic dump in (Fig. 2) was captured in a
real network. The addresses were erased
for the sake of privacy. Packets with the
same IP pair and a 1546 port number were
selected and displayed. The session began
with a Syn packet by a client. The session
was  established  through a  3-way
handshake. The client in the forth column
generated an HTTP Get request packet.
The server replied with 21 packets as a re-
sponse to the Get request. The server start-
ed a session demolish sequence by sending
a Fin packet, which is shown as sequence
number 86 in (Fig. 2). It is legitimate user
behavior to wait until the request receives

eiter [jop puds= 1548 ~ Bawossion... Gedr e

Mo,  Time Soure Dastnaiion

(Fig. 2} The traffic dump of a legitimate user's
HTTP-Get request.
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(Fig. 3) An HTTP Get flooding traffic dump RN RS | N
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from a NETBOT attacker. '

a result from the server.

The dump file in [Fig. 3) was captured in
our DDoS test network, while a NETBOT
attacker generated attack traffic against a
server,

The attacker had 172.16.10.5 as its IP
address. The server's IP address was
192.168.30.4. The IP addresses were not
hidden because the dump file was not taken
from a real network. Port 3251 was selected
from a number of sessions of the original
traffic dump. The first column of the se-
lected packet was a Syn packet to initiate a
session by an attacker. The fourth packet
was an HTTP Get request and the contents
were displayed in the bottom box of the
dumped image. The Fin packet was gen-
erated in the fifth sequence. The time gap
between the HTTP Get request and Fin
packet was only 30 microseconds. The serv-
er responded with an "HTTP/1.1 200 OK”
packet after 2.9 seconds even though the
attacker had started a termination se-
quence with the Fin packet. The packet
was the server's answer packet for the pre-
vious HTTP Get request.

The session was closed normally by the
resel sequences. Other DDoS attack tools
that we collected had a similar packet se-
quence, and one of the traffic dump files is
shown in this paper. The above explanation
clearly shows that the DDoS attack session
had a unique characteristic compared with
the legitimate users. We call this a differ-

{Fig. 4). Possible Session Terminating scenarios
by client

ence in client intention. We proposed an al-
gorithm to detect an application-layer
DDoS attack using this difference in client
intention. Our algorithm is very simple. It
checks whether the client terminates an es-
tablished session before the servers re-
sponse packet has been observed, and the
source IP is then detected as an attacker.
The proposed DDoS detection algorithm
works properly for HTTP 1.x protocols. In
this paper, we want to focus on HTTP Get
flooding attack detection. The detection al-
gorithm based on client intention can be
expanded further.

The (Fig. 4) shows possible session ter-
minating point by clients. The point 3 that
terminates the session after receiving the
server's response packet is normal. But at-
tackers can terminate the session at this
point, then they have dependence on
server.

If the server does not send response
packet, then attack program can terminate
the sessions after time expiration. Usually
the attack program uses multi-thread to
generate many requests. The point 1 is al-
ready explained. The session termination at
point 2 is explained as the attacker pro-
grammed the attack code to wait certain
time until session termination. In this case,
if the server can not response quickly
enough, then the result is same as point 1.
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The hacker has no room to evade the ses-
sion termination method unless he waits
the session termination by server. But the
waiting causes session exhaustion of the
client, which limits attack packet gen-
eration against victim.

3.2 An analysis of intention from a socket
programming viewpoint

Our proposed algorithm was introduced
in the previous section. In this section, the
difference of session behavior will be ana-
lyzed based on the viewpoint of socket pro-
gramming that occurs from the discrepancy
of user intentions. Most communication
programs use a socket. The socket is an
API (Application Programming Interface)
that connects a TCP/IP layer with an appli-
cation layer. Some OS (Operating Systems)
allow accessing a network layer only
through a socket due to security concerns.
For communication programs using a sock-
et, it is necessary to create a session for
data communication in the application
layer. After the end of data communication,
the sessions have to be terminated.

A computer has many manageable re-
sources such as a CPU, Memory, IO,
Network, and so on. A socket is one such
resource. Usually, a personal computer can
generate around three-hundred sockets
simultaneously. If the number of sockets
created approaches a limitation, no more
sockets can be created. If a legitimate code
is run from the machine, it can utilize
enough resources until all of the services
are finished. However, a zombie code is a
type of illegal program. It can use limited
resources within a limited time to avoid be-
ing awakened by a user at the host. Since a
zombie code is written as a socket, it is
necessary to terminate the socket after re-
questing service in order to maximally uti-

lize the socket resources. The session ter-
mination right after a GET request does not
exhaust the socket resources of the
machine. If new sockets are continuously
created without termination, it is impos-
sible to create a new socket very quickly
because the socket resources of the client
become exhausted.

3.3 An abnormal state analysis by the HTTP
protocol standard

The difference in user intention was ana-
lyzed based on the viewpoint of socket pro-
gramming in the previous section. In this
section, an abnormal state termination will
be reviewed using the HTTP protocol
standard. The HTTP 1.0 standard is de-
scribed as follows. In applications other
than experimental programs, a client must
establish a connection to the server before
transferring a request message, and must
terminate the connection to the server after
the server transmits a response. The client
and server must be aware that the con-
nection may be terminated by a user oper-
ation, an automatic time out, or a program
error. Further, the client and server must
have the capability to perform a proper op-
eration when the connection is terminated.
A terminated connection means the deletion
of a current request even though the con-
nection is terminated by either or both
sides. The standard defines a normal serv-
ice termination as terminating a session af-
ter a server ends data communication. It
also defines three abnormal service termi-
nations.

1) Session termination by a user oper-
ation

2) Session termination by an automatic
time out

3) Session termination by a program error
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During our investigation with several
DDoS attack tools, it was discovered that
the time gap between a Get request and
session termination by a client was very
short. The time interval is only several tens
of microseconds (usec). There is very little
chance to terminate a session by a legit-
imate user operation as mentioned in the
first abnormal termination. If a user wants
to terminate a session right after a GET
packet, he/she must close the Web-browser
or hit the ESC key to cancel the request
within  several tens of microseconds.
However, it is almost impossible for a user
to close a Web browser within such a short
period of time.

In the case of a session termination by an
automatic time out, a time out is generally
set to be several seconds in length.
Compared to several tens of microseconds,
the automatic time out is very long.
Therefore, it is almost impossible to termi-
nate the session within several tens of mi-
croseconds by an automatic time out.

Finally, a session termination through a
program error can be clearly analyzed as
such, and is sometimes excluded from as-
sumptions defining an abnormal session
termination.

The above analysis shows that a session
termination event by normal users does not
happen frequently, and thus DDoS attack
sessions are distinguished from legitimate
users.

IV. PERFORMANCE EVALUATIONS

Our proposed algorithm was analvzed
from various viewpoints in sections 3.1 to
3.3. We have confidence through this evi-
dence that our intention-based detection al-
gorithm produces almost zero false alarms.
But to further prove the integrity of our al~
gorithm, we need simulation results with

real traffic, implementation, and test results.
The possibility of a false alarm is shown

_using a real traffic dump analysis de-

scribed in section 4.1. The performance
evaluation results are shown in section 4.2
using a real traffic dump.

4.1 The possibility of a false alarm in a real
network

To evaluate the proposed algorithm, the
probability of a false alarm has to be calcu-
lated based on the mathematical model of
the algorithm. Our proposed algorithm has
two groups of sessions that are classified by
user intention. We call the groups SO and
S1. The SO group is a set of sessions that
awalit service until the server provides it.
The S1 group is a set of sessions that aban-
don a service request before receiving the
server’s first response packet.

S0: a set of sessions that await server's
response

S1: a set of sessions that abandon a re-
quest before receiving the server’s
first response packet

Legitimate users mainly generate SO
sessions. However, a legitimate user can
generate an Sl session by hitting the ESC
key or closing the Web browser when they
can no longer wait. A Web user's waiting
tolerance for information retrieval is gen-
erally around 2 seconds{14). Most users
abandon a request when the Web server
does not download the requested pages
within a tolerable waiting time. Also, St
sessions for normal users were found in real
traffic dump files. This means a false pos-
itive is not =zero in a real network.
However, Sl events on average do not ex-
ceed a hundred instances per year for the
normal user. The detection model has to be
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made using IP pairs because the proposed
algorithm works on a session. The number
of S1 sessions for a specific user and server
pair is too small to compare with the num-
ber of SO sessions. A reasonable probability
distribution function cannot be made with a
small number of samples. However, no user
abandons the same page twice during a one
second period because a legitimate user
waits for the specific Web server to reply
until the end of a tolerable waiting time.
Therefore, we enhanced the proposed algo-
rithm to detect a host as an attacker when
it generates an S1 set twice in a one second
period, and based on this, an almost zero
false positive detection rate is possible. A
false negative can be generated when an at-
tacker uses an SO session. When an attack-
er gives up an Sl session, its zombies con-
sume more resources causing easy detection
at the host.

4.2 Simulation results with real traffic

Two types of dump files were analyzed to
evaluate the proposed algorithm. One was
captured from a university backbone as a
normal sample, and the other was captured
from a DDoS zombie network as an attack
sample. When a client generated an
HTTP-Get request on an established ses-
sion, the session was traced and the time
gap between the server's first response and
the session termination request by the cli-
ent or server was logged. If the server's
first response preceded the session termi-
nation request on both sides, then the time
gap had a positive value. On the other
hand, the time gap had a negative value
when the session termination request pack-
et was observed before server's first re-
sponse packet. A false positive would only
be generated when a user hits the ESC key
or exits the browser before the first request

(Fig. 5) Analysis results of normal and attack
traffic.

arrives from the server,

The analysis results are shown in [(Fig.
5]. The x axis displays the time difference
in usec between server's first response
packet and fin or reset packet from both
sides. The y axis displays the number of
sessions in percentage. In the (Fig. 5],
eight colored lines are showed. The front 4
lines show the analyzed results of legit-
imate user traffic. These results mainly had
positive delay values, and thus the server's
first response preceded the session termi-
nation request. The rear four lines indicate
the results of traffic generated from a
Black-Energy DDoS tool. The test results
had only negative delay values. The session
termination requests by the client always
come earlier than the servers first
response. However, a few negative values
were generated from the legitimate user
traffic. False positive alarms were gen-
erated by these sessions. Even though their
behaviors cannot be completely known, they
abandoned their service request before the
Server's response.

V. THE IMPLEMENTATION AND TEST
RESULTS

In this chapter, the implementation re-
sults are described for our proposed de-
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tection algorithm. The test results are pre-
sented using real attack tools and replay-
ing the dumped data. The implementation
environments are described in section 5.1.
The implementation results of a 20Gbps
Anti-DDoS system using the proposed algo-
rithm are shown in section 5.2. Finally,
performance comparisons and discussions
are given in section 5.3,

5.1 The implementation environments

A 20Gbps Anti-DDoS system named ALA-
DDIN was developed at the end of 2009.
The developed system board is shown in
[Fig. 6].

The board was configured using two
10Gbps fiber optic interfaces with a MAC
layer, which are shown in the right part of
(Fig. 6]. It has one load balance chip to
distribute the input packets to the DDoS
detection engines. The load balance chip is
shown in the center in the figure. The de-
tection engines each process 5 Gbps of data
per second. The detection engines were im-
plemented as a daughter board type. The
load balancer and detection engines were
implemented using a grade-1 speed Ver-
tex-5 Xilinx FPGA. Each engine had 4 ex-
ternal SRAMs for session, flow, and ACL
tables. The chips were implemented using

{Fig. 6] The implemented 20Gbps Anti-DDoS
system board.

the verilog HDL language. The interfaces
between the load balance and detection en-
gines were implemented using 64-bit bus
widths and a 100Mhz clock speed.

The detection engine processes packets
using 32-bit bus widths internally. The en-
gine was synthesized successfully at a clock
speed of 178Mhz. The implemented SRAMs
were operated at 150Mhz. However, 200Mhz
SRAM is also available. The maximum per-
formance of the detection chip is 5.69Gbps.
A Synplify pro 9.4 synthesis tool was used
for hardware synthesis. A Modelsim PE 6.4
simulator was used for the logic simulation.
An Xilinx ISE 10.1 was used for mapping
logic and routing the resources in the
FPGA.

5.2 The implementation results

Our system was implemented using the
proposed algorithm. The system also has a
network-layer DDoS detection function, but
this is beyond the scope of this paper.
When an application-layer DDoS is de-
tected, a proper response mechanism is
needed to protect from the attack. Because
the application-layer attacks cannot fake
their source IPs, the proposed system uses
an access control list (ACL) for the
response. The ACL was implemented using
an SRAM with a half-million entries. The
complete ACL of the system included 2
Million entries that came from 4 different
engines. Fach ACL entry has a 6-bit coun-
ter that can count the number of abandoned
requests during a one second peried. And
each entry has control bits to drop packets
or log an event. The time interval and
event threshold can be configured. The time
interval is set to one second by default. The
default event threshold is set to 2. The first
event only activates an ACL entry. but the
second event on the same flow will generate
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an alarm and block the client's access to
the server, However, the entry will be
erased when no more events are generated
during the time interval. A session tracer
was implemented using 8 million simulta-
neous entries that trace the sessions in or-
der to detect network-layer and applica~
tion-layer DDoS attacks.

Our system was tested in a local DDoS
testing network using various DDoS tools
and test equipment including Breaking-
Point. Our test environment is shown in
(Fig. 7).

The network was configured with two
racks, 23 servers, several layer-2 gigabit
switches, a 10 gigabit switch with a
24-gigabit interface and two 10Gbit inter-
faces, and two routers. First, the system
was tested using real DDoS attack tools in-
cluding NETBOT under 8 Gbps of back-
ground traffic. Second, the system was
tested using zombie codes that invoked the
DDoS attack in Korea on the 7th of July,
2009. The system was tested using
BreakingPoint equipment through amplified
NETBOT traffic for large scale zombie at-
tack scenarios. Also, a real traffic dump re-
play was used for checking false alarms.

At the beginning of the test, the counter
threshold of the ACL was set to 1, which

EHB-00oSTest 7o

(Fig. 7) The configuration of our DDoS test network.

detected a single attack session. Our sys-
tem detected HTTP-Get and CC attacks
without false negatives generated by the
real attack tools and testing equipment.
The system was tested during a period of
more than a couple of months. We had one
false positive alarm during a test with an
ACL counter threshold of 1. This false pos-
itive alarm made us realize how false pos-
itives can be generated by a legitimate
user. A Web server was attacked with a
NETBOT DDoS attack tool through the
network. However, our system could not
protect the attack properly due to a bug in
the hardware at that time. We tried to
check the server's condition through Web
browsing, but the server had already been
overwhelmed by the DDoS attack. While
waiting for the browser to answer during
several seconds, an engineer hit the ESC
key to cancel the request. A FIN packet
was generated by the browser to terminate
the session. Finally, the session termi-
nation request was detected as an attack
by our system. Normal traffic load was
needed to check for false positives in our
system within a real network environment.
Instead of a real reference site, a packet re-
play system was used to replay Pcap format
traffic dump files. Traffic of 107 GB in size
was dumped at a university in Korea from
2005.07.29, 14:03:38, to 2005.07.31, 02:43:52.
It had a total of 322,540,183 packets with
1,296,654 established sessions. The dumped
packet size was limited to 500 bytes. Our
implemented system  detected 19,856
HTTP-Get attacks that were false positives,
and the false positive rate was 1.53%. The
ACL counter threshold was set to 2to re-
move false positive alarms. The 107 GB of
dumped packets were replayed again. This
generated no more false positive alarms in
our system. Our modified algorithm could
detect an application layer attack that gen-
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erated more than two HTTP-Get request
packets in a one second period.

To prove the scalability of our system, a
test for detecting 1.8 million zombies was
successfully completed using BreakingPoint
testing equipment. The NETBOT attack-
er-generated packets were captured and
multiplied by the test equipment. All of the
attackers IPs were blocked in real time by
our system.

5.3 Performance comparison and discussion

Even though the chance of abandoning a
service request by a legitimate user is quite
rare, we had a false positive alarm during
our test. Also, false positives were found in
our traffic dump analysis. Even though the
false positive rate was very low, the auto-
matic defense could not be enforced due to
the false positives. A legitimate user does
not terminate a session continually in such
a short peried. If someone terminates the
same requests more than twice in a second,
he/she has no intention to receive service
from the server. Even though the server is
overwhelmed by a DDoS attack, a legit-
imate user usually awaits a response from
the server during a tolerable waiting time.
Eventually, he/she closes the Web browser
without receiving a result from the server.
This situation is detected as a first session
termination event by our system. If the
user's intention is to be provided service,
he/she will not terminate the session again
within a one second period. If a second ter-
mination occurs, it should be interpreted as
an attack. [Table 1] shows the comparison
results for the performance differences of
various detection methods.

All of the prior researches assumed that
an attacker's traffic does not have unique
characteristics that can be distinguished
from legitimate traffic. As seen in the data

{Table 1) Performance comparison of detection
methods.

Imple

Model | men- Scalab | False

ility |alarm

Detection meth-
ods

tation
Detection of .
HTTP-Get flood COfﬁaﬁm”
attack (Takeshi browsing SW  [limited] 10%
Yatagai et al. time
2007) ’
Web based GLR 2.6%

traffic anomaly | woLR SW  |limited |9.69%
{Jun Lv et al.,

2007} EPD 0.35%

HTTP flooding
detection method o . | scal- “
(Wei Zhou Lu et HSMM SW able 6.6%
al., 2006)
Classify ot
Proposed algo- | sessions |HW or| scal- fouhd
rithm by users | SW | able
. . yet
intention

in (Table 1], the previous methods were im-
plemented by hardware with difficulty. It
was also reported that the BOTNETs had
more than a couple million zombies.
However, previous methods did not mention
the scalability.

We suggest that the sessions be classified
into two groups based on the intention of
the service request. Our test results
showed that our method did not produce a
false alarm during various tests. High-
speed implementation was possible using a
very simple architecture, and the 1.8 mil-
lion zombies detected shows the scalability
of the algorithm.

VI. CONCLUSIONS

An application-layer DDoS attack can ef-
ficiently overwhelm a server with small
amounts of traffic. However, detection is
difficult because the traffic types are very
similar to that of legitimate users. Previous
researches have proposed detection algo-
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rithms based on various approaches, but
they did not find a false-positive-free
solution. A unique characteristic that arises
from the differences in client intention was
found, and this characteristic is seldom
generated in legitimate HTTP traffic. In
this paper, an algorithm was proposed to
detect an application-layer DDoS attack
based on client intention. The proposed al-
gorithm can reduce the uncertainty of the
mathematical calculation of prior works.
Client-intention-based DDoS attack de-
tection can distinguish attack sessions from
legitimate users with almost zero false
alarms. A 20Gbps anti-DDoS system was
implemented with our proposed algorithm,
The possibility of high-speed hardware im-
plementation was shown in this paper. The
system was tested using existing DDoS at-
tack tools in 8Gbps of background traffic.
The system detected HTTP-Get flooding at-
tacks including CC attacks with few false
alarms during our test. An ACL with an
event counter was implemented to remove
false alarms. The modified algorithm did
not generate false alarms during the testing
procedure. The test results for detection of
2-million simultaneous zombies show the
scalability of the proposed algorithm. A test
in a real network will be prepared in the
near future.
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