1259

Journal of The Korea Institute of Information Security & Cryptology ISSN 1598-3986(Print)
VOL.23, NO.6, Dec. 2013 ISSN 2288-2715(0nline)
http://dx.doi.org/10.13089/JKIISC.2013.23.6.1259

S WrgetolAe] A volellols T3l T
A7

TR

MEd

x| &4

l

Ofole

Jok pN

A Study on the Secure Database Controlled Under Cloud Environment*

SungYong Kim,T Ji-Hong Kim?
Semyung University

(@] ok
I =

22 wlolefulo] 29 2717F A2 FrhstaL oot 71l ellA = dlolelo] 2 el 9] o fom <t Fehe= ¥
el 2 obpaAska glow, ojuf Feh-= An|agiAlel] o3 AelE = wlolEumo] 2] Wk vl Fasict. Hlo]
elulo]x o] F8 ARE HEsly] fsie hastete Zlo] HAle] WhloARt, e gfEstE 1t Foll= o o]
2 A7) oAl shaskel dlofejmlo]zelx] A4 Ao shest iyt A4 whel s A & =
wollA ZpHAe] o] 79 <lElaet BREEE ARSsle], SRR An|addAle] welste] Hlolefulo] el gt
sh=sl i 2 58l A S Aokt v AlqkEl o] wlolefulo] s qkast U kel S-g-toke]

ABSTRACT

Nowadays, the databases are getting larger and larger. As the company has difficulty in managing the database, they want
to outsource the database to the cloud system. In this case the database security is more important because their database is
managed by the cloud service provider. Among database security techniques, the encryption method is a well-certified and
established technology for protecting sensitive data. However, once encrypted, the data can no longer be easily queried. The
performance of the database depends on how to encrypt the sensitive data, and on the approach for searching, and the retrieval
efficiency that is implemented. In this paper we propose the new suitable mechanism to encrypt the database and lookup
process on the encrypted database under control of the cloud service provider. This database encryption algorithm uses the
bloom filter with the variable keyword based index. Finally, we demonstrate that the proposed algorithm should be useful for

database encryption related research and application activities.

Keywords: Bloom Filter, Bucket Index, Encrypted Database, Cloud

|. Introduction

As the volume of the information is in-

l creasing very quickly, many organizations
A4 (20139 119 49), AANEHA (201349 129 15%)

* B 7 g ATt AFEAl (No. 2010-0023648) decided to outsource their database to an
]

9oz sa)slelsyr). external service provider, namely cloud
T 347}, ksy4765@naver.com service provider. Another reason of out-
¥ WAA A}, jhkim@semyung.ac.kr(Corresponding author)

1260 = A el A 9

ol A&}

TATSE

dloelmo] s F-3ol] T3t AT

sourcing is to use the web service. As the
database is not under the data owner's con-
trol, data confidentiality and integrity are
of more concern in outsourced databases
(1). In order to protect the sensitive data,
the best way to make it secure is to encrypt
the sensitive data. Therefore, the manager
of the service provider can execute queries
only at the encrypted data.

There are lots of studies to execute quer-
ies on encrypted data, which are Bucket
based, Privacy homomorphism, and OPES
(Order
methods and so on. The main idea is to use

Preserving Encryption Schema)
the additional index in order to search and
get the wanted data from the encrypted da-
tabase effectively. The first proposal
the bucket based indexing method using a

was

number of buckets on the attribute domain
(2). Bucket based indexing methods are
used to partition the attribute value range
in a number of non-overlapping subsets of
called buckets, containing con-
The other major method
was using homomorphism. This has also
been proposed for allowing the execution of
aggregation queries over the encrypted data

values,
tiguous values.

in the database system [3]. Therefore, the
operation on an aggregation attribute can
be evaluated on the encrypted data at the
server site and by decrypting the result at
the client side. Most papers that discuss
privacy homomorphism focus only on arith-
metic operations rather than on comparison
operations. An OPES is presented to sup-
port equality and range queries over the
encrypted data [4]). Because the encrypted
data has preserved order, equality and
range query can be operated on the en-
crypted data in the database.

[1. Related Work

2.1 Database Encryption Methods

One of the important issues of the data-
base encryption is which part of the data-
base should be encrypted. The granularity
level at which the database encryption is
performed depends on the data that needs
to be accessed. There are table level, at-
tribute level, tuple level, and element level
encryption methods [5].
cryption methods are used to encrypt the

Table level en-

table as a whole. Attributed level uses each
column (attribute) in the plaintext table
and represents this by a single encrypted
value. Both methods are very simple and
fast to implement, but tuples and attrib-
utes are indistinguishable in the released
data and cannot be specified in a query on
the encrypted database.

Tuple level is that each tuple in the
plaintext should be represented by a single
encrypted value.
each cell being represented by a single en-

Element level involves
crypted value. But it would require an ex-

cessive workload for data owner and
clients.

So it is suitable to distinguish each ele-
ment in the tuple and process query as long
as we use an additional index. Therefore
tuple level is suitable in order to balance
the client workload and query execution in
the server effectively. To summarize, Table
1. shows, for each encryption method, what
kind of property is supported.

There are many queries to find the want-
ed data in the database. Among these quer-
ies, we focus on the equality query, range
query and aggregation query only. Equality
query is to find single matched data. Range
query is to find the data included within
the given range. Aggregation query is to
find the numerical sum or the average
value. These queries would not work on
both table attribute
encryption. If we use element level en-

cryption methods, it is suitable to find the

level and level

AR H 533 =wA] (2013, 12) 1261

equality value only. It can't be used to find
the range value or aggregation value. So, if
we use tuple level encryption with an addi-
tional index, it is possible to get the want-
ed value.

Table 1. The comparison on the encryption
methods

Erﬁzgﬁztion Speed |Query Size

Table level Fast X Small
Attribute level | Fast X Medium

Tuple level |Medium| O [|A little Large
Element level Low A Large

2.2 Bucket Index Algorithm

Originally bucket based index algorithms
were designed to execute the numerical da-
ta search in a plaintext database. It is very
useful to use a bucket index in order to
search the encrypted data on the database
effectively.

Considering an arbitrary numerical at-
tribute4, in &, with domainD,;, buck-
et-based indexing methods partition do-
main in a number of non- overlapping sub-
sets of values, called buckets, containing
contiguous values. This process, called
bucketization, usually generates buckets
that are all of the same size [2].

Each plaintext tuple t(4,,4,,..,4,) is map-
ped onto a tuple ¢(7,1,L,..,1), where
t'(T,)=E, (). E(t) is an invertible encryption
function over plaintext tuple ¢ with key &,
and I corresponds to the bucket index over
some A;.

If we increase the number of buckets, the
search speed is fast but not secure. An at-
tacker can infer the range of the exact data
from the detailed bucket value. So, the fa-
tal drawback of the bucket index algorithm
is the risk of the data exposure although it

has good efficiency. If we assume that the
attacker is aware of the distribution of
plaintext values in the original database,
the attacker can infer the plaintext value
from the encrypted database. Data ex-
posure rates of the encrypted table can be
evaluated by looking at the distinguishable
characteristics in the quotient table.
Quotient tables show the frequency of the
plaintext and IC (Inverse Cardinality) table
shows the relative probability of each plain-
text element respectively. Then, we can
write the exposure rate e associated with
an encrypted relation of IC table as
€= %Iglljl IG ;. Here, n is the number of the
tuples and ¢ ranges over the tuples while j
ranges over the columns. This shows that
an attacker could guess the plaintext as the
number of the buckets is getting larger in
the bucket index method (6].

2.3 Bloom Filter

A Bloom Filter is a simple space-efficient
randomized data structure for representing
a set in order to support membership quer-
ies (7). The Bloom Filter is an array of m
bits, initially all set to 0. The Bloom Filter
uses k independent hash functions with
range m. The number of the sample space is
n elements. After all the elements are in-
serted in the Bloom Filter, the probability
of the false positive error is

kn
1 _ kn

B=(-(1-2)")~ (1= ")

m

This right-side expression is minimized

for k:1n(2)><(%), in case the error rate is

m

(1/2)" =(0.6185)" . Thus, the bloom filter is
highly effective even for m=cn using a small
constant c¢. For example, if ¢=8, the false
positive error rate is approximately 2%. We

1262 = A el A 9

ol A&}

TATSE

dloelmo] s F-3ol] T3t AT

can adjust the false positive error rate by
selecting proper m.

[1l. The Proposed method

We use the tuple level encryption algo-
rithm with key word based bloom filters in
order to query the database effectively.
Fig.1. shows the process of our proposed
method. First of all, we extract the key
word from each tuple. In word type data, it
is easy to get the key word such as “seoul”
in the address field. In numerical type da-
ta, we can extract the meaningful bytes
from the numerical data as a keyword. For
example, jumin field in std_info table con-
sists of the birth year, birth month, and
birth day. "920226" 92
means that birth year is 1992, 02 means

is one example.

that birth month is February, 26 means
that birth date is 26th day. Now, we can
use "9y” as the keyword in addition that
represents the years between 1990 and
1999.

€

Esctract Koy word {a)

K - Hash Functions (b

Fig.1. the bloom filter on proposed method

3.1 Encryption and Lookup Processes
3.1.1 DB Encryption Process

Each row in the encrypted database has
one FE_tuple and one bloom filter. Data
Encryption Process will be executed row by
TOW.

(1) Create E_tuple: E_tuple is created by
encrypting the plaintext tuple row by row.
We the AES algorithm the

use as

encryption algorithm.
(2) The
elements of the database are word type

Insertion of the bloom filter:

data or numerical data.

In the case of the word type data, we ex-
tract the keyword and the result of the
hash function of the extracted keyword
from each field in each row will be set in
the bloom filter. In the case of the numer-
ical type data, we extract the variable
buckets as the keyword instead using the
fixed bucket. It means high ordered bytes of
the numerical data represents the range of
data. Therefore,
kinds of keyword can be extracted. This da-

the numerical various
ta would help to analyze the statistics. The
result of the hash function of the extracted
keyword from each field in each row will be
set in the bloom filter.

(3) Send the bloom filter values and the
encrypted data to the server: Bloom filter
value and the tuple based encrypted data
will be stored in the encrypted database
server.

Fig.2. Data Encryption Process

3.1.2 DB Lookup Process

(1) Transformation of user query state-
ment: The key word included in the user
query will be transformed to the result of
the hash functions in order to work in the
encrypted database with bloom filter. For
example, if you want to search the tuple in-
cluded “seoul” in an address fields, you
have to calculate the hash function of the

AR H 533 =wA] (2013, 12)

1263

word “seoul”. The user query statement is
modified to find the bloom filters that in-
cludes the resulting bits of the hash func-
tions instead of "seoul”

(2) Search the bloom filter: Transformed
query is transmitted to the database server
including the bloom filter. At first, it
searches the bloom filter fields that are bits
of the bloom filter that are a result of the
hash function set.

(3) Get the encrypted tuple (E_tuple): If
the bits of the bloom filter are all set to "1”,
then the E_tuple will be sent to the client.

(4) Decrypt the encrypted data: The en-
crypted data received as a query response
from the database can be decrypted by a
decryption key in the client module.

The client module extracts the exact data
from the encrypted result and sends the
query result to the user as the last step.

3.1.3 DB Lookup Process for the DB analyst

Database analysts don't need to know the
personal sensitive information except the
statistics of the data distribution. So, this
process does not include decryption proc-
esses from the encrypted database.

DB Sarves

Elienn (D Svenad Clasd Sysnaen

| 3 Trarlo it Gueiy
r"."':.r:.“ =2 | Do it

3 Chames
T o oo [

[T i Liuple
By il [Deeryption | #—

e D

Fig.3. Data Look Up Process

Encrypied DB

Clamyy (B Crwrrvme)

ity
Va v taiim

e e

C_ use e

— Encrypted DB

Fig.4. Data Look Up Process (DB Analyst)

3.2 Performance Test
3.2.1 The environment of the tesbed

We used two computers. One computer is
used for MS SQL server and another note-
book is used for client computer.

Server : Desktop PC Client @ Notebook

Win 7 Ultimate K Win 7 home premium K

Memory : 2.00GB, 32bit Memory : 2.00GB, 32bit
. Intel® Core(Tm)2 Duo
Intel® Core(Tm) i5
CPU T6600
CPU 650 MSSQL 2008
MSSQL 2008 '

Visual Studio 2010 C#

The tables used in this performance test

We use the std_info and std_grade table
shown in Table 2. to measure the perform-
ance of the proposed system

Std_info table in Table 2. stores the per-
sonal information data. Std_grade table in
Table 2.
Table 3. are created encrypted databases by
the bucket index method using bucket in-

stores the personal grade data.

dex and the proposed method using the
various bucket indexes as the key word.
E_tuple is the encrypted tuple data and
bloom is the bloom filter value defined by

Table 2. ‘Std_info'table and ‘Std_grade’ table.

el mry g

o "

Table 3. The encrypted table:
and ‘Std_info_bf’

‘Std_info_bucket’

1264 = A el A 9

ol A&}

TATSE

dloelmo] s F-3ol] T3t AT

the result of the hash functions of the key
words. We used three hash functions as
SHA1, MD5, SHA256.

In the bucket index method, we used the
fixed length bucket as wusual (1,3]).
Increasing the of the buckets
makes the bucket index method faster but
insecure. We use the birth year field in
std_info table by the 10 years unit.

In our proposed method, we use m=256,
n=8, k=3. Therefore, the false positive
probability is approximately “0”. In addi-

number

tion, we defined various buckets as key-
word data instead of a bucket. For example,
10 year unit and 1 year unit as a key word
of the numerical data are used to make
bloom filter with the encrypted database.

3.2.3 Performance test on single data table

We executed the performance analysis on
a single table using three kinds of the data-
base, which are the plaintext database, the
encrypted database with bucket index, and
the encrypted database with bloom filter
and tuple encryption. Queries used in this
analysis are as follows.

(1) Equality query: Search that birth
year is 1971

(2) Range query: Search that birth year
is more than 1980 and less than 1991.

(3) Aggregation query: Count the number
that the birth year is 1971 and blood
type is ‘A’

Table 4. The result of three queries in single

data table

mPlaintext ® Bucket Index Method Proposed Method

0.77024
026401 0.26045

0029 .

Aggregation Query

Equality Query

Range Query

In the bucket index method, we bucke-
tized the birth year using the 10 years unit.
So in the client module, we should decrypt
the resulting data returned from the data-
base server and choose the wanted data
from the decrypted data. But in our pro-
posed method, we are using various key-
word data instead of the fixed sized bucket
length. Therefore in the client module, we
should decrypt the
choose the wanted data from the decrypted
data. It is clear that the search perform-

resulting data and

ance of the proposed method is better than
the bucket method by the number of query
results.

In Table 4, it is evident that the pro-
posed method has better processing time
than the bucket index method.

3.2.4 Performance test on two data tables using
JIOIN operation

We executed the performance analysis on
JOIN operation with two tables using three
kinds of databases: the plaintext database,
the encrypted database with bucket index,
and the encrypted database with bloom
filter. Queries used in this analysis are as
follows.

(1) Equality query: Search that blood
type is ‘A" and grade is 'C’.

(2) Range query: Search that birth year
is 1983 and Korean score is between
79 and 89.

(3) Aggregation query: Calculate the aver-
age mathematics score where the birth
year is 1983

The equality query shows that the bucket
index method has better processing time
than the proposed method. It is because ‘A’
and ‘C in query statements are used same
bucket size.

AR H 533 =wA] (2013, 12) 1265

Table 5. The result of three queries in two data
tables
m Plaintext m Bucket Index Method Proposed Method

041151 0.528432

0.22296
0.17884 0.19102

0.07117 l 0.0675 0.05934

Equality Query Range Query Aggregation Query

016201

The search time actually depends on the
searching range of the data included in the
query statement. What is more important is
that the proposed method has a little better
performance and is more secure than the
bucket index method.

Finally, we experiment with this pro-
posed method on the case of the database
analyst. Database analysts don't need to
know the personal sensitive data. So they
need not to have the decryption key. This
process is very simple than the normal
search process. Without the decryption
process, they can achieve their job. The
query used in this analysis is "Find the age
distribution of the person who live in
“seoul’. In the plaintext database, it takes
0.025168 sec as opposed to 0.265215 sec in
the proposed method. False positive proba-
bility of the bloom filter is approximately 0"
because we use the length of the bloom fil-
ter as 256 bits. In all, the bucket index
method can't get the exact data without the
decryption process. Only our proposed
method can get the exact data without a
decryption process.

V. CONCLUSION

There are many database encryption al-
gorithms around. Among these algorithms,
tuple based encryption algorithm using
bucket index is widely used. The Bucket in-
dex algorithm is generally faster to search
the true numerical data from the encrypted
database than other conventional en-

cryption methods in the range query.
However the fatal drawback of the Bucket
based method is the probability of the data
exposure. If we increase the number of the
bucket, it takes a little search time but an
attacker can easily infer the plaintext with
the bucket value. The bucket index method
is a very good method for numerical data
indexing, but it is not secure and takes
more time to search for the exact data be-
cause it uses only fixed length buckets.

As we demonstrated previously, it shows
a good processing time to execute three
queries (equality query, range query, ag-
gregation query) in a single table and join
the operation in two tables. The only draw-
back of the proposed method is that it
takes about 0.15 sec more than the bucket
index method to calculate hash functions
and search the bloom filter bit by bit. If we
use the database server with good quality,
we may get better performance. In our
opinion, it is not important because it pro-
vides a secure database. Although our ex-
amples may be simple, the result of our
performance test shows the superiority of
our mechanism, which can be applied to an-
other example. Bloom data in our mecha-
nism can be used to analyze data dis-
tribution for statisticians.

We have compared the query processing
time between the plaintext and the bucket
method and the proposed method using vari-
ous kinds of queries. The database using the
proposed method only shows encrypted data
and the bloom filter. Attackers who want to
access the data from the encrypted database
and bloom filter can't guess and find the ac-
tual data without the decryption key. In fu-
ture we hope to improve and develop our
proposed mechanism and in addition, study
the security of the proposed method even if
the bloom filter in our proposed mechanism
seems to be secure at first sight.

Zehe B7shelA)

dloelmo] s F-3ol] T3t AT

—

References

S. De Capitani di Vimercati, S. Foresti,
S. Jajodia, S. Paraboschi, P. Samarati,
"Privacy of Outsourced Data,” IFIP
Vol.320, pp 174-187, 2007.

H. Hacigumus, B. Iyer, C. Li, and S.
Mehrotra, “Executing SQL over en-
crypted data in the database service pro-
vider model,” In Proc. of the ACM
SIGMOD, pp 216-227, 2002,

H. Hacigumus, B. Iyer, and S. Mehrotra,
“Efficient execution of aggregation quer-
ies over encrypted relational databases,”
LNCS 2973, pp 125-136, 2004.

R. Agrawal, J. Kiernan, R. Srikant, Y.
Xu, “Order preserving Encryption for nu-
merical Data,” Proc. of the ACM SIGMOD,
pp 564-574, 2004.

L. Bouganim, Y. Guo, "Database Encryp-
tion,” Springer (Ed.),1-9, 2009.

E. Damiani, S. DeCapitani di Vimercati,
S. Jajordia, “Balancing confidentiality
and efficiency in untrusted relational
DBMS.” Proc. of the 10th ACM (CCS03),
93-102, 2003.

A. Broder and M. Mitzemacher, "Network
Applications of Bloom Filters : A Survey,”
Internet Mathematics Vol.1, No.4, pp
485-509, 2003.

(N RF200)

70 A4 £ (SungYong Kim) A3
29 Aol JEgAsH: E4

d 39~ AT Jugast S

Boby ARRT L& do|gwo]A~ Hel o8 R Hat

71 A & (Ji-Hong Kim) FA13]
1982+ 290 ghepelahan AAat
198410 290: ekt AA4EAl
19969 34: grfdistw AxpEAl
19914 39 ~3A]: Agusta

