
459

Journal of The Korea Institute of Information Security & Cryptology
VOL.27, NO.3, Jun. 2017

ISSN 1598-3986(Print)
ISSN 2288-2715(Online)

https://doi.org/10.13089/JKIISC.2017.27.3.459

OpenSSL 기반 사용자 지정 암호 프로토콜 구현 방안*

임 준 휘,† 이 상 곤,‡ 이 훈 재, 인센티우스 크리스티안 안드리안토

동서대학교

Custom Cryptographic Protocol Implementation Method Based on OpenSSL*

JunHuy Lam,† Sang-Gon Lee,‡ Hoon-Jae Lee, Vincentius Christian Andrianto

Dongseo University

요 약

가장 널리 사용되는 오픈 소스 프로젝트 중 하나인 OpenSSL은 대부분의 웹 사이트, 서버 및 클라이언트를 보호하

는 데 사용되는 암호화 라이브러리이다. OpenLLS을 사용하여 SSL 혹은 이것으로부터 나온 TLS 프로토콜로 안전

하게 통신할 수 있다. 시스템의 지속적 보안성 유지를 위해 암호 프로토콜은 업데이트되고 개선되어야 하므로, 이 라이

브러리는 새로운 암호화 방법을, 특히 대칭 암호화 프로토콜을, 시스템에 통합하여 구현하는 일이 간단하도록 작성되었

다. 그러나 비대칭 암호화 프로토콜을 추가 할 때는 훨씬 더 복잡해진다. 본 논문에서는 OpenSSL 기반 사용자 지정

암호 프로토콜 구현 방안 도출을 위하여 OpenSSL 라이브러리의 세부 아키텍처를 파악하고 설명한다. 그리고 대칭키

와 비대칭 암호화 기반 사용자 지정 프로토콜을 수용하기 위해 OpenSSL 라이브러리를 수정하는 방법을 제시한다.

ABSTRACT

One of the most widely-used open source project; OpenSSL is a cryptography library that is used to secure most web sites,

servers and clients. One can secure the communication with the Secure Socket Layer (SSL) or its successor, Transport Layer

Security (TLS) protocols by using the OpenSSL library. Since cryptography protocols will be updated and enhanced in order to

keep the system protected, the library was written in such a way that simplifies the integration of new cryptographic methods,

especially for the symmetric cryptography protocols. However, it gets a lot more complicated in adding an asymmetric

cryptography protocol and no guide can be found for the integration of the asymmetric cryptography protocol. In this paper, we

explained the architecture of the OpenSSL library and provide a simple tutorial to modify the OpenSSL library in order to

accommodate custom protocols of both symmetric and asymmetric cryptography.

Keywords: OpenSSL architecture, custom security protocol, custom asymmetric protocol, custom symmetric protocol

I. Introduction*

One of the most widely-used open source

Received(03. 16. 2017), Modified(04. 26. 2017),

Accepted(04. 27. 2017)

* 본 논문은 2017년도 영남지부 학술대회에 발표한 우수논문

을 개선 및 확장한 것임

* 본 연구는 2016년도 정부(교육과학기술부)의 재원으로 한국

연구재단의 기초연구사업 지원을 받아 수행되었음(Grant

Number: 2014R1A1A2060021).

†주저자, timljh@msn.com

‡교신저자, nok60@dongseo.ac.kr(Corresponding author)

project; OpenSSL is a cryptography library

that is used to secure most web sites,

servers and clients in the Internet. One

can secure the communication with Secure

Socket Layer (SSL) or its successor,

Transport Layer Security (TLS) protocols

by using the OpenSSL library.

Since cryptography protocols will be

updated and enhanced in order to keep

the system protected, the library was

written in a way that simplifies the

460 OpenSSL 기반 사용자 지정 암호 프로토콜 구현 방안

integration of new cryptographic methods,

especially for the symmetric cryptography

protocols. However, it becomes a lot more

complicated in modifying or adding an

asymmetric cryptography protocol and no

guide can be found for this integration.

Most of the OpenSSL guide provides

tutorials or references on how to utilize,

configure or deploy the library through

command lines, the Application Program

Interface (API) or configuration settings

[1-3] but the guide on how to modify or

enhance the library can hardly be found.

This makes the coding of a new

cryptographic protocol extremely difficult.

In this paper, we described and

explained the detailed architecture of

OpenSSL to ease the integration of new

symmetric and asymmetric protocols for

the future developers. Our contributions

for this paper are listed as below,

Explained the architecture of

OpenSSL library

Described the integration process of

the custom symmetric and

asymmetric cryptography protocols

An overview of OpenSSL library and

related works can be found in Chapter 2.

Chapter 3 describes the architecture of

OpenSSL library for integration of custom

protocol while the installation of the

customized OpenSSL library can be found

in Chapter 4. Finally, the paper will be

concluded in Chapter 5.

II. Background

2.1 Overview of OpenSSL

OpenSSL is widely used to secure the

Internet and hence the effect of a bug in

its code can be severe. This was shown in

the recent critical bug that exposes a

serious security vulnerability; the

Heartbleed. Heartbleed[4] is a critical bug

found in OpenSSL library that allows

attackers to read beyond the buffer's data

or it was better known as buffer

over-read.

By doing so, sensitive information that

was protected by the secure channel

established with OpenSSL library can be

exposed to attackers and this can render

secure channel useless. This critical bug

causes havoc over the Internet as an

estimation of 55% popular HyperText

Transport Protocol (Secure) (HTTPS) web

sites were secured by the vulnerable

OpenSSL library[5]. Besides that, the

vulnerable OpenSSL library was also used

to secure other protocols such as e-mails,

remote access sessions and etc.

This raises concern of secure coding and

why does it take so long (more than 2

years) for the users/developers to discover

this bug despite the project being open

source. This is mainly due to the

complicated structure[6] of the OpenSSL

library that makes it difficult to

understand even for software analyzing

tools.

Kupsch and Miller[6] explained that the

difficulties for the code analysis tools in

identifying the vulnerability are as follow,

The use of pointers (Chain of

pointers led by the vulnerable

function)

The complexity of the execution path

from the bigger allocation to its

misuse

The valid bytes of the TLS message

are a subset of the allocated buffer

The contents of the buffer do not

appear to come directly from

attackers

Besides that, the Heartbleed bug also

정보보호학회논문지 (2017. 6) 461

Fig. 2. The Architecture of OpenSSL library

led to a forked version of OpenSSL due to

the complicated and messy code base. The

forked OpenSSL; LibreSSL[7] tries to

clean up the code and make it easier for

the developers to understand, audit and

repair the library.

In the first week alone, LibreSSL

managed to remove half of the code[8]

from the library. However, it is no longer

compatible with the project that developed

with OpenSSL and it also supports less

operating system (OS) compared to

OpenSSL. Fig. 1 shows the source code

analysis of the OpenSSL library by using

the sloccount[9] tool and the estimated

effort and time required to develop the

library. It shows the size of the OpenSSL

library is enormous given the long history

of the open source cryptography library.

Fig. 1. Source code analysis of OpenSSL library

by using sloccount tool

2.2 Related Works

Armknecht et al. [3] implemented a

trusted channel based on TLS specification

by using the OpenSSL library. They

claimed that it helps in ensuring the

integrity of an endpoint software in order

to prevent attacks that compromise the

endpoints through malicious code injection.

However, their work is only a proof of

concept (PoC) prototype instead of an

actual implementation in code. They also

do not explain on the integration of their

work with OpenSSL library in term of

coding.

Yilek et al.[10] explained the

significance of the OpenSSL code and how

it can compromises security when a bad

code was introduced. It allows attackers to

make use of the loophole or bug and then

compromise the secure channel.

Despite that, they do not show the

proper way to integrate any new protocols

to the OpenSSL library. They only

surveyed on the existing SSL/TLS-enabled

web servers whether the administrators

patched up their servers or not.

Jurkiewicz and Niemiec[11] tried to

implement a symmetric block cipher with

OpenSSL, they provide a simple guide on

how to code for the symmetric block cipher

with OpenSSL. However, they do not

provide any guide on the asymmetric

ciphers and their guide on the symmetric

block cipher also missed out a few key

points such as the libcrypto.num,

libssl.num and buildinfo files.

III. The Architecture of OpenSSL

In general, OpenSSL library can be divided

into two sub-libraries as illustrated in Fig.

462 OpenSSL 기반 사용자 지정 암호 프로토콜 구현 방안

Fig. 3. Part of the libcrypto.num file

2, namely the libCrypto and libSSL libraries.

LibCrypto library consists of the generic

cryptographic functions which include the

parameters initialization, random number

generator, error handling, other crypto

functions and configurations of the

cryptographic functions.

This component of OpenSSL library is

located under the directory of “crypto”.

LibCrypto library can be further divided

into sub-modules,

Basic Input/Output (BIO)

Envelope (EVP)

Elliptic Curve Cryptography (ECC)

Keys & Certificates

Engines

Other crypto functions (Diffie

Hellman, Bignum and etc)

LibSSL library consists of the SSL/TLS

protocols implementation that make use of

the LibCrypto library to establish the

secure channel. This includes the

channel/session establishment,

management, resumption, authentication

and configuration. Similar to LibCrypto,

LibSSL library can be further divided into

sub-modules,

Connection/Session initialization

Connection configuration

Certificate validation

Other SSL/TLS functions (Session

resumption, Datagram TLS (DTLS),

Alternative key exchange and etc)

3.1 LibCrypto

LibCrypto generally covered the

symmetric cryptographic functions and

general purpose cryptographic functions.

All of the LibCrypto library's function

pointers are listed in a file named,

libcrypto.num. This file labels all of the

symmetric cryptographic functions as well

as the rest of the cryptographic functions

with sequential numbers. This is one of

the required file that was not mentioned

by Jurkiewicz and Niemiec[11] as stated

in the related works.

 In order to add a new symmetric

cryptographic function to the LibCrypto

library, the first step will be adding a new

number that will be pointed by the

function name to util/libcrypto.num. Then,

the header of the cipher can be added

under include/openssl/cipher_name.h.

Since symmetric cipher's code can be

identical but in reverse order, the encrypt

mode is denoted as 1 in this header file

while the decrypt mode is denoted as 0.

For a new symmetric crypgraphic

function, the crypto/evp/c_allc.c should be

updated with the new cipher along with

its name while for a new message digest

algorithm, crypto/evp/c_alld.c should be

updated with the new digest function

along with its name. The EVP module of

LibCrypto consists of a list of function

calls for each of the cipher and message

digest algorithms. If new properties such

as different maximum key length is

required, it can be added or modified in

crypto/evp/evp.h.

Fig. 3 shows part of the libcrypto.num

file that contains the function pointer of

EVP function for Advanced Encryption

Standard (AES) 256 Cipher Block

Chaining (CBC) mode. This function

pointer is then lead to the evp.h and

evp/c_allc.h header files as shown in Fig.

4 and Fig. 5.

Lastly, the detailed implementation of

the cipher will be added under the

directory crypto/cipher_name. OpenSSL

정보보호학회논문지 (2017. 6) 463

Fig. 7. Part of the tls1.h file that contains the

version numbers

Fig. 8. Part of the tls1.h file that contains the

cipher suites

Fig. 4. Part the evp.h file

Fig. 5. Part of the evp/c_allc file

manages the source files with the a file

named buildinfo under each directory, it

lists all of the source files that will be

added to the generated makefile and

compile accordingly. Make sure the

buildinfo file is updated with the addition

of the new source files, Jurkiewicz and

Niemiec[11] also failed to mention this

buildinfo file that is needed to be modified

in order to add new source files into the

library. Fig. 6 shows the buildinfo file for

the AES module, it needs to include all of

the source files for the AES

implementation in order to be compiled.

Fig. 6. Part of the buildinfo file for AES module

3.2 LibSSL

LibSSL on the other hand covers the

asymmetric cryptographic functions.

Similar to the symmetric cryptography,

the SSL/TLS function pointers of the

LibSSL library are listed in a file named,

util/libssl.num. The newly added function

in the LibSSL library had be to updated

into this list of function pointers too. This

is another required file that was not

mentioned by Jurkiewicz and Niemiec[11]

as stated in the related works as they

were not working on asymmetric

cryptography protocol.

In the case of SSL/TLS protocols, the

cipher identity, name and code number are

listed in include/openssl/ssl.h and

include/openssl/tls1.h depending on the

protocol used. Besides that, the function

headers can be found in the two header

files too. These can be seen in Fig. 7 and

8 below.

If the new asymmetric cipher is not

based on SSL or TLS protocols, a new

header file can be added under

include/openssl/new_asymmetric_cipher.h.

Unlike symmetric cryptography, the

developer might need more than one

function here for the client and server

modes. Besides that, a general function

can also be used for the procedures in

which both the client and server modes

share.

Therefore, in most cases, at least three

functions can be declared here in order to

add a new symmetric cryptographic

function. For example, new_asymmetric_cr

ypto_method, new_asymmetric_crypto_clien

t_method and new_asymmetric_crypto_serve

r_method.

Fig. 9 shows part of the libssl.num file

that contains the TLS_client_method.

Besides that, the other function pointers

of the SSL/TLS protocol can also be found

464 OpenSSL 기반 사용자 지정 암호 프로토콜 구현 방안

Fig. 9. Part of the libssl.num file

within the file.

After initializing these functions

pointers, the developer can then proceed

to code for the detailed implementation of

the functions under ssl/new_cipher_lib.c.

Once the code was written, the developer

should add the newly created files to the

buildinfo file so that they will be included

in the generated makefile for compilation.

IV. Installation

If any third party library is required for

the custom protocol, makes sure to include

it in the makefile generator under the

directory “Configurations“ according to the

OS used. To differentiate the customized

version of OpenSSL library and easily

verify the correct version was installed,

the version name can be modified in the

header file: include/openssl/opensslv.h.

The definition of OPENSSL_VERSION_

TEXT can also be modified to any

identifiable name for the developer.

Typically, the "sudo make install"

command can be used to install the

compiled source code as part of the system

libraries in Linux. Run the command

”openssl version“ to check whether the

OpenSSL library was installed properly,

the output should has the same version

name the developer set in the

OPENSSL_VERSION_TEXT as described

earlier.

Once installed, the customized OpenSSL

library can be used by any software within

the system simply by including the

customized library file. By default, the

installed binary file is located at

/usr/local/bin while the library files are

located at /usr/local/lib. Lastly, the

configuration file of the installed OpenSSL

library is located at /usr/lib/ssl.

V. Conclusion

Most of the existing studies or analysis

explain how to use the OpenSSL library

but none of them actually explain how to

enhance or modify the library with

Jurkiewicz and Niemiec[11] being the only

exception. Even that, they only explain

the integration of a symmetric block

cipher and do not include any guide on

the integration of a custom asymmetric

cipher. They also missed out a few key

points such as the libcrypto.num,

libssl.num and buildinfo files.

Our analysis and study on the OpenSSL

can provide insights for developers or

researchers that attempt to include or

experiment a new cryptography protocol

within the OpenSSL library. Hopefully, it

can also helps to reduce the learning

curve for new developers of OpenSSL

library.

References

[1] Ivan Ristic, OpenSSL Cookbook, 2nd Ed.,

Feisty Duck Limited, UK, March 2015.

[2] Kenneth Ballard, "Secure programming

with OpenSSL API," IBM

developerWorks, June 2012.

[3] F. Armknecht, Y. Gasmi, and et.al., "An

Efficient Implementation of Trusted

Channels based on OpenSSL,"

Proceedings of the 3rd ACM workshop on

Scalable trusted computing, pp. 41-50,

Oct. 2008.

[4] M. Carvalho, J. DeMott, R. Ford, and D.

Wheeler, "Heartbleed 101," IEEE

Security & Privacy, 12(4), 63-67, July.

2014.

정보보호학회논문지 (2017. 6) 465

[5] Z, Durumeric, J. Kasten and et al., "The

Matter of Heartbleed," Proceedings of the

2014 Conference on Internet

Measurement Conference, pp 475-488,

Nov. 2014.

[6] J.A. Kupsch and B.P. Miller, “Why Do

Software Assurance Tools Have Problems

Finding Bugs Like Heartbleed?,”

Continuous Software Assurance

Marketplace, 22 Apr. 2014. Web.

https://www.swampinabox.org/

doc/SWAMP-WP003-Heartbleed.pdf

[7] LibreSSL. OpenBSD Foundation. Web.

https://www.libressl.org/goals.html

[8] Jon B. "OpenSSL code beyond repair,

claims creator of "LibreSSL" fork", Ars

Technica, Apr. 2014.

[9] D.A. Wheeler, "Sloccount, 2008," Web.

http://www. dwheeler. com/sloccount

[10] S. Yilek, E. Rescorla, and et al., "When

private keys are public: results from the

2008 Debian OpenSSL vulnerability,"

Proceedings of the 9th ACM SIGCOMM

conference on Internet measurement,

pp.15-27, Nov. 2009.

[11] P. Jurkiewicz and M. Niemiec,

"Implementation of a New Cipher in

OpenSSL Environment the Case of

INDECT Block Cipher," International

Journal of Computer and Communication

Engineering, 5(1), pp. 41-49, Jan. 2016.

466 OpenSSL 기반 사용자 지정 암호 프로토콜 구현 방안

<저자소개>

임 준 휘 (Jun-Huy Lam) 학생회원

2006년 7월: 말레이시아 Multimedia University 졸업

2010년 7월: 동서대학교 유비쿼터스IT학과 공학석사

2012년 8월～2014년 8월: GHL System Berhad, Malaysia (소프트웨어 엔지니어)

2014년 9월～현재: 동서대학교 대학원 유비쿼터스IT학과 박사과정

<관심분야> SDN, 네트워크 보안, 소프트웨어 개발, 블록체인

이 상 곤 (Sang-gon Lee) 종신회원

1986년 2월: 경북대학교 전자공학과 졸업

1988년 2월: 경북대학교 전자공학과 석사

1993년 2월: 경북대학교 전자공학과 박사

1991년 3월～1997년 2월: 창신대학교 전자통신과 조교수

1997년 3월~현재: 동서대학교 컴퓨터공학부 교수

<관심분야> 암호이론, 암호프로토콜 및 네트워크 응용, 소프트웨어정의네트워크, 불록체인

이 훈 재 (Hoon-jae Lee) 종신회원

1985년 2월: 경북대학교 전자공학과 졸업

1987년 2월: 경북대학교 전자공학과 석사

1998년 2월: 경북대학교 전자공학과 박사

1987년 3월～1998년 2월: 국방과학연구소 선임연구원/팀장

1998년 3월～2002년 2월: 경운대학교 조교수

2002년 3월~현재: 동서대학교 컴퓨터공학부 교수

<관심분야> 암호이론, 네트워크보안, 부채널공격, 포렌식

빈센티우스 크리스티안 안드리안토(Vincentius Christian Andrianto) 학생회원

2015년 7월: 인도네시아 Petra Christian University 전자공학과 졸업

2015년 9월~현재: 동서대학교 대학원 유비쿼터스IT학과 석사과정

<관심분야> SDN, 네트워크 보안, 인공지능, 보안 소프트웨어 개발

