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ABSTRACT

RSA cryptosystem is one of the most widely used public key cryptosystem. The security of RSA cryptosystem is based on
hardness of factoring large number and hence there are ongoing attempt to factor RSA modulus. General Number Field Sieve
(GNEFS) is currently the fastest known method for factoring large numbers so that CADO-NFS - publicly well-known software
that was used to factor RSA-704 - is also based on GNFS. However, one disadvantage is that CADO-NFS could not always
select the optimal polynomial for given parameters. In this paper, we analyze CADO-NFS’s polynomial selection stage. We
propose modified polynomial selection using Chinese Remainder Theorem and Euclidean Distance. In this way, we can always
select polynomial better than original version of CADO-NFS and expected to use for factoring RSA-1024.
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Introduction sending information via insecure channel
and its security is based on hardness of

Public key cryptosystem is wuseful for solving number theoretic problems. For ex-
ample, RSA cryptosystem is based on
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discrete logarithm problem. Among other
public key cryptosystems, RSA cryptosys-
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In RSA cryptosystem, public modulus n
is chosen as product of two distinct primes
p,q and primes p,q are kept secret(1). It is
easy to generate such number n but hard
to find p,q¢ such that n=pq for n suffi-
ciently large. Since RSA cryptosystem can
be broken by factoring n, integer factori-
zation is one of main topics for research.
Currently, the best known factoring algo-
rithm is the General Number Field Sieve
(GNFS)[9]. Factoring based on GNFS is
recently performed by T. Kleinjung et al.
in 2009 for factoring RSA-768(6), and also
by S. Bai et al. in 2012 for factoring
RSA-704(5).

CADO-NFS is one
known factoring tool based on GNFS and
it was wused to factor RSA-704 and
RSA-220(12]). It selects polynomial using
Kleinjung's second algorithm. However
CADO-NFS could not always select the
optimal polynomial for given parameters.

This paper targets CADO-NFS's poly-
nomial selection stage. We analyze the

of publicly well

possible disadvantage that can occur when
using CADO-NFS directly. By modifying
CADO-NFS's polynomial selection proce-
dure we can now select better polynomial
compare to polynomial selected by
CADO-NFS.

This paper is organized as follows. In
Section 2, we present backgrounds for pol-
ynomial selection. Then in Section 3, we
explain Kleinjung's second algorithm - al-
gorithm for polynomial selection which is
currently used in CADO-NFS. In Section
4, we analyze disadvantage in CADO-NFS
and propose our new way of selecting
polynomial. In Section 5, experimental re-
selection is

sults of our polynomial

presented.

Il. Background

In this Section, underlying principle
GNFS is first presented. Next, we de-
method  for
selection. Lastly, we introduce two meas-

scribe  earlier polynomial
urements to score quality of selected

polynomial.

2.1 General Number Field Sieve

Modern factoring algorithm is based on
‘difference of squares’. It factors by selecting
random integers z,y such that = # ymodn and
2> =¢’modn. Then by computing ged(z+y,n)
and ged(z—y,m) we can obtain non-trivial
factors of n with high probability. This concept
of using ‘square of random number is also
employed in Quadratic Sieve(QS) and
General Number Field Sieve.

GNFS s
method for factoring numbers over 110
digits(9). It can be seen as generalization

currently fastest known

of QS. QS wuses quadratic polynomials
whereas GNFS uses polynomials of higher
degree so that a square is not produced
directly in Z as before. It wuses two

polynomial f(z),¢(x) having common root
mmodn. Let o and 8 be roots of f(z),g(x)
not in Z, respectively, and consider rings
Zlal], Z18]. Goal in GNFS is to find (a,b)
pairs such that a—ba and a—0b8 are
smooth over chosen basis of primes. We
say that an element is smooth if all of its
factors are member of our chosen basis of
primes.

We collect (a,b) pairs where [ [(a—ba)=X*
for XZa] and [J(a—0p8) = ¥? for YE 3.
Consider homomorphisms from ring Za] and
Z18] to Z, that maps « and 8 to m. Then
such that X, Y are

respectively.

there exist z,yEZ7

n

mapped to  z,y Hence

2> =¢’modn is again cbtained and non-trivial
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factors of n can be found with high probability.

Usually, GNFS is divided into four
stages - polynomial selection, sieving,
linear algebra, square roots - but we
focus on first two stages of GNFS.
Namely, polynomial selection where we
select f(z) and g(x) and sieving where we
collect pairs (a,b). It is known that
sieving takes over 90% of total time for
factoring using GNFS, and choice of
polynomial dramatically affect time to
complete sieving. In next Section, we
briefly method  for
polynomial selection.

describe  earlier

2.2 Classical Polynomial Selection

Classic way to generate polynomial is
using base-m method(10). The base-m
method expresses number n to be factored
as n=m'+c,_m?'+..+¢. such that
le;l < % for each ¢ and generates monic
polynomial f(x) of degree d and monic
polynomial g(z) =z—m of degree 1 where
mmodn is common root of f(z) and g(x).
To reduce size of coefficient of f(2) this method
is modified to select non-monic polynomial

d d
f(z) =Y ca' such that n=Y,¢;m’. We choose
i=0 i=0

m to be close to (n/c,)"4(4). If ¢, , is not
small enough, try another c¢,. Otherwise we

optimize the generated polynomial pair.
2.3 Quantifying Quality of Polynomials

In Section 2.1, we emphasized the
importance of selecting good polynomial. In
this Section, we introduce measurements
to evaluate whether generated polynomial
can be considered ‘good. Note that main
goal of sieving stage is to collect many
pairs (a,b) such that a—ba is smooth over

chosen basis of primes where a is root of
f(z). Usually basis of primes consist of
‘small’ primes and small value norm of
f(z) is more likely to be factored by small
primes and hence more likely to be smooth
over basis than larger norm. Thus one of
quantify quality of
polynomial is called lognorm’. Lognorm is
logarithmic average of polynomial values

measurement to

across sieving region and lognorm of
function is computed as below(11), where
s refers to skewness of sieving region,
calculated by ratio of a,b(4).

1 B 27 1
510g s (1/ f FAscos 0,sin0) " drdg] .
0o Yo

Hence small lognorm means size of
polynomial is small so that it is more
likely to be smooth over our chosen basis
of primes. Thus we are searching for
polynomial with smaller lognorm as
possible. We may assume that size of g(z)
does not vary much across sieving regions
than f(z) due to the fact that g(z) is
linear. So in practice, we only consider
lognorm of f(z).

Combining f(z) and g(z) we can approximate
number of sieving reports as equation
below(11].

6 logl 7z, y)|+ a(F)
F\//Qp( log B, )P

Above measurement is called ‘murphy E’

logl G(z,y)|+ a(G)
log B,

dxdy

of polynomials. Since collecting as many
relation as possible is goal in sieving
stage, larger murphy E implies it is likely
to have large number of sieving reports in
sieving stage. Hence we focus on selecting
f(x),9(z) pairs with larger murphy E
value.
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[Il. Kleinjung’s Second Algorithm and lIts
Implementation

In this Section, we describe Kleinjung's
second algorithm for selecting polynomial
and how it is implemented in CADO-NFS.
The algorithm gives an efficient way to
control size of «¢,_, while producing

polynomial with large skewness.

3.1 Kleinjung's Second Algorithm

Kleinjung's second algorithm extends
GNFS's  polynomial  selection
procedure(2). Instead of using base-m
method as in GNFS, Kleinjung's second
algorithm uses base-(m,,m,) method and

current

generates non-monic polynomial f(z) of
degree greater than 1 and non-monic
polynomial g(z) of degree 1. Base-(m,m,)
represents the number n to be factored as

n—ch miimb and selects f(xz),g(x) of

i=0

ch and g(z) =myx—m,
i=0

the form f(z

having m;m; 'modn as common root.

Let @ be set of small primes and P be
set of primes in [B,2B] for some bound B
so that PNQ= @
larger than primes in @. Leading coefficient
m, of g(z) is chosen to be of form m, =p,pyq
where ¢= H% for ¢ €Q and p, p,EP.

Kleinjung's second algorithm generates
polynomial f(z) with smaller ¢, , than as
in first algorithm(2,4). Method of selecting
smaller ¢; , is described below.

and primes in P are

In equation n—Ecd mi~'ml, we expand

i=0

to

d
— d—i_ i
n=3Y ¢, miim}
i=0

e 2
:cd(mf+ dclmd m2)+20m1m o (D
d i=0

and express (1) as in terms of d-th degree
by using

d
Ca—1
/ — dy d-1 2
Cd("h + ?mz) =cymitc, mi myt+myR,,
d

i
Ca—1

de,

m,

where R, —ch Cimf l(

Then equation (1) can be rewritten as

d d—2
Ci—1 k e
n=cy\m, +——m,| —miR,+ Y e;mimi’
dey i=0
To eliminate the denominator, we
multiply d’¢~! on both side and obtain
dd d— 1
_ d_ g1
= (dcdml +Cd—1m2) m2R0
d—2 . .
%Y Jemimd T (2)

i=0

Let n=d¢’"'n and m=deym,+c,_,m,. By
simplifying terms that has degree lower
than d, equation (2) can be represented as

n=m"+m?R.
Taking modulo by m2 . we have
-~ ~(1 2
n=m modm;. (3)

By obtaining solution for m in (3), m

equals to value who satisfies m=n"modm;.
Since deym,+c¢;_m,=m ., and two values
d, ¢; are known, by taking modulo dc; we

have
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¢y— 1My = m mod de, (4)

By multiplying inverse of m, modulo dc,
on both side of equation (4), ¢, , is
determined. Due to the fact that we
obtained ¢;,_; by taking dec, as modulus,
le,_| < dc; meaning that we have ¢,_; with

appropriate size.

3.2 Implementation in CADO-NFS

The most direct way to solve equation
(3) is to first solve n=z"modp for each
prime p in m,. and solve n=z'modp® by
using Hensel's lemma. After obtaining d
solutions for each prime p, by using
Chinese Remainder Theorem(CRT) we can
obtain solution for n=axz’modm3. To have
larger cardinality of polynomial set to
select the best polynomial, CADO-NFS
uses only the primes p having d roots for
n=x"modp. Hence if m, consists of I
primes, this means that by using CRT we

have d' number of roots in total. However,
1

since we only need root m close to n? (4],
calculating all d' solution is tedious. Hence
to avoid using CRT and solve equation (3),
CADO-NFS uses collision between roots to

1
search for m close to n? efficiently.

Given input n,d,c;, let 7710 be integral
1

part of ﬁg. We first compute roots for

n= (m,+r)"modp where pE P. Then roots
are lifted to r, modulo p? and recorded as
(p,r,). Second, we search for collision on r.
This means that we are searching for » and
7 where r is root of n= (m,+7)'modp? and
r'is root of n=(my+7)'modps and r=1r".

Then we can obtain n= (m,+r)'modpip

without using CRT. If collision is not
detected, then we use primes ¢ in set @

and let m, =pp,q where g= Hq,- )

Note that we already have recorded
roots (p,rp) so that we only need to
calculate roots for primes in . For each
g€ Q solve n=(my+r,)"modg’. Then for
each ¢ and for all pEP we -calculate
i,€10,¢") by solving r,+i¢ =r,modp’ such
that equation n=(m,+r,+id) modp® is
satisfied. Then pair (p,i,) is recorded and
we search for collision on i between (p;,i)

and (py4). If collision occurs
n= (77L0+rq +iq2)dmodpfp§q2 (5)

is satisfied. Again, CRT is not used to

calculate common roots between pl,pi, ¢,

and obtained 77L:7710+7'q+iq2 is reasonably
1

¢ since m, was chosen to be

1
integral part of n‘.
As a summary, total procedure of
Kleinjung's second algorithm is described
in Algorithm 1.

close to n

Algorithm 1

Input : n,d,c;, prime sets P, @
Output :

of n

(m,,m,) for the base expansion

1. Compute n, 7%0 from n,d, ¢,
2. For p€P do
2.1 Solve 7, in n= (771(,+rp)dm0dp2
2.2 Record (p,r,) and detect collisions
on 7,
3. For ¢€ @ do
3.1 Solve r, in n= (T?L[,-J—rq)”lrnodq2
3.2 For each r, do
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3.2.1 For p€ P do
3.2.1.1 For each r, do

3.2.1.2. Solve i, in
n= (m, +r,+i,q) modp’q’
3.2.1.3 Record (p,i,) and detect

collisions on i,

IV. Proposed Method

In this Section, we analyze the
disadvantage in CADO-NFS and propose
new method to find m that can generate
polynomial with larger murphy E value
than other roots. We used CRT to find
root of ﬁzxdmodmg and polynomial is

1
selected from m with smallest In? —ml.

4.1 Analysis of CADO-NFS

The major disadvantage of using collision

is that there is a probability of existence
1

of root closer to n? than root founded by

using collision. More specifically, CADO-NFS
uses one solution of n= z?modm? to generate
polynomial not by searching all d roots but
by fixing m, and detecting collision
between 4 in equation (5). Hence solution
that generates better polynomial can be
missed. Since good selection of polynomial
can reduce time for searching relation in
checking
candidates that has higher probability of
generating polynomial of larger murphy E
might be a problem. In fact for RSA-768
ad=265482057982680,

sieving  stage (4,87, not

with degree 6 and

CADO-NFS found
2056726454298768247003538862069644448626824473920812

as m and generated polynomial with
853x10""® as murphy E value. But

polynomial that was actually used for

factoring RSA-768 has m with
2056722663530813341394738735297691839197379108251632

and 6.99x107Y as murphy E. Therefore we

focused on checking all roots of n= z‘modm3.

4.2 Proposed Method

In order to check all d roots, CRT is
necessary. Naive way of checking all d
roots and observe which root generates
better polynomial is to generate polynomial
for each root, calculate lognorm, and
compare if lognorm is smaller than
lognorm calculated previously. However,
calculation of lognorm for one polynomial
takes 4.52x10 "s so that calculation of
lognorm for all d' polynomial takes
4.52x10""xd's. If 11 primes and degree 6
are used as in RSA-768 this will take 12
hours for just searching 15 pairs of p;,p,
while it takes 38.5 minutes when using
collision.

When considering RSA-1024, it is too
inefficient to check all roots for each pair
of (ppy»q). Since exact value of leading
coefficient of f(x) is unknown, this leads
to at least d'x(admax-admin)/incr amount
of checking where admax and admin
denotes maximal and minimal value of ¢,

we are searching for, respectively.

Thus instead of generating all d!
polynomials to calculate lognorm, we only

generated polynomial for roots with
1

smallest |n? —m|. This means that instead
of generating polynomial and calculate
lognorm for each root, only euclidean
distance is calculated for each root and

polynomial is generated only once for m
1

with smallest n? —m|. The total procedure
for selecting polynomial is described in
Algorithm 2.
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Algorithm 2

Input @ n,d,c;, prime sets P, @

incr: number added to ¢; after each

round

S 1 Set of 15 polynomials recorded as
(m, f(x), g(x) lognorm)

Output : f(z),¢9(x) with lowest lognorm

among founded polynomials

1. For each ¢,

1.1 Compute n, m, from n,d,c,

1.2. For p€ P do
1.2.1 Solve 7, in n= (m,+r,)" modp’
1.2.2. Record (p,r,) and detect collision

on 7,

1.3. For ¢ @ do
1.3.1 Solve z in n=z’modg

1.4. For (p.p,) (p.p,©P) such that
Py, Py has collision

1.4.1 Solve z in n= z'modp?
for i=1,2
1.4.2. Solve n = z’modm3 by CRT where

my= p1p2H q

1.4.3. For each solution m in 7 = zmodmS3
1

caleulate D=n" —ml
1.4.4. Output smallest D
1.5. Calculate lognorm for (p,,p,) and
m with smallest D
1.6. If lognorm < max lognorm in S
1.6.1. Tnsert-sort (m, f(z), g(z) lognorm)
2. If ¢;+incr <  admax goto step 1
3. Output f(z),g(z) with lowest lognorm

In Step 1.2 in Algorithm 2, we modified
CADO-NFS's ‘collision_on_sq.
Instead of moving to function match in

function

‘hash-add’ if collision is found, we recorded
prime pair (p;.p,) for detected collision.

With this recorded prime pair and primes

in ¢ we solve n=az'modk’ for prime klm,.
At Step 1.6 we calculate euclidean distance

D between solution z of n=z'modm? and

n.
For each prime pair, polynomial is
generated for m having smallest D and

lognorm is caledlated. Then (m, f (z), g () lognorm)
is insert-sorted if calculated lognorm is smaller
than maximal lognorm of set calculated
previously. In practice, we kept only 15
values of lognorm. Hence regardless of
number of prime pairs and number of
rounds occurs, our Algorithm 2 outputs 15
polynomials.

V. Implementation Results

Experiments were performed using gcc
version 4.9.2 with processor Intel(R)
Core(TM) i5-4690K CPU at 3.5 GHz with
8GB RAM. Size optimization and root
optimization are same for both group. We
used cado-2.1.1 version for optimization.
Although latest version of CADO-NFS is
2.2.0, released in Dec. 2015, only
optimization part of polynomial selection
has been changed. Since we are only
considering the generation of polynomial
which is same in both versions, this
experimental result will be same for
cado-2.2.0 also.

Single round implies that test was done
for one ad value and multiple rounds
implies that test was done for range of ad
values.

Note that ‘ad’ refers to leading coefficient
of f(z) and CADO-NFS uses this value as
input parameter. 1’ means number of
primes used in m, and ‘pairs means
number of (p,,p,) that has collision. Hence
total number of roots generated by ! lg

and n pairs is nxd',
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Below is single-round test result for

RSA-768 using degree 6, 2= [100000,200000].
Below is single-round test result for
RSA-768 wusing parameters that includes
parameters that were actually used for
factoring RSA-768(6). Namely, degree 6
and P=1[900,1800] were used.

Multiple
RSA-704 number with degree 6, increment
60 and P=[900,1800].

In summary, the results of experiments
show that by using our modified version of

rounds were tested with

polynomial selecting method, we can
search for polynomial with murphy E
larger or equal to murphy E founded by
CADO-NFS in practical time. This is
guaranteed by the fact that we are
actuatlly checking all the roots of equation

(5).

Table 1. Implementation results for RSA-768
single round

| CADO-NFS | CRT
1g=8, ad=265482058083480, 5 pairs
MurphyE 3.27x10" 7 3.27x10° 7
Time 24 min 7 min
lg=6, ad=265482058083480, 6 pairs
MurphyE 1.32x10" 17 1.32x10° 17
Time 25.7 min 6.7 min

Table 2. Implementation results for RSA-768
single round

| CADO-NFS | CRT
lq=11, ad=265482057982680, 15 pairs
MurphyE 8.53x 10" '8 6.98 107
Time 28.8 min 70.5 min

Table 3. Implementation results for RSA-704
multiple round

| CADO-NFS | CRT
lg=7, ad=1614120 ~ 1614180 , 2 pairs
MurphyE 1.99 <10~ 16 1.99 10716
Time 19 min 6.7 min
lg=7, ad=1614180 ~ 1614300 12 pairs
MurphyE 2111016 2.11x10 ¢
Time 63.6 min 6.6 min

In other words, we never generate
polynomial with lower murphy E value than
CADO-NFS. Since generating polynomial
having larger murphy E as possible is most
important in polynomial selection stage, it
can be said that our modified version
selects better polynomial in reasonable
time.

VI. Conclusion

In this paper we propose modified version
of polynomial selection in CADO-NFS.
CADO-NFS uses collision to avoid CRT and
find common roots between primes. In this
way CADO-NFS generates polynomial with
moderate - not best - murphy E. However
largest murphy E value is necessary for
shorter sieving time. Hence we used CRT to
generate all roots but estimate performance
of root by euclidean distance instead of
calculating lognorm. In this way polynomial
with murphy E value larger than CADO-NFS
is guaranteed in practical time and can be
expected to implemented in polynomial
selection for RSA-1024.
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