Analyzing the Relationship between Tensile Properties and Components of Basalt Fibers Based on the Least Square Method 


Vol. 53,  No. 4, pp. 250-256, Aug.  2016
10.12772/TSE.2016.53.250


PDF
  Abstract

Properties of material consisting of several components are dramatically influenced by the portion distribution and structural array of the components. In particular, mineral fibers contain several natural components and have significant variations in mechanical properties, as the portions of the components vary in each spinning process. This research aims at providing information on the influence of the components on the mechanical properties of basalt fibers, which is adopted as the experimental material, through experiments. For this purpose, the mechanical properties of the multi-component material are expressed in terms of linear combinations of the weight portions of the ingredients. By melting basalt rocks and spinning them into fibers, we prepared specimens to measure the amounts of the components and the tensile strength, tensile strain at breakage, and the tensile modulus. As the basalt ingredients cannot be controlled arbitrarily, the effects of individual components on the tensile properties of basalt fibers could not be easily separated. In this research, the contribution of each component to the tensile properties was expressed in terms of a linear model with multi-variables. Then, the model coefficients were obtained by applying the least square method to a loss function that was defined in terms of the errors between the estimated values of the tensile properties from the model and the measured values from the experiments. Results show that Ca had the most significant positive influence on the tensile properties with relative model coefficients of 16 (strength), 10 (strain at break), and 6 (modulus); while K and Si had the most significant negative influence on the tensile properties. Si showed the greatest negative effect on the tensile strength with a relative model coefficient of 10, and on the strain at break with a relative model coefficient of 6, while K had the most negative effect on the tensile properties in an absolute sense.

  Statistics
Cumulative Counts from November, 2022
Multiple requests among the same browser session are counted as one view. If you mouse over a chart, the values of data points will be shown.