
857

Journal of The Korea Institute of Information Security & Cryptology
VOL.26, NO.4, Aug. 2016

ISSN 1598-3986(Print)
ISSN 2288-2715(Online)

http://dx.doi.org/10.13089/JKIISC.2016.26.4.857

가상 온스크린 키보드를 이용한 비밀번호 입력의

취약점 분석*

보 부 르,1† 김 혜 진,1 이 경 희,2‡ 양 대 헌1

1
인하대학교,

2
수원대학교

Analysis on Vulnerability of Password Entry Using Virtual Onscreen

Keyboard*

Bobur Shakirov,1† Hyejin Kim,1 KyungHee Lee,2‡ DaeHun Nyang1

1Inha University, 2The university of Suwon

요 약

패스워드 기반 인증 시스템은 키 로그 모니터링을 통한 정보 유출 사고에 위협받아 왔다. 최근, 이를 예방하기 위한

한 방안으로 화면 상 가상 키보드를 이용한 키 로깅 방지 방법이 널리 사용되고 있다. 그러나 이러한 가상 키보드 또한

중대한 취약점을 내포하고 있으며, 그 중 대표적인 약점은 마우스 커서의 자취 추적을 통해 쉽게 비밀번호와 같은 주요

정보가 드러날 수 있다는 점이다. 이에 본 논문에서는 가상 키보드의 취약점을 확인하고, 이를 공격할 수 있는 가상의

공격 시나리오와 패스워드를 도출하는 방법을 제시했다. 이 논문에서 제안하는 기법의 성능 입증을 위한 예시로, 한 가

상 키보드에 대한 공격과 패스워드 딕셔너리를 이용한 크래킹 실험을 진행하였고, 그 결과를 분석하였다.

ABSTRACT

It is a well-known fact that password based authentication system has been threatened for crucial data leakage through

monitoring key log. Recently, to prevent this type of attack using keystroke logging, virtual onscreen keyboards are widely used

as one of the solutions. The virtual keyboards, however, also have some crucial vulnerabilities and the major weak point is that

important information, such as password, can be exposed by tracking the trajectory of the mouse cursor. Thus, in this paper, we

discuss the vulnerabilities of the onscreen keyboard, and present hypothetical attack scenario and a method to crack passwords.

Finally to evaluate the performance of the proposed scheme, we demonstrate an example experiment which includes attacking

and cracking by utilizing password dictionary and analyze the result.

Keywords: virtual keyboard, onscreen, password cracking

I. Introduction*

 Since last few decades, the phenomenon

Received(05. 02. 2016), Modified(07. 12. 2016),

Accepted(08. 04. 2016)

* 이 논문은 2016년도 정부(교육부)의 재원으로 한국연구재

단의 지원을 받아 수행된 기초연구사업임(2014R1A1A20

59852)

†주저자, shbobur2@gmail.com

‡교신저자, khlee@suwon.ac.kr(Corresponding author)

of e-commerce has been developing at high

speed providing a variety of online

services, such as online banking, online

shopping, e-tickets, etc, to clients.

However, attackers have been widely using

Keyloggers to gather sensitive data and

passwords of users in e-commerce. A

significant number of personal computers

used for online transactions also fueled

858 가상 온스크린 키보드를 이용한 비밀번호 입력의 취약점 분석

Fig. 1. Anti-screenshot virtual keyboard. Keys

within the row are replaced by special

character.

the growth of Keyloggers. Keylogger is

some software or hardware that monitors

users’ input to detect and get private

crucial data such as usernames,

passwords, emails, text messages or

another type of data [1]. To defeat the

Keyloggers and provide secure

authentication, some e-banking systems

are providing onscreen keyboards for users

to enter sensitive data, for example,

passwords. The onscreen or virtual

keyboard is a software program that allow

users to enter data using the mouse [2].

 Nevertheless, even virtual keyboards

suffer from some vulnerabilities that

adversary can take advantage of:

Screenshot capturing. Trojans, that

are capable of capturing a screenshot at

each mouse click and then send them

to the adversary, can cause to being

leaked of user’s password during online

banking account authentication.

Over shoulder surfing attack. In this

type of attack, an adversary steals

passwords or other crucial information

of the user by staying behind the user

and looking over victim’s shoulders

while the user sits in front of the

computer, therefore it requires the

physical participation of attacker. This

type of attack can be conducted,

moreover, by using a physically hidden

camera[2].

Videotape recording. The only

difference of this attack from the

previous one is no camera is required.

An attacker installs some malware to

victim’s computer that provides a

videotape of password entering process

to attacker.

 In this paper we show another password

cracking idea and design one algorithm, as

an example, to crack one particular type

of virtual keyboard, provided by some

bank to its clients. By our idea, if an

adversary can get the coordinates of

mouse clicks on the virtual keyboard area,

he has a great chance to generate a set of

passwords, which consist of several wrong

passwords with an actual password. It is

possible to apply the presented idea to

variety types of virtual keyboards.

 Organization of paper: Section 2 briefs

researchs about virtual keyboards which

are resistant to some particular types of

described attacks. Sections 3 consists of

the detailed description of proposed idea,

attacking scenario demonstration and the

algorithm. Analysis and evaluation of

algorithm are given in Section 4 followed

by conclusion in Section 5.

II. Approaches of virtual keyboards

 There are “more secure” virtual

keyboards, which are actually aimed to

defeat some type of attacks. In [2] the

“anti-screenshot virtual keyboard” was

presented. The idea is, when mouse cursor

moves on some key all the keys within the

row are replaced by some special

character, as shown in Fig. 1. In the same

way, when the user clicks the key, all

keys in the virtual keyboard would be

replaced with special character for a few

seconds. It makes the screenshots useless

in the case if attacker captures them.

 Proposals of [3] and [4] are identical,

Fig. 2. The main idea for both proposals is

정보보호학회논문지 (2016. 8) 859

Fig. 2. Virtual keyboard with fake cursors

Fig. 3. Virtual onscreen keyboard of W Bank,

Korea

Fig. 4. Virtual onscreen keyboard with “Shift“

pressed

Fig. 5. Blank buttons are maintained with red

rectangles.

to use a specific number of fake cursors,

besides the actual one, in order to hide

input on the virtual keyboard from

onlookers. Because the fake cursors move

randomly and differently from the actual

cursor, the user can identify it while

attackers have difficulties to do so.

III. Methodology

3.1 Proposed method

 The main idea of our password cracking

algorithm is, having the coordinates of

mouse clicks on virtual keyboard: 1.

Generate candidate passwords and 2.

Decrease the number of candidate

passwords as many as possible.

 Virtual Keyboard. To demonstrate the

idea, password cracking algorithm for one

specific type of virtual keyboard, which is

provided by anonymous bank named W,

was developed. The keyboard is presented

in Fig. 3.

 To switch to upper case, a user should

click “Shift” key on the virtual keyboard,

and, after, virtual keyboard changes in

place to as Fig. 4.

Properties of the keyboard are as

following:

Each row of the keyboard has two

“blank” buttons, as shown in Fig. 5;

Each time when the user invokes the

keyboard, two “blank” buttons change

their positions within the row,

independently from other rows;

“blank” buttons are clickable, however,

they are considered as wrong data;

“blank” buttons are not changed from

their positions after each mouse click;

“blank” buttons move symmetrically to

each other within the row;

Functional keys - “Shift”, “Enter” and

“Backspace” - are not changed from

their positions, therefore “blank”

buttons cannot stay at their positions.

 In Fig. 6, all possible cases of the first

row of the virtual keyboard are presented

and it clearly showes that two blank keys

appear symmetrically.

 Following the collecting and processing

procedure is to generate candidate

passwords using the coordinates. We take

860 가상 온스크린 키보드를 이용한 비밀번호 입력의 취약점 분석

Fig. 7. Consumption

Fig. 6. All possible cases of 1st row of the

virtual keyboard

advantage of two properties of the

keyboard:

“blank” buttons appear symmetrically.

Each key position can contain at most

two different actual keys or “blank”

buttons, except key positions at 2, 13,

15, 20, 21, 26, 27, 31, 32, 36, 38, 42,

43, 47, which can contain only one

actual key or “blank button”. The blank

button cannot stay at the first position.

 We have the fact that, because “blank”

button can stay at six different positions

in a row (because of symmetric property,

we will mostly talk about one-half of a

row), the first and second rows of virtual

keyboard have at most six different views

for each one, while the third and fourth

rows have by 5 for each.

 For a given set of coordinates ,

Algorithm goes through as follows:

1. Define a matrix for keyboard with 8

rows (4 lower case rows + 4 upper case

rows) as a default keyboard: all blanks

are at leftmost and rightmost positions,

surrounding all keys;

2. Modify the matrix: change the position

of “blank button” in all rows if its

position exists in the ;

3. Go through each row of matrix and

move “blank button” to each possible,

not conflicting with the given

coordinates, position, to find all

possible cases of each row (maximum 3

cases, as described in Section 4);

4. Find all permutations of rows, making

each resulting permutation as one

keyboard layout―one possible keyboard

case, and assign them to array

Keyboards;

5. For each <keyboard case> in Keyboards:

pick all coordinates in , to get one

candidate password, from <keyboard

case>.

6.

 The algorithm is divided into three

subproblems: password cracking―main

subproblem, finding all possible candidate

keyboard layouts and shifting blank

buttons to appropriate positions.

3.2 Scenario design of attacking

 In this section, terms “discovery” and

“observation” are used in the same

meaning which implies the hacking or

taking the coordinates of mouse clicking

on the virtual keyboard.

 In the algorithm, we take one

assumption: our coordinates are converted

from (x,y) format to sequential format, as

in Fig. 7 for convenience. All clickable

buttons and buttons whose positions are

changeable are numbered from 1 to 48 on

lower case layout and from 49 to 95 on

upper case layout. Key positions on upper

case layout are numbered as “position on

정보보호학회논문지 (2016. 8) 861

Fig. 8. Result of mouse tracking extension

lower case layout + a total number of

keys”. Position numbers of functional keys

are the same for both lower and upper

registers. Note that discovered coordinates

of mouse click are not sensitive to

register. That is, we discover the

coordinates of "a" and "A" as the same

position. Algorithm differs them according

to the existence of coordinates of “Shift”

functional key in discovered set.

 To make the suggested scenario work,

the key problem we have to solve is to

figure out how we can inject the code into

the website. When it comes to gaining the

coordinates of the cursor clicking, it is not

a huge problem if you utilize tools, such

as Javascript libraries. The code only

contains functions that observe the cursor

clicking and handle the clicking events,

and is injected into the page. Eventually,

the method that we are applying here is a

typical Code Injection Attack―one of the

most common way to hack.

 In this regard, we designed a

custom-made web browser extension plugin

based on Chrome browser for an

experiment. In this experiment,

‘Content-Scripts’, one of the API Chrome

provides, was implemented to inject

Javascript files into the web page which is

specified in the configuration of the

extension. When a user makes an access

to W Bank log-in page, the malicious

extension injects a mouse-click observing

code into the page. And after the user

opens and clicks on a virtual keyboard

which consists of the HTML objects, ‘img’

and ‘div’, this injected code obtains and

adds the coordinates of the cursor to an

array in sequential order. If the user

finishes typing his/her password and clicks

on a login button, the injected code sends

these coordinates and user’s ID to

attacker’s server. Then, the server

converts valid x-y coordinates into

keyboard numbers from 1 to 48 and saves

them as a file format so that the password

cracking program can use it. As you can

see in Fig. 8, with this strategy, the

attacker can catch the key numbers in the

password and its sequential order.

 To clarify the possibility in real-life

circumstance, we applied this methodology

to W Bank web security system. To

commence the attack, there were two

possible conditions that the extension can

be injected into the website - with or

without installing required security

plugins of W Bank. First, to log in into

the website on Chrome browser, installing

the security plugins was avoidable on the

user’s choice. In this case, there was no

obstacle to succeed log-in and send the

coordinates to the attacker’s server. On

the other hand, even after installing the

required security plugins and the attempt

to send the code to the server was blocked

by the plugins, it was possible for the

attacker to bypass the sending process

and still figure out the coordinates.

 Although in this paper, we only operated

an experiment with Chrome browser, this

attack can be achieved on the other

browsers’ extension plugins, such as

Component Object Model of Internet

Explorer and Plugin of FireFox, because

these browsers all equip extensions that

are similar to one used in Chrome

browser.

862 가상 온스크린 키보드를 이용한 비밀번호 입력의 취약점 분석

Variable Description


set of coordinates of mouse

click





default keyboard; Template

for all candidate keyboards.

Values are either  or



.


set of candidate keyboard

layouts


used to keep track of the

"Shift" functional key

 type of a key.



 type of a key.

Table 1. Variables of Algorithm 1.

3.3 Algorithm 1: Main Part

 First of all, we build candidate keyboard

layouts by Algorithm 1, in order to obtain

candidate passwords.

 Main - password crack - algorithm’s

variables are given in Table 1.

 We define matrix 

    as a

default keyboard. This template is built

once and is not going to be changed

anymore. All candidate keyboards are

generated on the basis of this “default

keyboard”. In “default keyboard”, there are

2 types of key positions: “empty” and

“non-empty”. The key position and its

symmetric one in the row are “non-empty”

if its position exists as the coordinate in

the set . For instance, if ∈ is clicked

by the user, then it claims that the key in

the position  is not a blank button.

Hence, we mark the position  as

non-empty, which corresponds to “the

position is not for blank button”.

 Initially, all keys are the type of empty.

“for” loop in the lines 3-10 scans all key

positions to define their type. In line 12,

Algorithm 2 is used to find out all

candidate keyboard layouts and the result

is assigned to array .

 The cycle in the lines 13 to 27 “types” all

candidate passwords and includes all into

the set . Going through all given

coordinates, in lines 16-25, all pressed key

characters are picked from “ ” and

appended to 

. “if” condition in

lines 17-23 checks each coordinate whether

it is a “functional” key.

Algorithm 1. Password crack algorithm.

INPUT: set of coordinates 

OUTPUT: set of candidate passwords 

1. Initialize  = 0, 

 = 1,

 = “-“;

2. Initialize 

    to ,

   ,  ;

3. for   to  do

4. for    to 

 

 do

5. if 

     exists in

 or 

    

exits in  then

6. 

    


;

7.



     




;

8. end if;

9. end for;

10. end for;

11.

12.  = Find out possible

candidate keyboard layouts (

);

13. for    to  do

14.   ; // default - Shift is not

pressed

15. 

“”;

16. for   to  do

17. if    then //Backspace

18. delete(

);

정보보호학회논문지 (2016. 8) 863

Variable Description



Collects all possible

permutations of each row

separately.





used to find a new

candidate for a row. In

any moment each of its

rows contain only one

candidate.







used to switch the

register.

 used as blank button


collection of all possible

candidate keyboards.

Table 2. Variables of Algorithm 2.

19. else if    then //Shift

20. if    then   

21. else   ;

22. else if    then break

 all cycles; //Enter

23. else








;

24. end if;

25. end for;

26. ∪

;

27. end for;

28. return ;

3.4 Algorithm 2: Generating all possible

candidate keyboard layouts

 In second step, Algorithm 2 is used to

generate all candidates for keyboard. Its

input is main ― template keyboard. Its

variables are listed in Table 2.

 Initially, blank buttons are on the

leftmost and rightmost positions of the

rows. In the lines 4-14, all blank buttons

in 

 are shifted to empty positions

if their positions are non-empty. In the

lines 6 to 11 all keys are shifted to one

position and in lines 12 and 13 blank

buttons are placed at appropriate

positions. Lines 16 to 20 go through each

row of 

. “loop” in 17th and 19th

lines are repeated until it collects all

candidates of the given row into

.

 Lines 21 to 32 find all permutations of

rows of the keyboard, where each element

of permutation is one line of the keyboard,

hence, each of the permutations represents

one candidate keyboard. Algorithm gathers

all permutation into array . In

line 22 all candidates of the first row are

assigned to , so at the moment,

the first lines of candidate keyboards are

found. "for loop" in Line 23, constructs

permutations from 2nd to 8th elements.

Process is as following: “for loop” in line 25

repeats as many times as the length of

 to the moment. “for loop” in line

27, increments the “length” of permutation

by concatenating each candidate of a row

with existed permutation, moreover,

including new permutation as new element

into . In line 30, first element―

preexisted permutation is deleted from

, after it was used to make new

permutation.

 In the lines 34 to 43, the keys, with

unchangeable positions and not considered

at the permutation, inserted into their

fixed positions.

Algorithm 2. Find out possible

(candidate) keyboard layouts

INPUT: 



OUTPUT:  - set of all possible

(candidate) keyboard layouts

1. Initialize ,

 to “”,





  ;

864 가상 온스크린 키보드를 이용한 비밀번호 입력의 취약점 분석

Variable Description



 any row of template keyboard



 row to be changed

 returned as a result


position of the key in the

middle of the given row





previous position of blank

button in 







new position of blank button

in 



Table 3. Variables of Algorithm 3.

2. Initialize   , 

  ,

 “-”,  

;

3. Initialize 

 

[[“-1234567890-”], [“-qwertyuiop-”],

[-asdfghjk-“], [”-zxcvbnml-“],

[”-!@#$%^&*()-“], [”-QWERTYUIOP-“],

[”-ASDFGHJK-“], [”-ZXCVBNML-“]];

4. for    to 8

5.   ;

6. while 

 




7. and    do

8. 

 


;

9.



 





10.   ;

11. end while;

12. 

  ;

13. 

  ;

14. end for;

15. // Step iv

16. for    to 8 do

17. do loop

18.





;

 // append – adds new element to

the end of array

19. while doNextSwap

 (

 


);

20. end for;

21. // Step v

22.  ;

23. for    to 8 do

24.  ;

25. for    to  do

26. len = 

27. for    to len do

28. 
 

29. end for

30. delete()

31. end for

32. end for

33. // Insert keys to each keyboard layout

34. for    to  do

35. .insert(1, “`”)

36. .insert(14, “|”)// Backspace

37. .insert(37, “|”) // Shift

38. .insert(48, “|”) // Enter

39. . i n s e r t (1 +





, "~")

// first position in Upper case

keyboard

40. . i n s e r t (1 4 +





, "|") // Backspace

41. . i n s e r t (3 7 +





, "|") // Shift

42. end for

43. return 

3.5 Algorithm 3: Shifting blank buttons to

next possible position

 The algorithm below is used to shift

blank buttons efficiently. Its inputs are a

row of keyboard ― 

 and the

corresponding row of default keyboard ―



. If the shift occurs, then the

algorithm returns true and false

otherwise. Variables of Algorithm 3 are

listed in Table 3.

Loop in the lines 3 to 5 finds the

정보보호학회논문지 (2016. 8) 865

position of the blank in the 

 and

assigns it to 

. Next position is

looked for in 

. Next efficient

position of the blank button is the empty

position after one non-empty if it exists.

When several empty positions stay next to

each other in one row, if we put blank to

each one of them and take all as a

different cases of the row, consequently,

several keyboards differentiated only with

that row give us, unfortunately, repeated

candidate passwords. Therefore, we need

only one candidate from that row’s cases.

Algorithm 3. doNextSwap

INPUT: one row of 

 ―



, and one respective row of



 ― 




OUTPUT: true ― if blank in 



shifted to next appropriate position, false

―if shift is not possible more

1. Initialize   , 

  ,

 “-“;

2. Initialize   ,

  

,



  , 


  ;

3. while not 




   do

4. 

  


;

5. end while;

6. 

  


;

7. while 




≡ and



  do

 // find next non-empty position in

default keyboard row

8. 

  


;

9. end while;

// find next empty position in default

keyboard row

10. while 




==



 and 


  do

11. 

  


;

12. end while;

13. if 

  then

14.  false;

15. else

16. shift blank to position 

;

17. shift second blank to position

 

;

18.  true;

19. end if;

20. return ;

3.6 How to reduce the number of

candidates?

 The first step of the idea has been

described. Next step is to reduce the

number of candidate passwords to the

minimum, to 1. Even though goal is to

reduce the number of candidates to 1, due

to the fact that most systems give 3

attempts to try entering password and

some give 5 attempts, we can make

notions: if the number of candidates is 4

or 5, it is a “good” result; if it is 2 or 3

then it is a “better” and if that number is

1 then it is the “best” result. Therefore, in

spite of that we aim to get the best

result, better or good results are both

acceptable.

 The solution for the 2
nd step would be

observing authentication process more

than once. Naturally, coordinates of the

same password on different layouts give

several set of password candidates: the

content of the sets are different, but they

should consist of at least one or a few

common candidate passwords. The

intersection of these sets results in a set

of fewer candidate passwords. There is one

case where the intersection is not useful

and it is described in “Evaluation” section.

 For instance, adversary observed 2 times

866 가상 온스크린 키보드를 이용한 비밀번호 입력의 취약점 분석

Fig. 9. Result from the first experiment

the same user. The first set of coordinates

is          . The second

is           and algorithm

gave following sets of candidate password:

    

      
Intersection is:

  ∩ 

 The resulting set consists of one

candidate which is true password.

 So the second step is observing several

times.

IV. Evaluation

4.1 Result

 To estimate our algorithm, we conducted

one experiment. At the beginning of this

section, the experiment is introduced, at

the end, worst case analysis of algorithm

is given.

 In order to evaluate efficiency of the

algorithm, we attempted to find out how

many candidate passwords could be given

by first time observation and by second,

third, fourth and so far. To do so, we

obtained leaked passwords list from

RockYou [5], chose several different

virtual keyboard layouts (one layout for

one observation) and wrote one script to

convert given text password to set of

coordinates. The list of passwords is

filtered to exclude the passwords with the

content of non-existing character in our

virtual keyboard. A total number of

passwords in the list is 1,024,560. Into one

text file, namely keyboards_map, we wrote

coordinates of each key for chosen

keyboards (e.g. A:position number,

B:position number, C:position number,

etc.). The script takes one password from

the list and one set from keyboards_map

and returns the set of coordinates of the

corresponding password. Then, each set is

given to algorithm. The number of

candidates in the first observation (from

one keyboard layout), after the

intersection of the first and second

observation sets, intersection of the 1
st, 2nd

and 3
rd, finally, intersection of the 1st, 2nd,

3rd and 4th observation sets are recorded.

Results are below.

 To describe the graphs, we use notions

defined in section 3.6.: good, better and

best result. Four lines with different

colors are observations. The horizontal

line is the number of candidate passwords

in the set and vertical line corresponds to

the number of actual passwords used in

the experiment. If the point is marked at

the coordinates 4 (horizontal) and 600,000

(vertical) then it means that for 600,000

passwords, there are ≤4 candidate

passwords for each password. Indeed,

using the notions, we can say: 600,000

passwords with good result includes also

passwords with better and best results.

When we say about the number of a better

result, actually, this number includes

passwords with the best result too.

 Fig. 9, demonstrates one experiment.

After first observation, we got best results

for only 58,195 passwords (~5.6%) and

정보보호학회논문지 (2016. 8) 867

Fig. 10. (a) some possible cases of 1-case

rows. (b) some possible cases of 2-case rows.

(c) all possible cases 3-case rows. Gray

rectangles are used keys in a row. Only half of

row is shown.

better results for 340,225 passwords

(~33.2%). However, good results were

nearly 60% - 608,276 passwords. Second

observation, as expected, improved all

best, better and good results to 30%, 65%,

and 91%, respectively. In the third

observation, good results were 99.5%

(1,019,860 passwords), better results were

85% (875,040) and best results – 45%

(459,818). After fourth observation for

1,023,749 (99.9%) passwords result was

better and best for 963,501 passwords

(94%).

 In another experiment, a different set of

randomly chosen virtual keyboards are

used. Results are as following: 1st

observation, approximately 40% (405,184

passwords) - good, 186,542 passwords -

better and 22,129 passwords - best

results. The second observation was

enough to get 99% good results (for

1,018,911 passwords) and 86% - for

883,930 passwords best result.

4.2 Some mathematical analysis

 For mathematical analysis, we do not

estimate speed or storage usage of the

algorithm, but we want to find out a

possible number of candidates for a

password. As we found, the number of

candidates depends solely on the positions

of password characters on the row of the

virtual keyboard. Each used row may

cause to multiplying the number of

candidates from 1 to 3 times. We define 3

types of rows: 1-case row, 2-case and

3-case rows. The rows type of 1-case may

give only one candidate, 2-case rows may

multiply 2 times the number of candidates

and 3-case rows may multiply 3 times.

Graphical views of all types are given in

Fig. 13.

 We define  as the number

corresponding to the type of row . The

value of  ranges in     . If 

belong to 1-case rows then   , if  is

2-case row then    and    if  is

3-case row. The number of candidates is:

 






 In the best case, one observation can

give only one candidate, which is an

actual password. Theoretically, in the

worst case candidates maybe up to

  . However, in our experiments,

this number ranged between    . And

we found that in all cases it is easy to

exclude some wrong candidates of the

password. If in the password, some

meaningful words are used, it is easy to

guess which candidate is more close to

being true password.

V. Conclusion

 In this article, we have shown how we

exploited the vulnerability of virtual

keyboards. One particular type of virtual

keyboard was analyzed and described from

a security perspective, as an example. The

introduced idea can be applied to another

type of virtual keyboards. It does not

require any hardware or physical

participation of adversary.

868 가상 온스크린 키보드를 이용한 비밀번호 입력의 취약점 분석

 To sum up, these types of onscreen

keyboards are vulnerable to our attack

and those systems who are using virtual

keyboards should rethink their security

approaches.

References

[1] Mehdi Dadkhah and Mohammad

Davarpanah Jazi, “A novel approach to

deal with keyloggers,” Oriental Journal

of Computer Science & Technology, Vol.

7, no. 1, pp. 25-28, Apr. 2014

[2] Ankit Parekh, Ajinkya Pawar, Pratik

Munot and Piyush Mantri, “Secure au-

thentication using anti-screenshot vir-

tual keyboard,” International Journal of

Computer Science Issues, Vol. 8, Issue

5, pp. 534-537, Sep. 2011

[3] Alexander De Luca, Emanuelvon

Zezschwitz, Laurent Pichler and

Heinrich Hussmann, “Using fake cursors

to secure on-screen password entry,”

Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems,

pp. 2399-2402, Apr. 2013

[4] Keita Watanabe, Fumito Higuchi,

Masahiko Inami, and Takeo Igarashi,

“CursorCamouflage: multiple dummy

cursors as a defense against shoulder surfi

ng,” SIGGRAPH Asia 2012 Emerging

Technologies, no. 6, pp. 15-16, Nov. 2012

[5] https://wiki.skullsecurity.org/Passwor

ds

정보보호학회논문지 (2016. 8) 869

<저자소개>

보 부 르 (Bobur Shakirov) 학생회원

2015년 6월: Tashkent University of Information Technologies 컴퓨터공학과

학사

2015년 9월～현재: 인하대학교 컴퓨터정보공학과 석사과정

<관심분야> 암호이론, 네트워크 보안, 보안 프로그래밍, 인증 프로토콜

김 혜 진 (Hyejin Kim) 학생회원

2016년 2월: 인하대학교 컴퓨터정보공학과 학사

2016년 3월~현재: 인하대학교 컴퓨터정보공학과 석사과정

<관심분야> 암호이론, 생체인증, 네트워크 보안

양 대 헌 (DaeHun Nyang) 종신회원

1994년 2월: 한국과학기술원 과학기술대학 전기 및 전자공학과 학사

1996년 2월: 연세대학교 컴퓨터과학과 석사

2000년 8월: 연세대학교 컴퓨터과학과 박사

2000년 9월~2003년 2월: 한국전자통신연구원 정보보호연구본부 선임연구원

2003년 2월~현재: 인하대학교 컴퓨터정보공학과 교수

<관심분야> 암호이론, 암호 프로토콜, 인증 프로토콜, 무선 인터넷 보안

이 경 희 (KyungHee Lee) 정회원

1993년 2월: 연세대학교 컴퓨터과학과 학사

1998년 8월: 연세대학교 컴퓨터과학과 석사

2004년 2월: 연세대학교 컴퓨터과학과 박사

1993년 1월~1996년 5월: LG소프트(주) 연구원

2000년 12월~2005년 2월: 한국전자통신연구원 선임연구원

2005년 3월~현재: 수원대학교 전기공학과 부교수

<관심분야> 바이오인식, 전보보호, 컴퓨터비전, 인공지능, 패턴인식

