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요   약

패스워드 기반 인증 시스템은 키 로그 모니터링을 통한 정보 유출 사고에 위협받아 왔다. 최근, 이를 예방하기 위한 

한 방안으로 화면 상 가상 키보드를 이용한 키 로깅 방지 방법이 널리 사용되고 있다. 그러나 이러한 가상 키보드 또한 

중대한 취약점을 내포하고 있으며, 그 중 대표적인 약점은 마우스 커서의 자취 추적을 통해 쉽게 비밀번호와 같은 주요 

정보가 드러날 수 있다는 점이다. 이에 본 논문에서는 가상 키보드의 취약점을 확인하고, 이를 공격할 수 있는 가상의 

공격 시나리오와 패스워드를 도출하는 방법을 제시했다. 이 논문에서 제안하는 기법의 성능 입증을 위한 예시로, 한 가

상 키보드에 대한 공격과 패스워드 딕셔너리를 이용한 크래킹 실험을 진행하였고, 그 결과를 분석하였다.

ABSTRACT

It is a well-known fact that password based authentication system has been threatened for crucial data leakage through 

monitoring key log. Recently, to prevent this type of attack using keystroke logging, virtual onscreen keyboards are widely used 

as one of the solutions. The virtual keyboards, however, also have some crucial vulnerabilities and the major weak point is that 

important information, such as password, can be exposed by tracking the trajectory of the mouse cursor. Thus, in this paper, we 

discuss the vulnerabilities of the onscreen keyboard, and present hypothetical attack scenario and a method to crack passwords. 

Finally to evaluate the performance of the proposed scheme, we demonstrate an example experiment which includes attacking 

and cracking by utilizing password dictionary and analyze the result.

Keywords: virtual keyboard, onscreen, password cracking

I. Introduction* 

  Since last few decades, the phenomenon 
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of e-commerce has been developing at high 

speed providing a variety of online 

services, such as online banking, online 

shopping, e-tickets, etc, to clients. 

However, attackers have been widely using 

Keyloggers to gather sensitive data and 

passwords of users in e-commerce. A 

significant number of personal computers 

used for online transactions also fueled 
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Fig. 1. Anti-screenshot virtual keyboard. Keys 

within the row are replaced by special 

character.

the growth of Keyloggers. Keylogger is 

some software or hardware that monitors 

users’ input to detect and get private 

crucial data such as usernames, 

passwords, emails, text messages or 

another type of data [1]. To defeat the 

Keyloggers and provide secure 

authentication, some e-banking systems 

are providing onscreen keyboards for users 

to enter sensitive data, for example, 

passwords. The onscreen or virtual 

keyboard is a software program that allow 

users to enter data using the mouse [2].

  Nevertheless, even virtual keyboards 

suffer from some vulnerabilities that 

adversary can take advantage of:

Screenshot capturing. Trojans, that 

are capable of capturing a screenshot at 

each mouse click and then send them 

to the adversary, can cause to being 

leaked of user’s password during online 

banking account authentication.

Over shoulder surfing attack. In this 

type of attack, an adversary steals 

passwords or other crucial information 

of the user by staying behind the user 

and looking over victim’s shoulders 

while the user sits in front of the 

computer, therefore it requires the 

physical participation of attacker. This 

type of attack can be conducted, 

moreover, by using a physically hidden 

camera[2].

Videotape recording. The only 

difference of this attack from the 

previous one is no camera is required. 

An attacker installs some malware to 

victim’s computer that provides a 

videotape of password entering process 

to attacker.

  In this paper we show another password 

cracking idea and design one algorithm, as 

an example, to crack one particular type 

of virtual keyboard, provided by some 

bank to its clients. By our idea, if an 

adversary can get the coordinates of 

mouse clicks on the virtual keyboard area, 

he has a great chance to generate a set of 

passwords, which consist of several wrong 

passwords with an actual password. It is 

possible to apply the presented idea to 

variety types of virtual keyboards.

  Organization of paper: Section 2 briefs 

researchs about virtual keyboards which 

are resistant to some particular types of 

described attacks. Sections 3 consists of 

the detailed description of proposed idea, 

attacking scenario demonstration and the 

algorithm. Analysis and evaluation of 

algorithm are given in Section 4 followed 

by conclusion in Section 5.

II. Approaches of virtual keyboards 

  There are “more secure” virtual 

keyboards, which are actually aimed to 

defeat some type of attacks. In [2] the 

“anti-screenshot virtual keyboard” was 

presented. The idea is, when mouse cursor 

moves on some key all the keys within the 

row are replaced by some special 

character, as shown in Fig. 1. In the same 

way, when the user clicks the key, all 

keys in the virtual keyboard would be 

replaced with special character for a few 

seconds. It makes the screenshots useless 

in the case if attacker captures them. 

  Proposals of [3] and [4] are identical, 

Fig. 2. The main idea for both proposals is 
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Fig. 2. Virtual keyboard with fake cursors

Fig. 3. Virtual onscreen keyboard of W Bank, 

Korea

Fig. 4. Virtual onscreen keyboard with “Shift“ 

pressed

Fig. 5. Blank buttons are maintained with red 

rectangles.

to use a specific number of fake cursors, 

besides the actual one, in order to hide 

input on the virtual keyboard from 

onlookers. Because the fake cursors move 

randomly and differently from the actual 

cursor, the user can identify it while 

attackers have difficulties to do so.

III. Methodology

3.1 Proposed method 

  The main idea of our password cracking 

algorithm is, having the coordinates of 

mouse clicks on virtual keyboard: 1. 

Generate candidate passwords and 2. 

Decrease the number of candidate 

passwords as many as possible.

  Virtual Keyboard. To demonstrate the 

idea, password cracking algorithm for one 

specific type of virtual keyboard, which is 

provided by anonymous bank named W, 

was developed. The keyboard is presented 

in Fig. 3.

  To switch to upper case, a user should 

click “Shift” key on the virtual keyboard, 

and, after, virtual keyboard changes in 

place to as Fig. 4.

Properties of the keyboard are as 

following:

Each row of the keyboard has two 

“blank” buttons, as shown in Fig. 5;

Each time when the user invokes the 

keyboard, two “blank” buttons change 

their positions within the row, 

independently from other rows;

“blank” buttons are clickable, however, 

they are considered as wrong data;

“blank” buttons are not changed from 

their positions after each mouse click;

“blank” buttons move symmetrically to 

each other within the row;

Functional keys - “Shift”, “Enter” and 

“Backspace” - are not changed from 

their positions, therefore “blank” 

buttons cannot stay at their positions.

  In Fig. 6, all possible cases of the first 

row of the virtual keyboard are presented 

and it clearly showes that two blank keys 

appear symmetrically.

  Following the collecting and processing 

procedure is to generate candidate 

passwords using the coordinates. We take 
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Fig. 7. Consumption

Fig. 6. All possible cases of 1st row of the 

virtual keyboard

advantage of two properties of the 

keyboard:

“blank” buttons appear symmetrically.

Each key position can contain at most 

two different actual keys or “blank” 

buttons, except key positions at 2, 13, 

15, 20, 21, 26, 27, 31, 32, 36, 38, 42, 

43, 47, which can contain only one 

actual key or “blank button”. The blank 

button cannot stay at the first position.

  We have the fact that, because “blank” 

button can stay at six different positions 

in a row (because of symmetric property, 

we will mostly talk about one-half of a 

row), the first and second rows of virtual 

keyboard have at most six different views 

for each one, while the third and fourth 

rows have by 5 for each.

  For a given set of coordinates , 

Algorithm goes through as follows:

1. Define a matrix for keyboard with 8 

rows (4 lower case rows + 4 upper case 

rows) as a default keyboard: all blanks 

are at leftmost and rightmost positions, 

surrounding all keys;

2. Modify the matrix: change the position 

of “blank button” in all rows if its 

position exists in the ;

3. Go through each row of matrix and 

move “blank button” to each possible, 

not conflicting with the given 

coordinates, position, to find all 

possible cases of each row (maximum 3 

cases, as described in Section 4);

4. Find all permutations of rows, making 

each resulting permutation as one 

keyboard layout―one possible keyboard 

case, and assign them to array 

Keyboards;

5. For each <keyboard case> in Keyboards: 

pick all coordinates in , to get one 

candidate password, from <keyboard 

case>.

6.

  The algorithm is divided into three 

subproblems: password cracking―main 

subproblem, finding all possible candidate 

keyboard layouts and shifting blank 

buttons to appropriate positions.

3.2 Scenario design of attacking

  In this section, terms “discovery” and 

“observation” are used in the same 

meaning which implies the hacking or 

taking the coordinates of mouse clicking 

on the virtual keyboard. 

  In the algorithm, we take one 

assumption: our coordinates are converted 

from (x,y) format to sequential format, as 

in Fig. 7 for convenience. All clickable 

buttons and buttons whose positions are 

changeable are numbered from 1 to 48 on 

lower case layout and from 49 to 95 on 

upper case layout. Key positions on upper 

case layout are numbered as “position on 
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Fig. 8. Result of mouse tracking extension

lower case layout + a total number of 

keys”. Position numbers of functional keys 

are the same for both lower and upper 

registers. Note that discovered coordinates 

of mouse click are not sensitive to 

register. That is, we discover the 

coordinates of "a" and "A" as the same 

position. Algorithm differs them according 

to the existence of coordinates of “Shift” 

functional key in discovered set.

  To make the suggested scenario work, 

the key problem we have to solve is to 

figure out how we can inject the code into 

the website. When it comes to gaining the 

coordinates of the cursor clicking, it is not 

a huge problem if you utilize tools, such 

as Javascript libraries. The code only 

contains functions that observe the cursor 

clicking and handle the clicking events, 

and is injected into the page. Eventually, 

the method that we are applying here is a 

typical Code Injection Attack―one of the 

most common way to hack.

  In this regard, we designed a 

custom-made web browser extension plugin 

based on Chrome browser for an 

experiment. In this experiment, 

‘Content-Scripts’, one of the API Chrome 

provides, was implemented to inject 

Javascript files into the web page which is 

specified in the configuration of the 

extension. When a user makes an access 

to W Bank log-in page, the malicious 

extension injects a mouse-click observing 

code into the page. And after the user 

opens and clicks on a virtual keyboard 

which consists of the HTML objects, ‘img’ 

and ‘div’, this injected code obtains and 

adds the coordinates of the cursor to an 

array in sequential order. If the user 

finishes typing his/her password and clicks 

on a login button, the injected code sends 

these coordinates and user’s ID to 

attacker’s server. Then, the server 

converts valid x-y coordinates into 

keyboard numbers from 1 to 48 and saves 

them as a file format so that the password 

cracking program can use it.  As you can 

see in Fig. 8, with this strategy, the 

attacker can catch the key numbers in the 

password and its sequential order.

  To clarify the possibility in real-life 

circumstance, we applied this methodology 

to W Bank web security system. To 

commence the attack, there were two 

possible conditions that the extension can 

be injected into the website - with or 

without installing required security 

plugins of W Bank. First, to log in into 

the website on Chrome browser, installing 

the security plugins was avoidable on the 

user’s choice. In this case, there was no 

obstacle to succeed log-in and send the 

coordinates to the attacker’s server. On 

the other hand, even after installing the 

required security plugins and the attempt 

to send the code to the server was blocked 

by the plugins, it was possible for the 

attacker to bypass the sending process 

and still figure out the coordinates.

  Although in this paper, we only operated 

an experiment with Chrome browser, this 

attack can be achieved on the other 

browsers’ extension plugins, such as 

Component Object Model of Internet 

Explorer and Plugin of FireFox, because 

these browsers all equip extensions that 

are similar to one used in Chrome 

browser.
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Variable Description


set of coordinates of mouse 

click





default keyboard; Template 

for all candidate keyboards. 

Values are either  or 



.


set of candidate keyboard 

layouts


used to keep track of the 

"Shift" functional key

 type of a key.



 type of a key.

Table 1. Variables of Algorithm 1.

3.3 Algorithm 1: Main Part

  First of all, we build candidate keyboard 

layouts by Algorithm 1, in order to obtain 

candidate passwords.

  Main - password crack - algorithm’s 

variables are given in Table 1.

  We define matrix 

     as a 

default keyboard. This template is built 

once and is not going to be changed 

anymore. All candidate keyboards are 

generated on the basis of this “default 

keyboard”. In “default keyboard”, there are 

2 types of key positions: “empty” and 

“non-empty”. The key position and its 

symmetric one in the row are “non-empty” 

if its position exists as the coordinate in 

the set . For instance, if ∈ is clicked 

by the user, then it claims that the key in 

the position  is not a blank button. 

Hence, we mark the position  as 

non-empty, which corresponds to “the 

position is not for blank button”.

  Initially, all keys are the type of empty. 

“for” loop in the lines 3-10 scans all key 

positions to define their type. In line 12, 

Algorithm 2 is used to find out all 

candidate keyboard layouts and the result 

is assigned to array .

  The cycle in the lines 13 to 27 “types” all 

candidate passwords and includes all into 

the set . Going through all given 

coordinates, in lines 16-25, all pressed key 

characters are picked from “ ” and 

appended to 

. “if” condition in 

lines 17-23 checks each coordinate whether 

it is a “functional” key.

Algorithm 1. Password crack algorithm.

INPUT: set of coordinates 

OUTPUT: set of candidate passwords 

1. Initialize  = 0, 

 = 1, 

 = “-“;

2. Initialize 

     to , 

   ,  ;

3. for    to  do

4.   for    to 

    

  do

5.     if 

     exists in 

 or 

     

exits in  then

6.       

    


;

7.         



     




;

8.     end if;

9.   end for;

10. end for; 

11.

12.  = Find out possible 

candidate keyboard layouts (

);

13. for    to  do

14.     ; // default - Shift is not 

pressed

15.   

“”;

16.   for   to  do

17.     if    then //Backspace

18.       delete(

);
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Variable Description



Collects all possible 

permutations of each row 

separately. 





used to find a new 

candidate for a row. In 

any moment each of its 

rows contain only one 

candidate.







used to switch the 

register.

 used as blank button


collection of all possible 

candidate keyboards.

Table 2. Variables of Algorithm 2.

19.     else if    then //Shift

20.       if    then    

21.       else   ;

22.     else if    then break    

           all cycles; //Enter

23.     else 








;

24.     end if;

25.   end for;

26.   ∪

;

27. end for;

28. return ;

3.4 Algorithm 2: Generating all possible 

candidate keyboard layouts 

  In second step, Algorithm 2 is used to 

generate all candidates for keyboard. Its 

input is main ― template keyboard. Its 

variables are listed in Table 2.

  Initially, blank buttons are on the 

leftmost and rightmost positions of the 

rows. In the lines 4-14, all blank buttons 

in 

 are shifted to empty positions 

if their positions are non-empty. In the 

lines 6 to 11 all keys are shifted to one 

position and in lines 12 and 13 blank 

buttons are placed at appropriate 

positions. Lines 16 to 20 go through each 

row of 

. “loop” in 17th and 19th 

lines are repeated until it collects all 

candidates of the given row into 

.

  Lines 21 to 32 find all permutations of 

rows of the keyboard, where each element 

of permutation is one line of the keyboard, 

hence, each of the permutations represents 

one candidate keyboard. Algorithm gathers 

all permutation into array . In 

line 22 all candidates of the first row are 

assigned to , so at the moment, 

the first lines of candidate keyboards are 

found. "for loop" in Line 23, constructs 

permutations from 2nd to 8th elements. 

Process is as following: “for loop” in line 25 

repeats as many times as the length of 

 to the moment. “for loop” in line 

27, increments the “length” of permutation 

by concatenating each candidate of a row 

with existed permutation, moreover, 

including new permutation as new element 

into . In line 30, first element―

preexisted permutation is deleted from 

, after it was used to make new 

permutation. 

  In the lines 34 to 43, the keys, with 

unchangeable positions and not considered 

at the permutation, inserted into their 

fixed positions.

Algorithm 2. Find out possible 

(candidate) keyboard layouts

INPUT: 



OUTPUT:  - set of all possible 

(candidate) keyboard layouts

1. Initialize , 

 to “”, 





  ;
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Variable Description



 any row of template keyboard



 row to be changed

 returned as a result


position of the key in the 

middle of the given row





previous position of blank 

button in 







new position of blank button 

in 



Table 3. Variables of Algorithm 3.

2. Initialize   , 

  , 

 “-”,  

;

3. Initialize 

  

[[“-1234567890-”], [“-qwertyuiop-”], 

[-asdfghjk-“], [”-zxcvbnml-“], 

[”-!@#$%^&*()-“], [”-QWERTYUIOP-“], 

[”-ASDFGHJK-“], [”-ZXCVBNML-“]];

4. for    to 8

5.     ;

6.   while 

 


   

7.         and    do

8.      

 


;

9.     



 





10.       ;

11.   end while;

12.   

  ;

13.   

  ;

14. end for;

15. // Step iv

16. for    to 8 do

17.   do loop

18.     





;

    // append – adds new element to 

the end of array

19.   while doNextSwap                      

  (

 


);

20. end for;

21. // Step v

22.  ;

23. for    to 8 do

24.    ;

25.   for    to  do 

26.     len =  

27.     for    to len do

28.      
 

29.     end for

30.     delete()

31.   end for

32. end for 

33. // Insert keys to each keyboard layout

34. for    to  do

35.   .insert(1, “`”)

36.  .insert(14, “|”)// Backspace

37.   .insert(37, “|”) // Shift

38.   .insert(48, “|”) // Enter

39.   . i n s e r t ( 1 +  





, "~")

// first position in Upper case 

keyboard

40.   . i n s e r t ( 1 4 + 





, "|") // Backspace

41.   . i n s e r t ( 3 7 +





, "|") // Shift

42. end for

43. return 

3.5 Algorithm 3: Shifting blank buttons to 

next possible position 

  The algorithm below is used to shift 

blank buttons efficiently. Its inputs are a 

row of keyboard ― 

 and the 

corresponding row of default keyboard ― 



. If the shift occurs, then the 

algorithm returns true and false 

otherwise. Variables of Algorithm 3 are 

listed in Table 3.

Loop in the lines 3 to 5 finds the 
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position of the blank in the 

 and 

assigns it to 

. Next position is 

looked for in 

. Next efficient 

position of the blank button is the empty 

position after one non-empty if it exists. 

When several empty positions stay next to 

each other in one row, if we put blank to 

each one of them and take all as a 

different cases of the row, consequently, 

several keyboards differentiated only with 

that row give us, unfortunately, repeated 

candidate passwords. Therefore, we need 

only one candidate from that row’s cases. 

Algorithm 3. doNextSwap

INPUT: one row of 

 ― 



, and one respective row of 



 ― 




OUTPUT: true ― if blank in 

 

shifted to next appropriate position, false

―if shift is not possible more

1. Initialize   , 

  , 

 “-“;

2. Initialize   , 

  

, 



  , 


  ;

3. while not 




   do

4.    

  


;

5. end while;

6. 

  


;

7. while 




≡ and 



  do

 // find next non-empty position in 

default keyboard row

8.   

  


;

9. end while;

// find next empty position in default 

keyboard row

10. while 




==



 and 


  do 

11.   

  


;

12. end while;

13. if 

  then

14.    false;

15. else

16.   shift blank to position 

;

17.   shift second blank to position          

  

;

18.    true;

19. end if;

20. return ;

3.6 How to reduce the number of 

candidates?

  The first step of the idea has been 

described. Next step is to reduce the 

number of candidate passwords to the 

minimum, to 1. Even though goal is to 

reduce the number of candidates to 1, due 

to the fact that most systems give 3 

attempts to try entering password and 

some give 5 attempts, we can make 

notions: if the number of candidates is 4 

or 5, it is a “good” result; if it is 2 or 3 

then it is a “better” and if that number is 

1 then it is the “best” result. Therefore, in 

spite of that we aim to get the best 

result, better or good results are both 

acceptable.

  The solution for the 2
nd step would be 

observing authentication process more 

than once. Naturally, coordinates of the 

same password on different layouts give 

several set of password candidates: the 

content of the sets are different, but they 

should consist of at least one or a few 

common candidate passwords. The 

intersection of these sets results in a set 

of fewer candidate passwords. There is one 

case where the intersection is not useful 

and it is described in “Evaluation” section.

  For instance, adversary observed 2 times 
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Fig. 9. Result from the first experiment

the same user. The first set of coordinates 

is          . The second 

is           and algorithm 

gave following sets of candidate password: 

       

      
Intersection is:

  ∩ 

  The resulting set consists of one 

candidate which is true password.

  So the second step is observing several 

times.

IV. Evaluation

4.1 Result

  To estimate our algorithm, we conducted 

one experiment. At the beginning of this 

section, the experiment is introduced, at 

the end, worst case analysis of algorithm 

is given.

  In order to evaluate efficiency of the 

algorithm, we attempted to find out how 

many candidate passwords could be given 

by first time observation and by second, 

third, fourth and so far. To do so, we 

obtained leaked passwords list from 

RockYou [5], chose several different 

virtual keyboard layouts (one layout for 

one observation) and wrote one script to 

convert given text password to set of 

coordinates. The list of passwords is 

filtered to exclude the passwords with the 

content of non-existing character in our 

virtual keyboard. A total number of 

passwords in the list is 1,024,560. Into one 

text file, namely keyboards_map, we wrote 

coordinates of each key for chosen 

keyboards (e.g. A:position number, 

B:position number, C:position number, 

etc.). The script takes one password from 

the list and one set from keyboards_map 

and returns the set of coordinates of the 

corresponding password. Then, each set is 

given to algorithm. The number of 

candidates in the first observation (from 

one keyboard layout), after the 

intersection of the first and second 

observation sets, intersection of the 1
st, 2nd 

and 3
rd, finally, intersection of the 1st, 2nd, 

3rd and 4th observation sets are recorded. 

Results are below.

  To describe the graphs, we use notions 

defined in section 3.6.: good, better and 

best result. Four lines with different 

colors are observations. The horizontal 

line is the number of candidate passwords 

in the set and vertical line corresponds to 

the number of actual passwords used in 

the experiment. If the point is marked at 

the coordinates 4 (horizontal) and 600,000 

(vertical) then it means that for 600,000 

passwords, there are ≤4 candidate 

passwords for each password. Indeed, 

using the notions, we can say: 600,000 

passwords with good result includes also 

passwords with better and best results. 

When we say about the number of a better 

result, actually, this number includes 

passwords with the best result too.

  Fig. 9, demonstrates one experiment. 

After first observation, we got best results 

for only 58,195 passwords (~5.6%) and 
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Fig. 10. (a) some possible cases of 1-case 

rows. (b) some possible cases of 2-case rows. 

(c) all possible cases 3-case rows. Gray 

rectangles are used keys in a row. Only half of 

row is shown.

better results for 340,225 passwords 

(~33.2%). However, good results were 

nearly 60% - 608,276 passwords. Second 

observation, as expected, improved all 

best, better and good results to 30%, 65%, 

and 91%, respectively. In the third 

observation, good results were 99.5% 

(1,019,860 passwords), better results were 

85% (875,040) and best results – 45% 

(459,818). After fourth observation for 

1,023,749 (99.9%) passwords result was 

better and best for 963,501 passwords 

(94%).

  In another experiment, a different set of 

randomly chosen virtual keyboards are 

used. Results are as following: 1st 

observation, approximately 40% (405,184 

passwords) - good, 186,542 passwords - 

better and 22,129 passwords - best 

results. The second observation was 

enough to get 99% good results (for 

1,018,911 passwords) and 86% - for 

883,930 passwords best result.

 

4.2 Some mathematical analysis

  For mathematical analysis, we do not 

estimate speed or storage usage of the 

algorithm, but we want to find out a 

possible number of candidates for a 

password. As we found, the number of 

candidates depends solely on the positions 

of password characters on the row of the 

virtual keyboard. Each used row may 

cause to multiplying the number of 

candidates from 1 to 3 times. We define 3 

types of rows: 1-case row, 2-case and 

3-case rows. The rows type of 1-case may 

give only one candidate, 2-case rows may 

multiply 2 times the number of candidates 

and 3-case rows may multiply 3 times. 

Graphical views of all types are given in 

Fig. 13.

  We define  as the number 

corresponding to the type of row . The 

value of  ranges in     . If  

belong to 1-case rows then   , if  is 

2-case row then    and    if  is 

3-case row. The number of candidates is:

 






  In the best case, one observation can 

give only one candidate, which is an 

actual password. Theoretically, in the 

worst case candidates maybe up to 

  . However, in our experiments, 

this number ranged between    . And 

we found that in all cases it is easy to 

exclude some wrong candidates of the 

password. If in the password, some 

meaningful words are used, it is easy to 

guess which candidate is more close to 

being true password.

V. Conclusion

  In this article, we have shown how we 

exploited the vulnerability of virtual 

keyboards. One particular type of virtual 

keyboard was analyzed and described from 

a security perspective, as an example. The 

introduced idea can be applied to another 

type of virtual keyboards. It does not 

require any hardware or physical 

participation of adversary. 
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  To sum up, these types of onscreen 

keyboards are vulnerable to our attack 

and those systems who are using virtual 

keyboards should rethink their security 

approaches.
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김 혜 진 (Hyejin Kim) 학생회원

2016년 2월: 인하대학교 컴퓨터정보공학과 학사

2016년 3월~현재: 인하대학교 컴퓨터정보공학과 석사과정

<관심분야> 암호이론, 생체인증, 네트워크 보안

양 대 헌 (DaeHun Nyang) 종신회원

1994년 2월: 한국과학기술원 과학기술대학 전기 및 전자공학과 학사

1996년 2월: 연세대학교 컴퓨터과학과 석사

2000년 8월: 연세대학교 컴퓨터과학과 박사

2000년 9월~2003년 2월: 한국전자통신연구원 정보보호연구본부 선임연구원

2003년 2월~현재: 인하대학교 컴퓨터정보공학과 교수

<관심분야> 암호이론, 암호 프로토콜, 인증 프로토콜, 무선 인터넷 보안

이 경 희 (KyungHee Lee) 정회원

1993년 2월: 연세대학교 컴퓨터과학과 학사

1998년 8월: 연세대학교 컴퓨터과학과 석사

2004년 2월: 연세대학교 컴퓨터과학과 박사

1993년 1월~1996년 5월: LG소프트(주) 연구원

2000년 12월~2005년 2월: 한국전자통신연구원 선임연구원

2005년 3월~현재: 수원대학교 전기공학과 부교수

<관심분야> 바이오인식, 전보보호, 컴퓨터비전, 인공지능, 패턴인식


