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요   약

RSA 암호 시스템은 가장 널리 사용되는 공개키 암호 알고리즘 중 하나이며, RSA 암호 시스템의 안전성은 큰 수의 

인수분해의 어려움에 기반을 둔다. 따라서 RSA 암호 시스템의 합성수 을 인수분해하려는 시도는 계속 진행 중에 있

다. General Number Field Sieve는 현재까지 알려진 가장 빠른 인수분해 방법이고, RSA-704를 인수분해 하는데 

사용된 소프트웨어인 CADO-NFS도 GNFS를 기반으로 설계되어 있다. 그러나 CADO-NFS는 다항식 선택 과정에

서 입력된 변수로부터 항상 최적의 다항식을 선택하지 못하는 문제점이 있다. 본 논문에서는 CADO-NFS의 다항식 

선택 단계를 분석하고 중국인의 나머지 정리와 유클리드 거리를 사용하여 다항식을 선택하는 방법을 제안한다. 제안된 

방법을 이용하면 기존의 방법보다 좋은 다항식이 매번 선택되며, RSA-1024를 인수분해 하는데 적용할 수 있을 것으

로 기대한다.

ABSTRACT

RSA cryptosystem is one of the most widely used public key cryptosystem. The security of RSA cryptosystem is based on 

hardness of factoring large number and hence there are ongoing attempt to factor RSA modulus. General Number Field Sieve 

(GNFS) is currently the fastest known method for factoring large numbers so that CADO-NFS – publicly well-known software 

that was used to factor RSA-704 – is also based on GNFS. However, one disadvantage is that CADO-NFS could not always 

select the optimal polynomial for given parameters. In this paper, we analyze CADO-NFS’s polynomial selection stage. We 

propose modified polynomial selection using  Chinese Remainder Theorem and Euclidean Distance. In this way, we can always 

select polynomial better than original version of CADO-NFS and expected to use for factoring RSA-1024.
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I. Introduction *

Public key cryptosystem is useful for 
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sending information via insecure channel 

and its security is based on hardness of 

solving number theoretic problems. For ex-

ample, RSA cryptosystem is based on 

hardness of factoring large numbers and 

Elliptic Curve Cryptography is based on 

discrete logarithm problem. Among other 

public key cryptosystems, RSA cryptosys-

tem is popular for its simplicity. 
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In RSA cryptosystem, public modulus  

is chosen as product of two distinct primes 

  and primes   are kept secret[1]. It is 

easy to generate such number  but hard 

to find   such that   for  suffi-

ciently large. Since RSA cryptosystem can 

be broken by factoring , integer factori-

zation is one of main topics for research. 

Currently, the best known factoring algo-

rithm is the General Number Field Sieve 

(GNFS)[9]. Factoring based on GNFS is 

recently performed  by T. Kleinjung et al. 

in 2009 for factoring RSA-768[6], and also 

by S. Bai et al. in 2012 for factoring 

RSA-704[5].

CADO-NFS is one of publicly well 

known factoring tool based on GNFS and 

it was used to factor RSA-704 and 

RSA-220[12]. It selects polynomial using 

Kleinjung’s second algorithm. However 

CADO-NFS could not always select the 

optimal polynomial for given parameters.

This paper targets CADO-NFS’s poly-

nomial selection stage. We analyze the 

possible disadvantage that can occur when 

using CADO-NFS directly. By modifying 

CADO-NFS’s polynomial selection proce-

dure we can now select better polynomial 

compare to polynomial selected by 

CADO-NFS. 

This paper is organized as follows. In 

Section 2, we present backgrounds for pol-

ynomial selection. Then in Section 3, we 

explain Kleinjung’s second algorithm – al-

gorithm for polynomial selection which is 

currently used in CADO-NFS. In Section 

4, we analyze disadvantage in CADO-NFS 

and propose our new way of selecting 

polynomial. In Section 5, experimental re-

sults of our polynomial selection is 

presented.

II. Background

In this Section, underlying principle 

GNFS is first presented.  Next, we de-

scribe earlier method for polynomial 

selection. Lastly, we introduce two meas-

urements to score quality of selected 

polynomial.

2.1 General Number Field Sieve

Modern factoring algorithm is based on 

‘difference of squares’. It factors by selecting 

random integers   such that ≠  and 

 ≡. Then by computing   

and    we can obtain non-trivial 

factors of  with high probability. This concept 

of using ‘square of random number’ is also 

employed in Quadratic Sieve(QS) and 

General Number Field Sieve. 

GNFS is  currently fastest known 

method for factoring numbers over 110 

digits[9]. It can be seen as  generalization 

of QS. QS uses quadratic polynomials 

whereas GNFS  uses polynomials of higher 

degree so that a square is not produced 

directly in  as before. It uses two 

polynomial   having common root 

. Let  and  be roots of   

not in , respectively, and consider rings 

, . Goal in GNFS is to find   

pairs such that  and  are 

smooth over chosen basis of primes. We 

say that an element is smooth if all of its 

factors are  member of our chosen basis of 

primes. 

We collect   pairs where    
for ∈ and   for ∈. 
Consider homomorphisms from ring  and 

 to  that maps  and  to . Then 

there exist  ∈ such that  are 

mapped to   respectively. Hence 

 ≡ is again obtained and non-trivial 
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factors of  can be found with high probability.

Usually, GNFS is divided into four 

stages – polynomial selection, sieving, 

linear algebra, square roots – but we 

focus on first two stages of GNFS. 

Namely, polynomial selection where we 

select  and  and sieving where we 

collect pairs  . It is known that 

sieving takes over 90% of total time for 

factoring using GNFS, and choice of 

polynomial dramatically affect time to 

complete sieving. In next Section, we 

briefly describe earlier method for 

polynomial selection. 

2.2 Classical Polynomial Selection 

Classic way to generate polynomial is 

using base- method[10]. The base- 

method expresses number  to be factored 

as 
 , such that 

≤ 


 for each  and generates monic 

polynomial  of degree  and monic 

polynomial    of degree 1 where 

 is common root of  and .  

To reduce size of coefficient of  this method 

is modified to select non-monic polynomial 

 





 such that 






. We choose 

 to be close to 
[4]. If  is not 

small enough, try another . Otherwise we 

optimize the generated polynomial pair.

2.3 Quantifying Quality of Polynomials

In Section 2.1, we emphasized the 

importance of selecting good polynomial. In 

this Section, we introduce measurements 

to evaluate whether generated polynomial 

can be considered ‘good’. Note that main 

goal of sieving stage is to collect many 

pairs   such that  is smooth over 

chosen basis of primes where  is root of 

. Usually basis of primes consist of 

‘small’ primes and small value norm of 

 is more likely to be factored by small 

primes and hence more likely to be smooth 

over basis than larger norm. Thus one of 

measurement to quantify quality of 

polynomial is called ‘lognorm’. Lognorm is 

logarithmic average of polynomial values 

across sieving region and lognorm of 

function is computed as below[11], where 

 refers to skewness of sieving region, 

calculated by ratio of  [4]. 















        .

Hence small lognorm means size of 

polynomial is small so that it is more 

likely to be smooth over our chosen basis 

of primes. Thus we are searching for 

polynomial with smaller lognorm as 

possible. We may assume that size of  

does not vary much across sieving regions 

than  due to the fact that  is 

linear. So in practice, we only consider 

lognorm of .

Combining  and  we can approximate 

number of sieving reports as equation 

below[11].


 




 

  

Above measurement is called ‘murphy E’ 

of polynomials. Since collecting as many 

relation as possible is goal in sieving 

stage, larger murphy E implies it is likely 

to have large number of sieving reports in 

sieving stage. Hence we focus on selecting 

  pairs with larger murphy E 

value.
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III. Kleinjung’s Second Algorithm and Its 

Implementation 

  In this Section, we describe Kleinjung’s 

second algorithm for selecting polynomial 

and how it is implemented in CADO-NFS. 

The algorithm gives an efficient way to 

control size of  while producing 

polynomial with large skewness.

3.1 Kleinjung’s Second Algorithm

  Kleinjung’s second algorithm extends 

current GNFS’s polynomial selection 

procedure[2]. Instead of using base- 

method as in GNFS, Kleinjung’s second 

algorithm uses base- method and 

generates non-monic polynomial  of 

degree greater than 1 and non-monic 

polynomial  of degree 1. Base- 

represents the number  to be factored as 









  and selects   of 

the form  





 and   

having 
 as common root. 

  Let  be set of small primes and  be 

set of primes in   for some bound   

so that ∩ ∅  and primes in  are 

larger than primes in . Leading coefficient 

 of  is chosen to be of form    

where    for ∈ and ∈.

  Kleinjung’s second algorithm generates 

polynomial  with smaller  than as 

in first algorithm[2,4]. Method of selecting 

smaller  is described below.

  In equation 







 , we expand 

to 











  











 (1)

and express (1) as in terms of -th degree 

by using

 





 
 

 
,

where   











.

  Then equation (1) can be rewritten as 

  






 







.

  To eliminate the denominator, we 

multiply 
 on both side and obtain 


 

  
 




   







                      (2)

  Let 
 and  . By 

simplifying terms that has degree lower 

than , equation (2) can be represented as 





.

Taking modulo by 
 , we have





 . (3)

  By obtaining solution for  in (3),  

equals to value who satisfies 




 . 

Since   , and  two values  

,  are known, by taking modulo  we 

have
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Algorithm 1

Input :   , prime sets  

Output :  for the base expansion 

of 

1. Compute  from   

2. For ∈ do

  2.1 Solve  in ≡ 
 

  2.2 Record  and detect collisions  

       on 

3. For ∈ do

  3.1 Solve  in ≡ 


  3.2 For each  do

≡            (4)

  By multiplying inverse of  modulo  

on both side of equation (4),  is 

determined. Due to the fact that we 

obtained  by taking  as modulus, 

≤  meaning that we have  with 

appropriate size.

3.2 Implementation in CADO-NFS

  The most direct way to solve equation 

(3) is to first solve  for each 

prime  in , and solve ≡ by 

using Hensel’s lemma. After obtaining  

solutions for each prime , by using 

Chinese Remainder Theorem(CRT) we can 

obtain solution for 
 . To have 

larger cardinality of polynomial set to 

select the best polynomial, CADO-NFS 

uses only the primes  having  roots for 

. Hence if  consists of  

primes, this means that by using CRT we 

have  number of roots in total. However, 

since we only need root  close to 




[4], 

calculating all  solution is tedious. Hence 

to avoid using CRT and solve equation (3), 

CADO-NFS uses collision between roots to 

search for  close to 




 efficiently. 

  Given input   , let  be integral 

part of 




. We first compute roots for 

≡
 where ∈. Then roots  

are lifted to  modulo  and recorded as 

 . Second, we search for collision on . 

This means that we are searching for  and 

′  where  is root of ≡


 and 

′ is root of ≡′  and  ′ . 
Then we can obtain ≡



 

without using CRT. If collision is not 

detected, then we use primes  in set  

and let    where   .
  Note that we already have recorded 

roots   so that we only need to 

calculate roots for primes in . For each 

∈ solve ≡ 
. Then for 

each  and for all ∈ we calculate 

∈  by solving  
≡

  such 

that equation ≡ 
 is 

satisfied. Then pair   is recorded and  

we search for collision on  between  

and  . If collision occurs

≡ 



 (5)

is satisfied. Again, CRT is not used to 

calculate common roots between 
 
  , 

and obtained  
 is reasonably 

close to 




 since  was chosen to be 

integral part of 




. 

  As a summary, total procedure of 

Kleinjung’s second algorithm is described 

in Algorithm 1.



1126 GNFS를 위한 향상된 다항식 선택 기법

     3.2.1 For ∈ do

      3.2.1.1 For each  do

      3.2.1.2. Solve  in

                   ≡ 


      3.2.1.3 Record   and detect     

               collisions on 

IV. Proposed Method

In this Section, we analyze the 

disadvantage in CADO-NFS and propose 

new method to find  that can generate 

polynomial with larger murphy E value 

than other roots. We used CRT to find 

root of ≡
 and polynomial is 

selected from  with smallest 




.

4.1 Analysis of CADO-NFS

  The major disadvantage of using collision 

is that there is a probability of existence 

of root closer to 




 than root founded by 

using collision. More specifically, CADO-NFS 

uses one solution of ≡
 to generate 

polynomial not by searching all  roots but 

by fixing  and detecting collision 

between  in equation (5). Hence solution 

that generates better polynomial can be 

missed. Since good selection of polynomial 

can reduce time for searching relation in 

sieving stage [4,8], not checking 

candidates that has higher probability of 

generating polynomial of larger murphy E 

might be a problem. In fact for RSA-768 

with degree 6 and  ad=265482057982680, 

CADO-NFS found 

2056726454298768247003538862069644448626824473920812 

as  and generated polynomial with

× as murphy E value. But 

polynomial that was actually used for 

factoring RSA-768 has   with  

2056722663530813341394738735297691839197379108251632 

and × as murphy E. Therefore we 

focused on checking all roots of ≡
.

4.2 Proposed Method

  In order to check all  roots, CRT is 

necessary. Naive way of checking all  

roots and observe which root generates 

better polynomial is to generate polynomial 

for each root, calculate lognorm, and 

compare if lognorm is smaller than 

lognorm calculated previously. However, 

calculation of lognorm for one polynomial  

takes ×s so that calculation of 

lognorm for all   polynomial takes 

× ×s. If 11 primes and degree 6 

are used as in RSA-768 this will take 12 

hours for just searching 15 pairs of  

while it takes 38.5 minutes when using 

collision.

  When considering RSA-1024, it is too 

inefficient to check all roots for each pair 

of   , Since exact value of leading 

coefficient of  is unknown, this leads 

to at least  ×(admax-admin)/incr amount 

of checking where admax and admin 

denotes maximal and minimal value of  

we are searching for, respectively. 

  Thus instead of generating all   

polynomials to calculate lognorm, we only 

generated polynomial for roots with 

smallest 



. This means that instead 

of generating polynomial and calculate 

lognorm for each root, only euclidean 

distance is calculated for each root and 

polynomial is generated only once for  

with smallest 




. The total procedure 

for selecting polynomial is described in 

Algorithm 2.
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Algorithm 2

Input :   , prime sets  

incr: number added to  after each 

round

 : Set of 15 polynomials recorded as 

        ,lognorm) 

Output :   with lowest lognorm 

among founded polynomials

1. For each 

  1.1 Compute ,  from   

  1.2. For ∈ do

    1.2.1 Solve  in ≡ 
    

     1.2.2. Record   and detect collision   

            on 

  1.3. For ∈ do

     1.3.1 Solve  in ≡

  1.4. For    ( ∈) such that    

       has collision

     1.4.1 Solve  in ≡
  

              for   

     1.4.2. Solve ≡
  by CRT where   

            
     1.4.3. For each solution  in ≡

    

            calculate  





     1.4.4. Output smallest   

  1.5. Calculate lognorm for   and   

       with smallest 

  1.6. If lognorm ≤ max lognorm in 

     1.6.1. Insert-sort     ,lognorm)

2. If +incr≤  admax goto step 1

3. Output  with lowest lognorm

  In Step 1.2 in Algorithm 2, we modified 

CADO-NFS’s function ‘collision_on_sq’. 

Instead of moving to function ‘match’ in 

‘hash-add’ if collision is found, we recorded 

prime pair   for detected collision. 

With this recorded prime pair and primes 

in  we solve ≡  for prime . 

At Step 1.6 we calculate euclidean distance 

 between solution  of ≡
  and 

.

  For each prime pair, polynomial is 

generated for  having smallest  and 

lognorm is calculated. Then     ,lognorm)  

is insert-sorted if calculated lognorm is smaller 

than maximal lognorm of set calculated 

previously. In practice, we kept only 15 

values of lognorm. Hence regardless of 

number of prime pairs and number of 

rounds occurs, our Algorithm 2 outputs 15 

polynomials.

V. Implementation Results

  Experiments were performed using gcc 

version 4.9.2 with processor Intel(R) 

Core(TM) i5-4690K CPU at 3.5 GHz with 

8GB RAM. Size optimization and root 

optimization are same for both group. We 

used cado-2.1.1 version for optimization. 

Although latest version of CADO-NFS is 

2.2.0, released in Dec. 2015, only 

optimization part of polynomial selection 

has been changed. Since we are only 

considering the generation of polynomial 

which is same in both versions, this 

experimental result will be same for 

cado-2.2.0 also.

  Single round implies that test was done 

for one ad value and multiple rounds 

implies that test was done for range of ad 

values. 

  Note that ‘ad’ refers to leading coefficient 

of  and CADO-NFS uses this value as 

input parameter. ‘lq’ means number of 

primes used in , and ‘pairs’ means 

number of   that has collision. Hence 

total number of roots generated by  lq 

and  pairs is ×.
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CADO-NFS CRT

lq=8, ad=265482058083480, 5 pairs

MurphyE ×  × 

Time 24 min 7 min

lq=6, ad=265482058083480, 6 pairs

MurphyE ×  × 

Time 25.7 min 6.7 min

Table 1. Implementation results for RSA-768 

single round

CADO-NFS CRT

lq=11, ad=265482057982680, 15 pairs

MurphyE ×  × 

Time 28.8 min 70.5 min

Table 2. Implementation results for RSA-768 

single round

CADO-NFS CRT

lq=7, ad=1614120 ~ 1614180 , 2 pairs

MurphyE ×  × 

Time 19 min 6.7 min

lq=7, ad=1614180 ~ 1614300  12 pairs

MurphyE ×  × 

Time 63.6 min 6.6 min

Table 3. Implementation results for RSA-704 

multiple round

  Below is single-round test result for 

RSA-768 using degree 6,  .

Below is single-round test result for 

RSA-768 using parameters that includes 

parameters that were actually used for 

factoring RSA-768[6]. Namely, degree 6 

and   were used. 

  Multiple rounds were tested with 

RSA-704 number with degree 6, increment 

60 and  .

  In summary, the results of experiments 

show that by using our modified version of 

polynomial selecting method, we can 

search for polynomial with murphy E 

larger or equal to murphy E founded by 

CADO-NFS in practical time. This is 

guaranteed by the fact that we are 

actuatlly checking all the roots of equation 

(5).

  In other words, we never generate 

polynomial with lower murphy E value than 

CADO-NFS. Since generating polynomial 

having larger murphy E as possible is most 

important in polynomial selection stage, it 

can be said that our modified version 

selects better polynomial in reasonable 

time.  

VI. Conclusion

In this paper we propose modified version 

of polynomial selection in CADO-NFS. 

CADO-NFS uses collision to avoid CRT and 

find common roots between primes. In this 

way CADO-NFS generates polynomial with 

moderate – not best - murphy E. However 

largest murphy E value is necessary for 

shorter sieving time. Hence we used CRT to 

generate all roots but estimate performance 

of root by euclidean distance instead of 

calculating lognorm. In this way polynomial 

with murphy E value larger than CADO-NFS 

is guaranteed in practical time and can be 

expected to implemented in polynomial 

selection for RSA-1024.
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2004년 4월~2005년 2월: K.U.Leuven, ESAT/SCD-COSIC 박사후연구원

2005년 3월~2013년 8월: 고려대학교 정보보호대학원 부교수

2013년 9월~현재: 고려대학교 정보보호대학원 정교수

<관심분야> 대칭키·공개키 암호 분석 및 설계, 컴퓨터 포렌식


