
1121

Journal of The Korea Institute of Information Security & Cryptology
VOL.26, NO.5, Oct. 2016

ISSN 1598-3986(Print)
ISSN 2288-2715(Online)

http://dx.doi.org/10.13089/JKIISC.2016.26.5.1121

GNFS를 위한 향상된 다항식 선택 기법*

김 수 리,1† 권 지 훈,1 조 성 민,1 장 남 수,2 윤 기 순,3 김 창 한,4‡ 박 영 호,2 홍 석 희1

1
고려대학교 정보보호연구원,

2
세종사이버대학교,

3
엔에스에이치씨,

4
세명대학교

Enhanced Polynomial Selection Method for GNFS*

Suhri Kim,1† Jihoon Kwon,1 Sungmin Cho,1 Nam Su Chang,2 Kisoon Yoon,3

Chang Han Kim,
4‡

 Young-Ho Park,
2
 Seokhie Hong

1

1Center for Information Security Technologies(CIST), Korea University,
2Sejong Cyber University, 3NSHC, 4Semyung University

요 약

RSA 암호 시스템은 가장 널리 사용되는 공개키 암호 알고리즘 중 하나이며, RSA 암호 시스템의 안전성은 큰 수의

인수분해의 어려움에 기반을 둔다. 따라서 RSA 암호 시스템의 합성수 을 인수분해하려는 시도는 계속 진행 중에 있

다. General Number Field Sieve는 현재까지 알려진 가장 빠른 인수분해 방법이고, RSA-704를 인수분해 하는데

사용된 소프트웨어인 CADO-NFS도 GNFS를 기반으로 설계되어 있다. 그러나 CADO-NFS는 다항식 선택 과정에

서 입력된 변수로부터 항상 최적의 다항식을 선택하지 못하는 문제점이 있다. 본 논문에서는 CADO-NFS의 다항식

선택 단계를 분석하고 중국인의 나머지 정리와 유클리드 거리를 사용하여 다항식을 선택하는 방법을 제안한다. 제안된

방법을 이용하면 기존의 방법보다 좋은 다항식이 매번 선택되며, RSA-1024를 인수분해 하는데 적용할 수 있을 것으

로 기대한다.

ABSTRACT

RSA cryptosystem is one of the most widely used public key cryptosystem. The security of RSA cryptosystem is based on

hardness of factoring large number and hence there are ongoing attempt to factor RSA modulus. General Number Field Sieve

(GNFS) is currently the fastest known method for factoring large numbers so that CADO-NFS – publicly well-known software

that was used to factor RSA-704 – is also based on GNFS. However, one disadvantage is that CADO-NFS could not always

select the optimal polynomial for given parameters. In this paper, we analyze CADO-NFS’s polynomial selection stage. We

propose modified polynomial selection using Chinese Remainder Theorem and Euclidean Distance. In this way, we can always

select polynomial better than original version of CADO-NFS and expected to use for factoring RSA-1024.

Keywords: GNFS, CADO-NFS, polynomial selection

I. Introduction *

Public key cryptosystem is useful for

Received(09. 01. 2016), Accepted(09. 27. 2016)

* 이 논문은 2014년도 정부(미래창조과학부)의 재원으로 한

국연구재단-차세대 정보 컴퓨팅기술개발사업의 지원을 받

아 수행된 연구입니다(No. NRF-2014M3C4A7030649)

†주저자, suhrikim@gmail.com

‡교신저자, chkim@semyung.ac.kr(Corresponding author)

sending information via insecure channel

and its security is based on hardness of

solving number theoretic problems. For ex-

ample, RSA cryptosystem is based on

hardness of factoring large numbers and

Elliptic Curve Cryptography is based on

discrete logarithm problem. Among other

public key cryptosystems, RSA cryptosys-

tem is popular for its simplicity.

1122 GNFS를 위한 향상된 다항식 선택 기법

In RSA cryptosystem, public modulus 

is chosen as product of two distinct primes

  and primes   are kept secret[1]. It is

easy to generate such number  but hard

to find   such that   for  suffi-

ciently large. Since RSA cryptosystem can

be broken by factoring , integer factori-

zation is one of main topics for research.

Currently, the best known factoring algo-

rithm is the General Number Field Sieve

(GNFS)[9]. Factoring based on GNFS is

recently performed by T. Kleinjung et al.

in 2009 for factoring RSA-768[6], and also

by S. Bai et al. in 2012 for factoring

RSA-704[5].

CADO-NFS is one of publicly well

known factoring tool based on GNFS and

it was used to factor RSA-704 and

RSA-220[12]. It selects polynomial using

Kleinjung’s second algorithm. However

CADO-NFS could not always select the

optimal polynomial for given parameters.

This paper targets CADO-NFS’s poly-

nomial selection stage. We analyze the

possible disadvantage that can occur when

using CADO-NFS directly. By modifying

CADO-NFS’s polynomial selection proce-

dure we can now select better polynomial

compare to polynomial selected by

CADO-NFS.

This paper is organized as follows. In

Section 2, we present backgrounds for pol-

ynomial selection. Then in Section 3, we

explain Kleinjung’s second algorithm – al-

gorithm for polynomial selection which is

currently used in CADO-NFS. In Section

4, we analyze disadvantage in CADO-NFS

and propose our new way of selecting

polynomial. In Section 5, experimental re-

sults of our polynomial selection is

presented.

II. Background

In this Section, underlying principle

GNFS is first presented. Next, we de-

scribe earlier method for polynomial

selection. Lastly, we introduce two meas-

urements to score quality of selected

polynomial.

2.1 General Number Field Sieve

Modern factoring algorithm is based on

‘difference of squares’. It factors by selecting

random integers   such that ≠ and

 ≡. Then by computing  

and   we can obtain non-trivial

factors of  with high probability. This concept

of using ‘square of random number’ is also

employed in Quadratic Sieve(QS) and

General Number Field Sieve.

GNFS is currently fastest known

method for factoring numbers over 110

digits[9]. It can be seen as generalization

of QS. QS uses quadratic polynomials

whereas GNFS uses polynomials of higher

degree so that a square is not produced

directly in  as before. It uses two

polynomial   having common root

. Let  and  be roots of  

not in , respectively, and consider rings

, . Goal in GNFS is to find  

pairs such that  and  are

smooth over chosen basis of primes. We

say that an element is smooth if all of its

factors are member of our chosen basis of

primes.

We collect   pairs where  
for ∈ and   for ∈.
Consider homomorphisms from ring  and

 to  that maps  and  to . Then

there exist  ∈ such that  are

mapped to   respectively. Hence

 ≡ is again obtained and non-trivial

정보보호학회논문지 (2016. 10) 1123

factors of  can be found with high probability.

Usually, GNFS is divided into four

stages – polynomial selection, sieving,

linear algebra, square roots – but we

focus on first two stages of GNFS.

Namely, polynomial selection where we

select  and  and sieving where we

collect pairs  . It is known that

sieving takes over 90% of total time for

factoring using GNFS, and choice of

polynomial dramatically affect time to

complete sieving. In next Section, we

briefly describe earlier method for

polynomial selection.

2.2 Classical Polynomial Selection

Classic way to generate polynomial is

using base- method[10]. The base-

method expresses number  to be factored

as 
 , such that

≤ 


 for each  and generates monic

polynomial  of degree  and monic

polynomial    of degree 1 where

 is common root of  and .

To reduce size of coefficient of  this method

is modified to select non-monic polynomial

 





 such that 






. We choose

 to be close to 
[4]. If  is not

small enough, try another . Otherwise we

optimize the generated polynomial pair.

2.3 Quantifying Quality of Polynomials

In Section 2.1, we emphasized the

importance of selecting good polynomial. In

this Section, we introduce measurements

to evaluate whether generated polynomial

can be considered ‘good’. Note that main

goal of sieving stage is to collect many

pairs   such that  is smooth over

chosen basis of primes where  is root of

. Usually basis of primes consist of

‘small’ primes and small value norm of

 is more likely to be factored by small

primes and hence more likely to be smooth

over basis than larger norm. Thus one of

measurement to quantify quality of

polynomial is called ‘lognorm’. Lognorm is

logarithmic average of polynomial values

across sieving region and lognorm of

function is computed as below[11], where

 refers to skewness of sieving region,

calculated by ratio of  [4].















        .

Hence small lognorm means size of

polynomial is small so that it is more

likely to be smooth over our chosen basis

of primes. Thus we are searching for

polynomial with smaller lognorm as

possible. We may assume that size of 

does not vary much across sieving regions

than  due to the fact that  is

linear. So in practice, we only consider

lognorm of .

Combining  and  we can approximate

number of sieving reports as equation

below[11].


 




 

  

Above measurement is called ‘murphy E’

of polynomials. Since collecting as many

relation as possible is goal in sieving

stage, larger murphy E implies it is likely

to have large number of sieving reports in

sieving stage. Hence we focus on selecting

  pairs with larger murphy E

value.

1124 GNFS를 위한 향상된 다항식 선택 기법

III. Kleinjung’s Second Algorithm and Its

Implementation

 In this Section, we describe Kleinjung’s

second algorithm for selecting polynomial

and how it is implemented in CADO-NFS.

The algorithm gives an efficient way to

control size of  while producing

polynomial with large skewness.

3.1 Kleinjung’s Second Algorithm

 Kleinjung’s second algorithm extends

current GNFS’s polynomial selection

procedure[2]. Instead of using base-

method as in GNFS, Kleinjung’s second

algorithm uses base- method and

generates non-monic polynomial  of

degree greater than 1 and non-monic

polynomial  of degree 1. Base-

represents the number  to be factored as









 and selects   of

the form  





 and  

having 
 as common root.

 Let  be set of small primes and  be

set of primes in   for some bound 

so that ∩ ∅ and primes in  are

larger than primes in . Leading coefficient

 of  is chosen to be of form   

where   for ∈ and ∈.

 Kleinjung’s second algorithm generates

polynomial  with smaller  than as

in first algorithm[2,4]. Method of selecting

smaller  is described below.

 In equation 







 , we expand

to











  











 (1)

and express (1) as in terms of -th degree

by using

 





 
 

 
,

where   











.

 Then equation (1) can be rewritten as

  






 







.

 To eliminate the denominator, we

multiply 
 on both side and obtain




  
 




 







 (2)

 Let 
 and  . By

simplifying terms that has degree lower

than , equation (2) can be represented as





.

Taking modulo by 
 , we have





 . (3)

 By obtaining solution for  in (3), 

equals to value who satisfies 




 .

Since   , and two values

,  are known, by taking modulo  we

have

정보보호학회논문지 (2016. 10) 1125

Algorithm 1

Input :   , prime sets 

Output :  for the base expansion

of 

1. Compute  from   

2. For ∈ do

 2.1 Solve  in ≡ 
 

 2.2 Record  and detect collisions

 on 

3. For ∈ do

 3.1 Solve  in ≡ 


 3.2 For each  do

≡   (4)

 By multiplying inverse of  modulo 

on both side of equation (4),  is

determined. Due to the fact that we

obtained  by taking  as modulus,

≤  meaning that we have  with

appropriate size.

3.2 Implementation in CADO-NFS

 The most direct way to solve equation

(3) is to first solve  for each

prime  in , and solve ≡ by

using Hensel’s lemma. After obtaining 

solutions for each prime , by using

Chinese Remainder Theorem(CRT) we can

obtain solution for 
 . To have

larger cardinality of polynomial set to

select the best polynomial, CADO-NFS

uses only the primes  having  roots for

. Hence if  consists of 

primes, this means that by using CRT we

have  number of roots in total. However,

since we only need root  close to 




[4],

calculating all  solution is tedious. Hence

to avoid using CRT and solve equation (3),

CADO-NFS uses collision between roots to

search for  close to 




 efficiently.

 Given input   , let  be integral

part of 




. We first compute roots for

≡
 where ∈. Then roots 

are lifted to  modulo  and recorded as

 . Second, we search for collision on .

This means that we are searching for  and

′ where  is root of ≡


 and

′ is root of ≡′  and  ′ .
Then we can obtain ≡





without using CRT. If collision is not

detected, then we use primes  in set 

and let    where   .
 Note that we already have recorded

roots   so that we only need to

calculate roots for primes in . For each

∈ solve ≡ 
. Then for

each  and for all ∈ we calculate

∈  by solving  
≡

 such

that equation ≡ 
 is

satisfied. Then pair   is recorded and

we search for collision on  between  

and  . If collision occurs

≡ 



 (5)

is satisfied. Again, CRT is not used to

calculate common roots between 
 
  ,

and obtained  
 is reasonably

close to 




 since  was chosen to be

integral part of 




.

 As a summary, total procedure of

Kleinjung’s second algorithm is described

in Algorithm 1.

1126 GNFS를 위한 향상된 다항식 선택 기법

 3.2.1 For ∈ do

 3.2.1.1 For each  do

 3.2.1.2. Solve  in

 ≡ 


 3.2.1.3 Record   and detect

 collisions on 

IV. Proposed Method

In this Section, we analyze the

disadvantage in CADO-NFS and propose

new method to find  that can generate

polynomial with larger murphy E value

than other roots. We used CRT to find

root of ≡
 and polynomial is

selected from  with smallest 




.

4.1 Analysis of CADO-NFS

 The major disadvantage of using collision

is that there is a probability of existence

of root closer to 




 than root founded by

using collision. More specifically, CADO-NFS

uses one solution of ≡
 to generate

polynomial not by searching all  roots but

by fixing  and detecting collision

between  in equation (5). Hence solution

that generates better polynomial can be

missed. Since good selection of polynomial

can reduce time for searching relation in

sieving stage [4,8], not checking

candidates that has higher probability of

generating polynomial of larger murphy E

might be a problem. In fact for RSA-768

with degree 6 and ad=265482057982680,

CADO-NFS found

2056726454298768247003538862069644448626824473920812

as  and generated polynomial with

× as murphy E value. But

polynomial that was actually used for

factoring RSA-768 has  with

2056722663530813341394738735297691839197379108251632

and × as murphy E. Therefore we

focused on checking all roots of ≡
.

4.2 Proposed Method

 In order to check all  roots, CRT is

necessary. Naive way of checking all 

roots and observe which root generates

better polynomial is to generate polynomial

for each root, calculate lognorm, and

compare if lognorm is smaller than

lognorm calculated previously. However,

calculation of lognorm for one polynomial

takes ×s so that calculation of

lognorm for all   polynomial takes

× ×s. If 11 primes and degree 6

are used as in RSA-768 this will take 12

hours for just searching 15 pairs of 

while it takes 38.5 minutes when using

collision.

 When considering RSA-1024, it is too

inefficient to check all roots for each pair

of   , Since exact value of leading

coefficient of  is unknown, this leads

to at least  ×(admax-admin)/incr amount

of checking where admax and admin

denotes maximal and minimal value of 

we are searching for, respectively.

 Thus instead of generating all  

polynomials to calculate lognorm, we only

generated polynomial for roots with

smallest 



. This means that instead

of generating polynomial and calculate

lognorm for each root, only euclidean

distance is calculated for each root and

polynomial is generated only once for 

with smallest 




. The total procedure

for selecting polynomial is described in

Algorithm 2.

정보보호학회논문지 (2016. 10) 1127

Algorithm 2

Input :   , prime sets 

incr: number added to  after each

round

 : Set of 15 polynomials recorded as

     ,lognorm)

Output :   with lowest lognorm

among founded polynomials

1. For each 

 1.1 Compute ,  from   

 1.2. For ∈ do

 1.2.1 Solve  in ≡ 
 

 1.2.2. Record   and detect collision

 on 

 1.3. For ∈ do

 1.3.1 Solve  in ≡

 1.4. For   ( ∈) such that

   has collision

 1.4.1 Solve  in ≡


 for   

 1.4.2. Solve ≡
 by CRT where

  
 1.4.3. For each solution  in ≡



 calculate  





 1.4.4. Output smallest 

 1.5. Calculate lognorm for   and

  with smallest 

 1.6. If lognorm ≤ max lognorm in 

 1.6.1. Insert-sort     ,lognorm)

2. If +incr≤ admax goto step 1

3. Output  with lowest lognorm

 In Step 1.2 in Algorithm 2, we modified

CADO-NFS’s function ‘collision_on_sq’.

Instead of moving to function ‘match’ in

‘hash-add’ if collision is found, we recorded

prime pair   for detected collision.

With this recorded prime pair and primes

in  we solve ≡ for prime .

At Step 1.6 we calculate euclidean distance

 between solution  of ≡
 and

.

 For each prime pair, polynomial is

generated for  having smallest  and

lognorm is calculated. Then     ,lognorm)

is insert-sorted if calculated lognorm is smaller

than maximal lognorm of set calculated

previously. In practice, we kept only 15

values of lognorm. Hence regardless of

number of prime pairs and number of

rounds occurs, our Algorithm 2 outputs 15

polynomials.

V. Implementation Results

 Experiments were performed using gcc

version 4.9.2 with processor Intel(R)

Core(TM) i5-4690K CPU at 3.5 GHz with

8GB RAM. Size optimization and root

optimization are same for both group. We

used cado-2.1.1 version for optimization.

Although latest version of CADO-NFS is

2.2.0, released in Dec. 2015, only

optimization part of polynomial selection

has been changed. Since we are only

considering the generation of polynomial

which is same in both versions, this

experimental result will be same for

cado-2.2.0 also.

 Single round implies that test was done

for one ad value and multiple rounds

implies that test was done for range of ad

values.

 Note that ‘ad’ refers to leading coefficient

of  and CADO-NFS uses this value as

input parameter. ‘lq’ means number of

primes used in , and ‘pairs’ means

number of   that has collision. Hence

total number of roots generated by  lq

and  pairs is ×.

1128 GNFS를 위한 향상된 다항식 선택 기법

CADO-NFS CRT

lq=8, ad=265482058083480, 5 pairs

MurphyE ×  × 

Time 24 min 7 min

lq=6, ad=265482058083480, 6 pairs

MurphyE ×  × 

Time 25.7 min 6.7 min

Table 1. Implementation results for RSA-768

single round

CADO-NFS CRT

lq=11, ad=265482057982680, 15 pairs

MurphyE ×  × 

Time 28.8 min 70.5 min

Table 2. Implementation results for RSA-768

single round

CADO-NFS CRT

lq=7, ad=1614120 ~ 1614180 , 2 pairs

MurphyE ×  × 

Time 19 min 6.7 min

lq=7, ad=1614180 ~ 1614300 12 pairs

MurphyE ×  × 

Time 63.6 min 6.6 min

Table 3. Implementation results for RSA-704

multiple round

 Below is single-round test result for

RSA-768 using degree 6,  .

Below is single-round test result for

RSA-768 using parameters that includes

parameters that were actually used for

factoring RSA-768[6]. Namely, degree 6

and   were used.

 Multiple rounds were tested with

RSA-704 number with degree 6, increment

60 and  .

 In summary, the results of experiments

show that by using our modified version of

polynomial selecting method, we can

search for polynomial with murphy E

larger or equal to murphy E founded by

CADO-NFS in practical time. This is

guaranteed by the fact that we are

actuatlly checking all the roots of equation

(5).

 In other words, we never generate

polynomial with lower murphy E value than

CADO-NFS. Since generating polynomial

having larger murphy E as possible is most

important in polynomial selection stage, it

can be said that our modified version

selects better polynomial in reasonable

time.

VI. Conclusion

In this paper we propose modified version

of polynomial selection in CADO-NFS.

CADO-NFS uses collision to avoid CRT and

find common roots between primes. In this

way CADO-NFS generates polynomial with

moderate – not best - murphy E. However

largest murphy E value is necessary for

shorter sieving time. Hence we used CRT to

generate all roots but estimate performance

of root by euclidean distance instead of

calculating lognorm. In this way polynomial

with murphy E value larger than CADO-NFS

is guaranteed in practical time and can be

expected to implemented in polynomial

selection for RSA-1024.

References

[1] R. Rivest, A. Shamir, L. Adleman, “A

Method for Obtaining Digital Signature

and Public-Key Cryptosystems,” ACM,

vol.21(2), pp.120-126, 1978

[2] T. Kleinjung. “Polynomial selection”. In

CADO workshop on integer factorization,

INRIA Nancy, 2008. http://cado.gforg-

e.inria.fr/workshop/slides/kleinjung.

pdf.

[3] T. Kleinjung. “On polynomial selection for

the general number field sieve”.

Mathematics of Computation, pp. 2037–

2047, 2006.

[4] S. Bai “Polynomial Selection for the

Number Field Sieve” , Ph.D. Thesis ,The

정보보호학회논문지 (2016. 10) 1129

<저자소개>

김 수 리 (Suhri Kim) 학생회원

2014년 2월: 고려대학교 수학과 학사

2014년 8월~현재: 고려대학교 정보보호대학원 석사과정

<관심분야> 부채널 공격, 공개키 암호시스템

권 지 훈 (Jihoon Kwon) 학생회원

2010년 2월: 고려대학교 수학과 학사

2010년 3월~현재: 고려대학교 정보보호대학원 석박사 통합과정

<관심분야> 정보보호, 공개키 암호시스템

조 성 민 (Sung Min Cho) 학생회원

2008년 2월: 광운대학교 수학과 학사 졸업

2011년 8월: 고려대학교 정보경영공학전문대학원 석사 졸업

2011년 8월～현재: 고려대학교 정보보호대학원 정보보호학과 박사과정

<관심분야> 부채널 공격, 공개키 암호 알고리즘, 암호구현

Australian National University,2011

[5] S. Bai, E. Thom´e, P. Zimmermann. Facto

risation of RSA-704 with CADO-NFS. Re

port, 2012.http://eprint.iacr.org/2012/3

69.pdf.

[6] T. Kleinjung, K. Aoki, J. Franke, A. K.

Lenstra, E. Thom´e, J. W. Bos, P. Gaudry,

A. Kruppa,P. L. Montgomery, D. A.

Osvik, H. J. J. te Riele, A. Timofeev, and

P. Zimmermann. “Factorization of a

768-bit RSA modulus”. CRYPTO ’10,

vol.6223 LNCS, pp 333–350, 2010

[7] A. K. Lenstra and H. W. Lenstra, Jr.,

editors. “The Development of the Number

Field Sieve”, vol. 1554 of Lecture Notes

in Mathematics. Springer, 1993.

[8] Matthew E. Briggs “An Introduction to

the General Number Field Sieve”, Master

Thesis. Virginia Polytechnic Institute

and State University. April, 1998.

[9] A.K. Lenstra, H.W. Lenstra, Jr., editors,

“The Development of the Number Field

Siece”, Lecture Notes in Mathmatics,

vol.1554, 1993.

[10] B. A. Murphy, R. P. Brent, “On Quadratic

Polynomials for the Number Field Sieve”,

CATS’98, pp 199-231, 1998.

[11] B. A. Murphy, “Polynomial Selection for

the Number Field Sieve Integer

Factorization Algorithm”, Ph.D. Thesis,

The Australian National University,

1999.

[12] S. Bai, P. Gaudry, A. Kruppa, E. Thome,

P. Zimmermann “Factorization ofr

RSA-220 with CADO-NFS”, 2016

1130 GNFS를 위한 향상된 다항식 선택 기법

장 남 수 (Nam Su Chang) 정회원

2002년 2월: 서울 시립대학교 수학과 이학사

2004년 8월: 고려대학교 정보보호 대학원 공학석사

2010년 2월: 고려대학교 정보경영공학전문대학원 공학박사

2010년 7월~현재: 세종사이버대학교 정보보호학과 조교수

<관심분야> 암호칩 설계 기술, 부채널 공격, 공개키 암호 알고리즘, 공개키 암호 암호분석

윤 기 순 (Kisoon Yoon) 정회원

1998년 8월: 경희대학교 수학과 이학사

2007년 8월: 고려대학교 정보보호학과 공학석사

2013년 11월: Université de Caen 수학과 이학박사

2013년 11월~현재: 엔에스에이치씨 암호기술팀 팀장

<관심분야> 정수론, 암호학, 정보보호

김 창 한 (Chang Han Kim) 종신회원

1985년 2월: 고려대학교 수학과 이학사

1987년 2월: 고려대학교 수학과 이학석사

1992년 2월: 고려대학교 수학과 이학박사

1992년 8월～현재: 세명대학교 정보통신학부 교수

<관심분야> 정수론, 공개키암호, 암호프로토콜

박 영 호 (Young-Ho Park) 종신회원

1990년 2월: 고려대학교 수학과 이학사

1993년 2월: 고려대학교 수학과 이학석사

1997년 2월: 고려대학교 수학과 이학박사

2002년 3월～현재: 세종사이버대학교 정보보호학과 교수

<관심분야> 공개키 암호, 암호 프로토콜, 부채널 공격, 암호안전성평가

홍 석 희 (Seokhie Hong) 종신회원

1995년 2월: 고려대학교 수학과 학사

1997년 2월: 고려대학교 수학과 석사

2001년 8월: 고려대학교 수학과 박사

1999년 8월~2004년 2월: (주) 시큐리티 테크놀로지스 선임연구원

2003년 8월~2004년 2월: 고려대학교 정보보호기술연구센터 선임연구원

2004년 4월~2005년 2월: K.U.Leuven, ESAT/SCD-COSIC 박사후연구원

2005년 3월~2013년 8월: 고려대학교 정보보호대학원 부교수

2013년 9월~현재: 고려대학교 정보보호대학원 정교수

<관심분야> 대칭키·공개키 암호 분석 및 설계, 컴퓨터 포렌식

