
1259

Journal of The Korea Institute of Information Security & Cryptology
VOL.23, NO.6, Dec. 2013

ISSN 1598-3986(Print)
ISSN 2288-2715(Online)

http://dx.doi.org/10.13089/JKIISC.2013.23.6.1259

클라우드 환경하에서의 안전한 데이터베이스 구축에 관한

연구*

김 성 용,† 김 지 홍‡

세명대학교

A Study on the Secure Database Controlled Under Cloud Environment*

SungYong Kim,
†
 Ji-Hong Kim

‡

Semyung University

요 약

최근 데이터베이스의 크기가 점차 증가하고 있다. 기업에서는 데이터베이스 관리의 어려움으로 인하여 클라우드 형

태로 아웃소싱하고 있으며, 이때 클라우드 서비스업체에 의해 관리되는 데이터베이스의 보안은 매우 중요하다. 데이

터베이스 내의 중요 정보를 보호하기 위해서는 암호화하는 것이 최선의 방법이지만, 일단 암호화되고 난 후에는 더 이

상 검색하기 어려워진다. 암호화된 데이터베이스에서의 검색 성능은 암호화 방법과 검색 방법에 의해 좌우된다. 본 논

문에서는 가변길이의 키워드 인덱스와 블룸필터를 사용하여, 클라우드 서비스업체의 관리하의 데이터베이스에 대한

암호화 방법 및 효율적인 검색 방법을 제안한다. 마지막으로 제안된 방법이 데이터베이스 암호화 및 관련 응용분야에

유용하게 사용될 수 있음을 보인다.

ABSTRACT

Nowadays, the databases are getting larger and larger. As the company has difficulty in managing the database, they want

to outsource the database to the cloud system. In this case the database security is more important because their database is

managed by the cloud service provider. Among database security techniques, the encryption method is a well-certified and

established technology for protecting sensitive data. However, once encrypted, the data can no longer be easily queried. The

performance of the database depends on how to encrypt the sensitive data, and on the approach for searching, and the retrieval

efficiency that is implemented. In this paper we propose the new suitable mechanism to encrypt the database and lookup

process on the encrypted database under control of the cloud service provider. This database encryption algorithm uses the

bloom filter with the variable keyword based index. Finally, we demonstrate that the proposed algorithm should be useful for

database encryption related research and application activities.

Keywords: Bloom Filter, Bucket Index, Encrypted Database, Cloud

접수일(2013년 11월 4일), 게재확정일(2013년 12월 15일)

* 본 연구는 한국연구재단 연구과제(No. 2010-0023648)

지원으로 수행하였습니다.

†주저자. ksy4765@naver.com

‡교신저자. jhkim@semyung.ac.kr(Corresponding author)

I. Introduction

As the volume of the information is in-

creasing very quickly, many organizations

decided to outsource their database to an

external service provider, namely cloud

service provider. Another reason of out-

1260 클라우드 환경하에서의 안전한 데이터베이스 구축에 관한 연구

sourcing is to use the web service. As the

database is not under the data owner’s con-

trol, data confidentiality and integrity are

of more concern in outsourced databases

[1]. In order to protect the sensitive data,

the best way to make it secure is to encrypt

the sensitive data. Therefore, the manager

of the service provider can execute queries

only at the encrypted data.

There are lots of studies to execute quer-

ies on encrypted data, which are Bucket

based, Privacy homomorphism, and OPES

(Order Preserving Encryption Schema)

methods and so on. The main idea is to use

the additional index in order to search and

get the wanted data from the encrypted da-

tabase effectively. The first proposal was

the bucket based indexing method using a

number of buckets on the attribute domain

[2]. Bucket based indexing methods are

used to partition the attribute value range

in a number of non-overlapping subsets of

values, called buckets, containing con-

tiguous values. The other major method

was using homomorphism. This has also

been proposed for allowing the execution of

aggregation queries over the encrypted data

in the database system [3]. Therefore, the

operation on an aggregation attribute can

be evaluated on the encrypted data at the

server site and by decrypting the result at

the client side. Most papers that discuss

privacy homomorphism focus only on arith-

metic operations rather than on comparison

operations. An OPES is presented to sup-

port equality and range queries over the

encrypted data [4]. Because the encrypted

data has preserved order, equality and

range query can be operated on the en-

crypted data in the database.

II. Related Work

2.1 Database Encryption Methods

One of the important issues of the data-

base encryption is which part of the data-

base should be encrypted. The granularity

level at which the database encryption is

performed depends on the data that needs

to be accessed. There are table level, at-

tribute level, tuple level, and element level

encryption methods [5]. Table level en-

cryption methods are used to encrypt the

table as a whole. Attributed level uses each

column (attribute) in the plaintext table

and represents this by a single encrypted

value. Both methods are very simple and

fast to implement, but tuples and attrib-

utes are indistinguishable in the released

data and cannot be specified in a query on

the encrypted database.

Tuple level is that each tuple in the

plaintext should be represented by a single

encrypted value. Element level involves

each cell being represented by a single en-

crypted value. But it would require an ex-

cessive workload for data owner and

clients.

So it is suitable to distinguish each ele-

ment in the tuple and process query as long

as we use an additional index. Therefore

tuple level is suitable in order to balance

the client workload and query execution in

the server effectively. To summarize, Table

1. shows, for each encryption method, what

kind of property is supported.

There are many queries to find the want-

ed data in the database. Among these quer-

ies, we focus on the equality query, range

query and aggregation query only. Equality

query is to find single matched data. Range

query is to find the data included within

the given range. Aggregation query is to

find the numerical sum or the average

value. These queries would not work on

both table level and attribute level

encryption. If we use element level en-

cryption methods, it is suitable to find the

정보보호학회논문지 (2013. 12) 1261

equality value only. It can’t be used to find

the range value or aggregation value. So, if

we use tuple level encryption with an addi-

tional index, it is possible to get the want-

ed value.

Encryption

Method
Speed Query Size

Table level Fast X Small

Attribute level Fast X Medium

Tuple level Medium O A little Large

Element level Low △ Large

Table 1. The comparison on the encryption

methods

2.2 Bucket Index Algorithm

Originally bucket based index algorithms

were designed to execute the numerical da-

ta search in a plaintext database. It is very

useful to use a bucket index in order to

search the encrypted data on the database

effectively.

Considering an arbitrary numerical at-

tribute in , with domain, buck-

et-based indexing methods partition do-

main in a number of non- overlapping sub-

sets of values, called buckets, containing

contiguous values. This process, called

bucketization, usually generates buckets

that are all of the same size [2].

Each plaintext tuple     is map-

ped onto a tuple ′      , where

′  is an invertible encryption

function over plaintext tuple  with key ,

and  corresponds to the bucket index over

some .

If we increase the number of buckets, the

search speed is fast but not secure. An at-

tacker can infer the range of the exact data

from the detailed bucket value. So, the fa-

tal drawback of the bucket index algorithm

is the risk of the data exposure although it

has good efficiency. If we assume that the

attacker is aware of the distribution of

plaintext values in the original database,

the attacker can infer the plaintext value

from the encrypted database. Data ex-

posure rates of the encrypted table can be

evaluated by looking at the distinguishable

characteristics in the quotient table.

Quotient tables show the frequency of the

plaintext and IC (Inverse Cardinality) table

shows the relative probability of each plain-

text element respectively. Then, we can

write the exposure rate  associated with

an encrypted relation of IC table as :

 



  




 



. Here,  is the number of the

tuples and  ranges over the tuples while 

ranges over the columns. This shows that

an attacker could guess the plaintext as the

number of the buckets is getting larger in

the bucket index method [6].

2.3 Bloom Filter

A Bloom Filter is a simple space-efficient

randomized data structure for representing

a set in order to support membership quer-

ies [7]. The Bloom Filter is an array of 

bits, initially all set to 0. The Bloom Filter

uses  independent hash functions with

range . The number of the sample space is

 elements. After all the elements are in-

serted in the Bloom Filter, the probability

of the false positive error is

  

 ≈ 






This right-side expression is minimized

for  ×

, in case the error rate is

  



. Thus, the bloom filter is

highly effective even for  using a small

constant c. For example, if c=8, the false

positive error rate is approximately 2%. We

1262 클라우드 환경하에서의 안전한 데이터베이스 구축에 관한 연구

can adjust the false positive error rate by

selecting proper .

III. The Proposed method

We use the tuple level encryption algo-

rithm with key word based bloom filters in

order to query the database effectively.

Fig.1. shows the process of our proposed

method. First of all, we extract the key

word from each tuple. In word type data, it

is easy to get the key word such as “seoul”

in the address field. In numerical type da-

ta, we can extract the meaningful bytes

from the numerical data as a keyword. For

example, jumin field in std_info table con-

sists of the birth year, birth month, and

birth day. "920226" is one example. 92

means that birth year is 1992, 02 means

that birth month is February, 26 means

that birth date is 26th day. Now, we can

use "9y" as the keyword in addition that

represents the years between 1990 and

1999.

Fig.1. the bloom filter on proposed method

3.1 Encryption and Lookup Processes

3.1.1 DB Encryption Process

Each row in the encrypted database has

one E_tuple and one bloom filter. Data

Encryption Process will be executed row by

row.

(1) Create E_tuple: E_tuple is created by

encrypting the plaintext tuple row by row.

We use the AES algorithm as the

encryption algorithm.

(2) Insertion of the bloom filter: The

elements of the database are word type

data or numerical data.

In the case of the word type data, we ex-

tract the keyword and the result of the

hash function of the extracted keyword

from each field in each row will be set in

the bloom filter. In the case of the numer-

ical type data, we extract the variable

buckets as the keyword instead using the

fixed bucket. It means high ordered bytes of

the numerical data represents the range of

the numerical data. Therefore, various

kinds of keyword can be extracted. This da-

ta would help to analyze the statistics. The

result of the hash function of the extracted

keyword from each field in each row will be

set in the bloom filter.

(3) Send the bloom filter values and the

encrypted data to the server: Bloom filter

value and the tuple based encrypted data

will be stored in the encrypted database

server.

Fig.2. Data Encryption Process

3.1.2 DB Lookup Process

(1) Transformation of user query state-

ment: The key word included in the user

query will be transformed to the result of

the hash functions in order to work in the

encrypted database with bloom filter. For

example, if you want to search the tuple in-

cluded "seoul" in an address fields, you

have to calculate the hash function of the

정보보호학회논문지 (2013. 12) 1263

Table 2. ‘Std_info’table and ‘Std_grade’ table.

Table 3. The encrypted table: ‘Std_info_bucket’

and ‘Std_info_bf’

word "seoul". The user query statement is

modified to find the bloom filters that in-

cludes the resulting bits of the hash func-

tions instead of "seoul"

(2) Search the bloom filter: Transformed

query is transmitted to the database server

including the bloom filter. At first, it

searches the bloom filter fields that are bits

of the bloom filter that are a result of the

hash function set.

(3) Get the encrypted tuple (E_tuple): If

the bits of the bloom filter are all set to '1",

then the E_tuple will be sent to the client.

(4) Decrypt the encrypted data: The en-

crypted data received as a query response

from the database can be decrypted by a

decryption key in the client module.

The client module extracts the exact data

from the encrypted result and sends the

query result to the user as the last step.

3.1.3 DB Lookup Process for the DB analyst

Database analysts don’t need to know the

personal sensitive information except the

statistics of the data distribution. So, this

process does not include decryption proc-

esses from the encrypted database.

Fig.3. Data Look Up Process

Fig.4. Data Look Up Process (DB Analyst)

3.2 Performance Test

3.2.1 The environment of the tesbed

We used two computers. One computer is

used for MS SQL server and another note-

book is used for client computer.

Server : Desktop PC

Win 7 Ultimate K

Memory : 2.00GB, 32bit

Intel® Core(Tm) i5

CPU 650

MSSQL 2008

Client : Notebook

Win 7 home premium K

Memory : 2.00GB, 32bit

Intel® Core(Tm)2 Duo

CPU T6600

MSSQL 2008,

Visual Studio 2010 C#

The tables used in this performance test

We use the std_info and std_grade table

shown in Table 2. to measure the perform-

ance of the proposed system

Std_info table in Table 2. stores the per-

sonal information data. Std_grade table in

Table 2. stores the personal grade data.

Table 3. are created encrypted databases by

the bucket index method using bucket in-

dex and the proposed method using the

various bucket indexes as the key word.

E_tuple is the encrypted tuple data and

bloom is the bloom filter value defined by

1264 클라우드 환경하에서의 안전한 데이터베이스 구축에 관한 연구

Table 4. The result of three queries in single

data table

the result of the hash functions of the key

words. We used three hash functions as

SHA1, MD5, SHA256.

In the bucket index method, we used the

fixed length bucket as usual [1,3].

Increasing the number of the buckets

makes the bucket index method faster but

insecure. We use the birth year field in

std_info table by the 10 years unit.

In our proposed method, we use m=256,

n=8, k=3. Therefore, the false positive

probability is approximately "0". In addi-

tion, we defined various buckets as key-

word data instead of a bucket. For example,

10 year unit and 1 year unit as a key word

of the numerical data are used to make

bloom filter with the encrypted database.

3.2.3 Performance test on single data table

We executed the performance analysis on

a single table using three kinds of the data-

base, which are the plaintext database, the

encrypted database with bucket index, and

the encrypted database with bloom filter

and tuple encryption. Queries used in this

analysis are as follows.

(1) Equality query: Search that birth

year is “1971”

(2) Range query: Search that birth year

is more than 1980 and less than 1991.

(3) Aggregation query: Count the number

that the birth year is 1971 and blood

type is ‘A’

In the bucket index method, we bucke-

tized the birth year using the 10 years unit.

So in the client module, we should decrypt

the resulting data returned from the data-

base server and choose the wanted data

from the decrypted data. But in our pro-

posed method, we are using various key-

word data instead of the fixed sized bucket

length. Therefore in the client module, we

should decrypt the resulting data and

choose the wanted data from the decrypted

data. It is clear that the search perform-

ance of the proposed method is better than

the bucket method by the number of query

results.

In Table 4, it is evident that the pro-

posed method has better processing time

than the bucket index method.

3.2.4 Performance test on two data tables using

JIOIN operation

We executed the performance analysis on

JOIN operation with two tables using three

kinds of databases; the plaintext database,

the encrypted database with bucket index,

and the encrypted database with bloom

filter. Queries used in this analysis are as

follows.

(1) Equality query: Search that blood

type is ‘A’ and grade is ‘C’.

(2) Range query: Search that birth year

is ‘1983’ and Korean score is between

79 and 89.

(3) Aggregation query: Calculate the aver-

age mathematics score where the birth

year is ‘1983’

The equality query shows that the bucket

index method has better processing time

than the proposed method. It is because ‘A’

and ‘C’ in query statements are used same

bucket size.

정보보호학회논문지 (2013. 12) 1265

Table 5. The result of three queries in two data

tables

The search time actually depends on the

searching range of the data included in the

query statement. What is more important is

that the proposed method has a little better

performance and is more secure than the

bucket index method.

Finally, we experiment with this pro-

posed method on the case of the database

analyst. Database analysts don’t need to

know the personal sensitive data. So they

need not to have the decryption key. This

process is very simple than the normal

search process. Without the decryption

process, they can achieve their job. The

query used in this analysis is “Find the age

distribution of the person who live in

“seoul”. In the plaintext database, it takes

0.025168 sec as opposed to 0.265215 sec in

the proposed method. False positive proba-

bility of the bloom filter is approximately “0”

because we use the length of the bloom fil-

ter as 256 bits. In all, the bucket index

method can’t get the exact data without the

decryption process. Only our proposed

method can get the exact data without a

decryption process.

IV. CONCLUSION

There are many database encryption al-

gorithms around. Among these algorithms,

tuple based encryption algorithm using

bucket index is widely used. The Bucket in-

dex algorithm is generally faster to search

the true numerical data from the encrypted

database than other conventional en-

cryption methods in the range query.

However the fatal drawback of the Bucket

based method is the probability of the data

exposure. If we increase the number of the

bucket, it takes a little search time but an

attacker can easily infer the plaintext with

the bucket value. The bucket index method

is a very good method for numerical data

indexing, but it is not secure and takes

more time to search for the exact data be-

cause it uses only fixed length buckets.

As we demonstrated previously, it shows

a good processing time to execute three

queries (equality query, range query, ag-

gregation query) in a single table and join

the operation in two tables. The only draw-

back of the proposed method is that it

takes about 0.15 sec more than the bucket

index method to calculate hash functions

and search the bloom filter bit by bit. If we

use the database server with good quality,

we may get better performance. In our

opinion, it is not important because it pro-

vides a secure database. Although our ex-

amples may be simple, the result of our

performance test shows the superiority of

our mechanism, which can be applied to an-

other example. Bloom data in our mecha-

nism can be used to analyze data dis-

tribution for statisticians.

We have compared the query processing

time between the plaintext and the bucket

method and the proposed method using vari-

ous kinds of queries. The database using the

proposed method only shows encrypted data

and the bloom filter. Attackers who want to

access the data from the encrypted database

and bloom filter can’t guess and find the ac-

tual data without the decryption key. In fu-

ture we hope to improve and develop our

proposed mechanism and in addition, study

the security of the proposed method even if

the bloom filter in our proposed mechanism

seems to be secure at first sight.

<저자소개>

김 성 용 (SungYong Kim) 학생회원

2013년 2월: 세명대학교 정보통신학부 졸업

2013년 3월~현재: 세명대학교 정보통신학 석사과정

<관심분야> 정보보호 응용, 데이터베이스 보안, 의료정보 보안

김 지 홍 (Ji-Hong Kim) 종신회원

1982년 2월: 한양대학교 전자공학과 졸업

1984년 2월: 한양대학교 전자통신공학과 석사 졸업

1996년 3월: 한양대학교 전자통신공학과 박사 졸업

1991년 3월～현재: 세명대학교 정보통신학부 교수

<관심분야> 네트워크 및 정보보호, 정보보호 응용, 데이터베이스 보안

1266 클라우드 환경하에서의 안전한 데이터베이스 구축에 관한 연구

References

[1] S. De Capitani di Vimercati, S. Foresti,

S. Jajodia, S. Paraboschi, P. Samarati,

"Privacy of Outsourced Data," IFIP

Vol.320, pp 174-187, 2007.

[2] H. Hacigumus, B. Iyer, C. Li, and S.

Mehrotra, “Executing SQL over en-

crypted data in the database service pro-

vider model,” In Proc. of the ACM

SIGMOD, pp 216-227, 2002,

[3] H. Hacigumus, B. Iyer, and S. Mehrotra,

“Efficient execution of aggregation quer-

ies over encrypted relational databases,”

LNCS 2973, pp 125-136, 2004.

[4] R. Agrawal, J. Kiernan, R. Srikant, Y.

Xu, “Order preserving Encryption for nu-

merical Data,” Proc. of the ACM SIGMOD,

pp 564-574, 2004.

[5] L. Bouganim, Y. Guo, “Database Encryp-

tion,” Springer (Ed.),1-9, 2009.

[6] E. Damiani, S. DeCapitani di Vimercati,

S. Jajordia, “Balancing confidentiality

and efficiency in untrusted relational

DBMS,” Proc. of the 10th ACM (CCS03),

93-102, 2003.

[7] A. Broder and M. Mitzemacher, “Network

Applications of Bloom Filters : A Survey,”

Internet Mathematics Vol.1, No.4, pp

485-509, 2003.

