459
Journal of The Korea Institute of Information Security & Cryptology ISSN 1598-3986(Print)
VOL.27, NO.3, Jun, 2017 ISSN 2288-2715(0nline)
https://doi.org/10.13089/JKIISC.2017.27.3.459

OpenSSL 7|4tk AR8z} 214 13 T2 EF 73 ugH

+

of = 3" ol 42" ol & A, QMEISA FalAE[oH ot=zlote
EMcistm

Custom Cryptographic Protocol Implementation Method Based on OpenSSL*

JunHuy Lam,T Sang-Gon Lee,:F Hoon-Jae Lee, Vincentius Christian Andrianto
Dongseo University

o ok
i =

7V de] AHgEE o 2 ZRAE F Fhiel OpenSSL HF-29] 4 AlelE, An) 2 Fele]dES w53}
= dl ARl gkEs) efolBeje]olrh. OpenLLS<E AHE-ste] SSL 52 o] A=A v TLS Z2ex2 hd
S SAF 5 Aok Al2Ele] AGA Bk fA1F 8 hE ZREFE Julo] EFa A= ofo st o] 2o
vejele A2 e e 53 A 45s tregs Azdd Sete] ks do] A A H 9
of. v iy ohest 2RESS b @ o A o SAsiAlch 2 =reldE OpenSSL 71ub A8} A4
$5 ZREZ 7d Wk 25E 9189 OpenSSL eleluele]e] Al op7|eia g stetsa Anddict. 2|3 A7)
oF Wity skEsh 7Iuk AR} AY ZR2ESS $457] 415 OpenSSL eolBelels 4k WS AlX T

ABSTRACT

One of the most widely-used open source project; OpenSSL is a cryptography library that is used to secure most web sites,
servers and clients. One can secure the communication with the Secure Socket Layer (SSL) or its successor, Transport Layer
Security (TLS) protocols by using the OpenSSL library. Since cryptography protocols will be updated and enhanced in order to
keep the system protected, the library was written in such a way that simplifies the integration of new cryptographic methods,
especially for the symmetric cryptography protocols. However, it gets a lot more complicated in adding an asymmetric
cryptography protocol and no guide can be found for the integration of the asymmetric cryptography protocol. In this paper, we
explained the architecture of the OpenSSL library and provide a simple tutorial to modify the OpenSSL library in order to
accommodate custom protocols of both symmetric and asymmetric cryptography.

Keywords: OpenSSL architecture, custom security protocol, custom asymmetric protocol, custom symmetric protocol

|. Introduction project: OpenSSL is a cryptography library
that is used to secure most web sites,

One of the most widely-used open source servers and clients in the Internet. One
can secure the communication with Secure

“H <k

Received(03. 16. 2017), Modified(04. 26. 2017), Socket Layer (SSL) or its successor,

Accepted(04. 27. 2017) Transport Layer Security (TLS) protocols
TR 20179 oA Sadslel R e by using the OpenSSL library.

% A 2 SR Y

Since cryptograph rotocols will be
B QT 20164 % AH(S IS] Aoz P yPLography: b

AFAEke] 7)ZATAR] AL ulel 28] 9)S(Grant updated and enhanced in order to keep
Number: 2014R1A1A2060021). the system protected, the library was
A2, timljh@msn.com written in a way that simplifies the
AA2E nok60@dongseo.ac. kr(Corresponding author)

460 OpenSSL 7|8k AHEA} A4 otz ZRES 79 1R

e,

integration of new cryptographic methods,
especially for the symmetric cryptography
protocols. However, it becomes a lot more
complicated in modifying or adding an
asymmetric cryptography protocol and no
guide can be found for this integration.
Most of the OpenSSL guide provides
tutorials or references on how to utilize,
configure or deploy the library through
command lines, the Application Program
Interface (API) or configuration settings
(1-3) but the guide on how to modify or
enhance the library can hardly be found.
This makes the coding of a new
cryptographic protocol extremely difficult.
In this paper, we described and
explained the detailed architecture of
OpenSSL to ease the integration of new
symmetric and asymmetric protocols for
the future developers. Our contributions
for this paper are listed as below,
® [Explained the
OpenSSL library
® Described the integration process of

architecture of

the custom symmetric and

asymmetric cryptography protocols

An overview of OpenSSL library and
related works can be found in Chapter 2.
Chapter 3 describes the architecture of
OpenSSL library for integration of custom
protocol while the installation of the
customized OpenSSL library can be found
in Chapter 4. Finally, the paper will be
concluded in Chapter 5.

[I. Background
2.1 Overview of OpenSSL

OpenSSL is widely used to secure the
Internet and hence the effect of a bug in
its code can be severe. This was shown in
the recent critical bug that exposes a

serious security vulnerability: the
Heartbleed. Heartbleed(4]) is a critical bug
found in OpenSSL library that allows
attackers to read beyond the buffer’s data
or it was better known as buffer
over-read.

By doing so, sensitive information that
was protected by the secure channel
established with OpenSSL library can be
exposed to attackers and this can render
secure channel useless. This critical bug
causes havoc over the Internet as an
estimation of 55% popular HyperText
Transport Protocol (Secure) (HTTPS) web
sites were secured by the vulnerable
OpenSSL library(5). Besides that, the
vulnerable OpenSSL library was also used
to secure other protocols such as e-mails,
remote access sessions and etc.

This raises concern of secure coding and
why does it take so long (more than 2
years) for the users/developers to discover
this bug despite the project being open
source. This 1is mainly due to the
complicated structure(6] of the OpenSSL
library that makes it difficult to
understand even for software analyzing
tools.

Kupsch and Miller(6) explained that the
difficulties for the code analysis tools in
identifying the vulnerability are as follow,

® The wuse of pointers (Chain of

pointers led by the vulnerable
function)

® The complexity of the execution path

from the bigger allocation to its
misuse

® The valid bytes of the TLS message

are a subset of the allocated buffer

® The contents of the buffer do not

appear to come directly from
attackers

Besides that, the Heartbleed bug also

AR R 53| =82 (2017, 6) 461

led to a forked version of OpenSSL due to
the complicated and messy code base. The
forked OpenSSL: LibreSSL{7)] tries to
clean up the code and make it easier for
the developers to understand, audit and
repair the library.

In the first week LibreSSL
managed to remove half of the code(8)
from the library. However, it is no longer

alone,

compatible with the project that developed
with OpenSSL and it also supports less
system (OS)
OpenSSL. Fig. 1 shows the source code
analysis of the OpenSSL library by using
the sloccount(9]) tool and the estimated

operating compared to

effort and time required to develop the
library. It shows the size of the OpenSSL
library is enormous given the long history
of the open source cryptography library.

Fig. 1. Source code analysis of OpenSSL library
by using sloccount tool

2.2 Related Works

Armknecht et al. (3] implemented a
trusted channel based on TLS specification
by wusing the OpenSSL library. They
claimed that it helps in ensuring the
integrity of an endpoint software in order
to prevent attacks that compromise the
endpoints through malicious code injection.

However, their work is only a proof of
concept (PoC) prototype instead of an
actual implementation in code. They also
do not explain on the integration of their
work with OpenSSL library in term of
coding.

Yilek et al.(10)
significance of the OpenSSL code and how
it can compromises security when a bad

explained the

code was introduced. It allows attackers to
make use of the loophole or bug and then
compromise the secure channel.

Despite that, they do not show the
proper way to integrate any new protocols
to the OpenSSL library. They only
surveyed on the existing SSL/TLS-enabled
web servers whether the administrators
patched up their servers or not.

Jurkiewicz and Niemiec(11) tried to
implement a symmetric block cipher with
OpenSSL, they provide a simple guide on
how to code for the symmetric block cipher
with OpenSSL. However, they do not
provide any guide on the asymmetric
ciphers and their guide on the symmetric
block cipher also missed out a few key
points such as the libcrypto.num,
libssl.num and buildinfo files.

Ill. The Architecture of OpenSSL

In general, OpenSSL library can be divided
into two sub-libraries as illustrated in Fisg.

Open55SL

ﬁ f

Initialization
Vi Configuration
E Cert. Validation

Other SSL
functions

Keys & Certs

Engines

Other cryptos

Fig. 2. The Architecture of OpenSSL library

462 OpenSSL 7|4F AHEAL A4 ¢h% Z2eg 78 W<t

2, namely the libCrypto and libSSL libraries.

LibCrypto library consists of the generic
cryptographic functions which include the
parameters initialization, random number
generator, error handling, other crypto
functions and configurations of the
cryptographic functions.

This component of OpenSSL library is
located under the directory of ‘crypto’.
LibCrypto library can be further divided
into sub-modules,

® Basic Input/Output (BIO)

Envelope (EVP)

Elliptic Curve Cryptography (ECC)
Keys & Certificates

Engines

Other crypto
Hellman, Bignum and etc)

functions (Diffie

LibSSL library consists of the SSL/TLS
protocols implementation that make use of
the LibCrypto library to establish the
secure

channel. This includes the

channel/session establishment,
management, resumption, authentication
and configuration. Similar to LibCrypto,
LibSSL library can be further divided into
sub-modules,

® Connection/Session initialization

® Connection configuration

® C(Certificate validation

® Other SSL/TLS functions (Session

resumption, Datagram TLS (DTLS),

Alternative key exchange and etc)
3.1 LibCrypto

LibCrypto covered the
symmetric cryptographic functions and
general purpose cryptographic functions.
All of the LibCrypto library’s function
pointers are listed in a file named,
libcrypto.num. This file labels all of the

symmetric cryptographic functions as well

generally

as the rest of the cryptographic functions
with sequential numbers. This is one of
the required file that was not mentioned
by Jurkiewicz and Niemiec(11] as stated
in the related works.

In order to add a new symmetric
cryptographic function to the LibCrypto
library, the first step will be adding a new
number that will be pointed by the
function name to util/libcrypto.num. Then,
the header of the cipher can be added
under include/openssl/cipher_name.h.
Since symmetric cipher’s code can be
identical but in reverse order, the encrypt
mode is denoted as 1 in this header file
while the decrypt mode is denoted as 0.
crypgraphic
function, the crypto/evp/c_allc.c should be

For a new symmetric
updated with the new cipher along with
its name while for a new message digest
algorithm, crypto/evp/c_alld.c should be
updated with the new digest function
along with its name. The EVP module of
LibCrypto consists of a list of function
calls for each of the cipher and message
digest algorithms. If new properties such
as different maximum key length is
required, it can be added or modified in
crypto/evp/evp.h.

Fig. 3 shows part of the libcrypto.num
file that contains the function pointer of
EVP function for Advanced Encryption
Standard (AES) 256 Cipher Block
Chaining (CBC) mode. This function
pointer is then lead to the evp.h and
evp/c_allc.h header files as shown in Fig.
4 and Fig. 5.

Lastly, the detailed implementation of
the cipher will be added under the
OpenSSL

directory crypto/cipher name.

Fig. 3. Part of the libcrypto.num file

AR R 53| =82 (2017, 6) 463

Fig. 5. Part of the evp/c_allc file

manages the source files with the a file
named buildinfo under each directory, it
lists all of the source files that will be
added to the generated makefile and
compile accordingly. Make sure the
buildinfo file is updated with the addition
of the new source files, Jurkiewicz and
Niemiec(11]) also failed to mention this
buildinfo file that is needed to be modified
in order to add new source files into the
library. Fig. 6 shows the buildinfo file for
the AES module, it needs to include all of
the source files for the AES
implementation in order to be compiled.

Fig. 6. Part of the buildinfo file for AES module
3.2 LibSSL

LibSSL on the other hand covers the

asymmetric cryptographic functions.
Similar to the symmetric cryptography,
the SSL/TLS function pointers of the
LibSSL library are listed in a file named,
util/libssl.num. The newly added function
in the LibSSL library had be to updated
into this list of function pointers too. This
is another required file that was not
mentioned by Jurkiewicz and Niemiec(11)
as stated in the related works as they
asymmetric

were not working on

cryptography protocol.

In the case of SSL/TLS protocols, the
cipher identity, name and code number are
listed in include/openssl/ssl.h and
include/openssl/tlsl.h depending on the
protocol used. Besides that, the function
headers can be found in the two header
files too. These can be seen in Fig. 7 and
8 below.

If the new asymmetric cipher is not
based on SSL or TLS protocols, a new
added under

include/openssl/new_asymmetric_cipher.h.

header file can Dbe

Unlike symmetric cryptography, the
developer might need more than one
function here for the client and server
modes. Besides that, a general function
can also be used for the procedures in
which both the client and server modes
share.

Therefore, in most cases, at least three
functions can be declared here in order to
add a new symmetric cryptographic
function. For example, new_asymmetric_cr
ypto_method, new_asymmetric_crypto_clien
t_method and new_asymmetric_crypto_serve
r_method.

Fig. 9 shows part of the libssl.num file
that contains the TLS_client_method.
Besides that, the other function pointers
of the SSL/TLS protocol can also be found

Fig. 7. Part of the tls1.h file that contains the
version numbers

Fig. 8. Part of the tls1.h file that contains the
cipher suites

464 OpenSSL 7|4F AHEAL A4 ¢h% Z2eg 78 W<t

Fig. 9. Part of the libssl.num file

within the file.
After initializing these
pointers, the developer can then proceed

functions

to code for the detailed implementation of
the functions under ssl/new_cipher_lib.c.
Once the code was written, the developer
should add the newly created files to the
buildinfo file so that they will be included
in the generated makefile for compilation.

V. Installation

If any third party library is required for
the custom protocol, makes sure to include
it in the makefile generator under the
directory “Configurations” according to the
OS used. To differentiate the customized
version of OpenSSL library and easily
verify the correct version was installed,
the version name can be modified in the
header file: include/openssl/opensslv.h.
The definition of OPENSSL_VERSION_
TEXT can also be modified to any
identifiable name for the developer.

Typically, the “sudo make install”
command can be used to install the
compiled source code as part of the system
libraries in Linux. Run the command
“openssl version” to check whether the
OpenSSL library was installed properly,
the output should has the same version
name the developer set in the
OPENSSL_VERSION_TEXT as described
earlier.

Once installed, the customized OpenSSL
library can be used by any software within
the system simply by including the
customized library file. By default, the
installed

binary file is located at

/usr/local/bin while the library files are

located at /usr/local/lib. Lastly, the
configuration file of the installed OpenSSL
library is located at /usr/lib/ssl.

V. Conclusion

Most of the existing studies or analysis
explain how to use the OpenSSL library
but none of them actually explain how to
enhance or modify the library with
Jurkiewicz and Niemiec(11) being the only
exception. Even that, they only explain
the integration of a symmetric block
cipher and do not include any guide on
the integration of a custom asymmetric
cipher. They also missed out a few key
points such as the libcrypto.num,
libssl.num and buildinfo files.

Our analysis and study on the OpenSSL
can provide insights for developers or
researchers that attempt to include or
experiment a new cryptography protocol
within the OpenSSL library. Hopefully, it
can also helps to reduce the learning
curve for new developers of OpenSSL
library.

References

(1) Ivan Ristic, OpenSSL Cookbook, 2nd Ed.,
Feisty Duck Limited, UK, March 2015.

(2) Kenneth Ballard, "Secure programming
with OpenSSL AP1” IBM
developerWorks, June 2012.

(3) F. Armknecht, Y. Gasmi, and et.al., "An
Efficient Implementation of Trusted
Channels based on OpenSSL/
Proceedings of the 3rd ACM workshop on
Scalable trusted computing, pp. 41-50,
Oct. 2008.

(4] M. Carvalho, J. DeMott, R. Ford, and D.
Wheeler, “Heartbleed 101, IEEE
Security & Privacy, 12(4), 63-67, July.
2014.

AR R 533 =EA] (2017, 6)

465

(5]

Z. Durumeric, J. Kasten and et al., "The
Matter of Heartbleed,” Proceedings of the
2014 Conference on Internet
Measurement Conference, pp 475-488,
Nov. 2014.

J.A. Kupsch and B.P. Miller, “Why Do
Software Assurance Tools Have Problems
Finding Bugs Like Heartbleed?"
Continuous Software Assurance
Marketplace, 22 Apr. 2014. Web.
https://www.swampinabox.org/
doc/SWAMP-WP003-Heartbleed.pdf
LibreSSL. OpenBSD Foundation. Web.
https://www.libressl.org/goals.html
Jon B. "OpenSSL code beyond repair,
claims creator of "LibreSSL” fork”, Ars
Technica, Apr. 2014.

D.A. Wheeler, ”Sloccount, 2008, Web.
http://www. dwheeler. com/sloccount
S. Yilek, E. Rescorla, and et al., "When
private keys are public: results from the
2008 Debian OpenSSL vulnerability,”
Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement,
pp.15-27, Nov. 2009.

P. Jurkiewicz and M. Niemiec,
"Implementation of a New Cipher in
OpenSSL Environment the Case of
INDECT Block Cipher,” International
Journal of Computer and Communication
Engineering, 5(1), pp. 41-49, Jan. 2016.

OpenSSL 718k AHAF A4 s ZREF 74 v

=

(M X274

9l & 3] (Jun-Huy Lam) 3¢

20069 7Y: o] Ao} Multimedia University ¢

20104 7¥: SAAER fu)HE 21T F34d AL

20124 84 ~20141 84: GHL System Berhad, Malaysia (ZZEHe] =] e])
2014 94 ~&Al: AT e fu|HE 21T whataAy

(FA1Eok) SDN, VEHZ Bl £ZTES] /At EZx9l

o] A} & (Sang-gon Lee) £413|¥

19864 29: Audgnw HAzlgaty} £9

19884 29 Audgtw Hxlgsta} Al

19934 29 Audigtw HAxlgsha) Al

19914 39 ~19974d 24: AAlstw AxEAIF} %
1997 3¢9 ~aA): FAe|eha AFel T ws
(ARl t3ol2, gz ed 9 EYT -4 LTEYOREYT B3

¢

o] & A (Hoon-jae Lee) 4134
19859 24: AEdgw Azl &
19879 29 Axdetw Ax-2atz) 4
19984 249 Z 5ot HAlg-stz)
1987 3¥~19984 24: %HLJ}?’—'}%‘? Al 74 /9%
19984 39 ~20029 29: ALt w Fuf
20024 34 ~3A): TANE N AFEEERE I
Gl tsolE, VEHZMY FAAETA, 2

—r‘—r‘mz

HIAE]$-~ =] ~Elqt k=29t E (Vincentius Christian Andrianto) 43¢
2015 794: qlxul Ao} Petra Christian University Ax}g3t) 24

20154 9 ~&A: FA N ek FulFEe| TS AALA

(Il SDN, vlES] = Bl g7, Bt e o] A

