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Abstract 

 In Mode-2 of 5G NR-V2X, computation offloading decisions have to made by the user vehicles 

autonomously to satisfy latency and reliability requirements. In this paper, we propose a coded 

edge computing (CEC) based computation offloading framework that minimizes the end-to-end 

latency and the cost of edge computing. Powered by deep reinforcement learning, the proposed 

approach is able to cope with the dynamic environment characterized by high mobility, time-

varying sidelink resources and heterogeneous edge resources. We also present the simulation 

results and comparison of the proposed method to baseline approaches.

Ⅰ. Introduction 

  5G new radio Vehicle-to-Everything (5G NR-V2X) 

services involves computations under rigorous latency 

and reliability requirements. Multi-access edge 

computing (MEC) provides improvement in latency by 

offloading computations to the servers at the network 

edge, However, heterogeneous computing resources on 

the servers cause straggler effect. To remedy this, 

many researchers have considered coded edge 

computing (CEC) where computation are split and 

encoded into subtasks before they are sent to several 

servers [1]. Although promising, CEC has not been 

considered in the context of 5G NR-V2X, particularly 

mode-1, where no gNB (base station defined in 5G) is 

involved in managing radio resources, makes offloading 

decisions or acts as a mediator among the vehicles. 

In this paper, we consider that the user vehicle (UV) 

must make the offloading decisions autonomously. 

Specifically, the UV must maintain the recovery 

threshold i.e. the minimum number of subtasks to 

ensure reliability, the number of coded subtasks and 

select the servers while considering the available 

server vehicles (SV) within its coverage area, 

computing resources on the servers as well as the 

sidelink resources, all of which are time-varying. The 

decision-making is facilitated by a deep Q learning 

(DQN) based algorithm, capable of adaptively learning 

to robustly address the dynamic and mobile 

environment. We formulate the problem as an 

optimization of end-to-end computation latency and the 

cost of edge computing. 

 

Ⅱ. System Model and Problem Formulation 

We consider that the UV and 𝑁 number of SVs moving 

along a highway and their speeds are defined by a 

truncated gaussian distribution. The distance of the SVs, 

𝑑௡and the available computing resources on them, 𝑓௡ is 

known to the UV through cooperative messaging. In 

each time-frame, UV needs to perform a multiplication 

of two matrices, A and B. UV employ PolyDot coding to 

split and encode the computation [2].  

 Firstly, A is split so that it contains 𝑡 submatrices as 

rows and 𝑠 submatrices as columns, such as 𝑠𝑡 = 𝜑, 

where 𝜑 is the number of uncoded subtasks, whereas B 

contains 𝑠 submatrices as rows and 𝑡 submatrices as 

columns. We obtain the recovery threshold as 𝜓௧௛௥௘௦ =

 𝑡ଶ(2𝑠 − 1). Considering 𝑡 = 1, 𝜓௧௛௥௘௦ =  (2𝑠 − 1), given 

that 𝑠 = 𝜑. Since 𝜓௧௛௥௘௦ ≤ 𝑁  , therefore 1 ≤ 𝜑 ≤
ேାଵ

ଶ
. 

These subtasks are then encoded to generate ψ 

number of coded subtasks to be offloaded to ψ SVs . 

Since ψ must be smaller than the number of available 

subchannels, 𝐾௔௩, therefore 𝜓௧௛௥௘௦ ≤ 𝜓 ≤ min (𝑁, 𝐾௔௩). 

 Computations are performed in two modes: local and 

edge computing. 𝑇௧௢௧௔௟ is the time required for UV to 

perform the computation locally. In the edge computing 

mode, for the 𝑛-th SV, the end-to end latency, 𝑇௡
ாଶா is 

the summation of the transmit time, 𝑇௡
௧௥௔௡௦ , time to 

compute the task on the SV, 𝑇௡
௖௢௠௣

, and the time to 

download the outputs from the SV to UV, 𝑇௡
ௗ௢௪௡. Since 

the output size is much smaller compared to the coded 

subtasks. 𝑇௡
ௗ௢௪௡  is negligible. Therefore, we obtain, 

𝑇௡
ாଶா = 𝑇௡

௧௥௔௡௦ + 𝑇௡
௖௢௠௣

. The total latency to receive the 

outputs from all the servers is the time required for the 

slowest of the SVs. Thus, the end-to-end edge 

computing latency for each time-step is 𝑇஼ா஼ =

max(𝜆ଵ𝑇ଵ
ாଶா , . . 𝜆ே𝑇ே

ாଶா) , 𝜆௡𝜖𝛬  , where 𝛬 = {𝜆ଵ. . 𝜆ே} 

denotes the SVs selected by the UV. If the 𝑛 -th SV is 

selected then 𝜆௡ = 1, otherwise  𝜆௡ = 1. Computations 

are offloaded to the SVs only when 𝑇஼ா஼ <  𝑇௟௢௖௔௟  . Now, 

we can obtain the overall end-to-end latency of the 

system by 

𝑇௦௬௦௧௘௠ =  ൜
𝑇஼ா஼ ,    𝑖𝑓 𝑇஼ா஼ < 𝑇௟௢௖௔௟

𝑇௟௢௖௔௟.            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  
 SVs offer computing services for a price. If the cost at 

computing on the 𝑛 -th SV is 𝐸௡, then the total cost of 

edge computing is 𝐸௧௢௧௔௟ =  ∑ 𝐸௡
ே
௡ୀଵ .  

 Our objective is to minimize the overall end-to-end 

latency of the system and the computing cost. Thus we 

obtain the utility of the system, 𝑈஼ா஼ =

 −𝛺ଵ𝑙𝑜𝑔ଵ଴𝑇௦௬௦௧௘௠ − 𝛺ଶ𝑙𝑜𝑔ଵ଴𝐸௧௢௧௔௟ , where 𝛺ଵ  and 

𝛺ଶ denote the priority of the utility components. Now 

we can define our objective function as the 

maximization of the total utility of the UV by selecting 

𝜑 and 𝛬 , given that  𝑑௡ ≤  𝑅௖௢௩ , where 𝑅௖௢௩  is the 

coverage radius of UV: 



max
ఝ,   ௸

𝑈஼ா஼,                                  (1) 

subjected to 

1 ≤ 𝜑 ≤
ேାଵ

ଶ
,              (2) 

𝜓௧௛௥௘௦ ≤ 𝜓 ≤ min (𝑁, 𝐾௔௩),  (3) 

 𝑑௡ ≤  𝑅௖௢௩,                (4) 

 

Ⅲ. DQN-based Offloading Algorithm 
 We model the optimization problem in Eqs (1)-(4) as a 

Markov decision process (MDP) problem with the UV 

acting as an agent and the following state and action 

spaces and reward function: 

State space: The state space includes the information 

required for the UV to make offloading decision. Thus 

the state space 𝑆(𝑡) = {𝐷, 𝐹, 𝐾௔௩ , where 𝐷 = {𝑑௡}  and 

𝐹 = {𝑓௡}. 

Action space: Action space is defined as𝐴(𝑡) = {𝜑,   𝛬}.  

Reward function: We define the instant reward as 

𝑟(𝑡) =  𝑈஼ா஼ + ∑ 𝜆௡𝐶௡
ே
௡ୀଵ  , where 𝐶௡ = 𝑐, if the 

computation is done within the time the n-th SV stay 

within𝑅௖௢௩ . Otherwise, 𝐶௡ = 0 . Over time, the agent 

learns so that the cumulative reward 𝑅஼ + ∑ 𝑟(𝑡)்
௧ୀଵ , 

where 𝑇 is the number of total time steps. 

 The agent follows an ε -greedy policy. At each 

timestep, the agent acquires the sate space information, 

takes an action 𝑎௧, and obtains the reward 𝑎௧and the 

next state 𝑆′. This information i.e., {𝑆௧, 𝑎௧, 𝑆௧, 𝑟௧} is then 

stored in the experience replay. The agent updates the 

Q-parameter by randomly extracting a batch of 

experiences from the replay and calculating the mean 

squared difference between the Q-value 𝑄(𝑆, 𝑎, 𝜃) and 

target Q-value, 𝑟 + 𝛾ௗ௤௡ max
௔

𝑄(𝑆′, 𝑎′, 𝜃′), where 𝛾ௗ௤௡  is 

the discount factor. This process is iterated for a 

number of episodes, each of which consists of a number 

of steps. 

 

IV. Performance Analysis 

 Fig. 1 shows the convergence performance of the 

proposed approach. It is evident that the convergence 

is fastest when the mean speed is lowest and slowest 

when the mean speed is the highest. The reason is that 

as the mean speed increases, the variance in the speeds 

of the UV and SVs also increases. That increases the 

unpredictability of the environment leading to slower 

convergence. 

 
Figure 1: Training reward for 10 SVs, mean speed = 70, 110, 

150 km/h 

 

 Fig. 2 and Fig. 3 compare the proposed method to 

other commonly applied methods such as local only 

computation (LO), edge only computation (EO) and 

random coding (RC) i.e., 𝜑 and Λ  are randomly 

selected. Results shows that better latency and cost 

performance are achieved with the proposed method. 
 

 
Figure 2: Comparison of average latency, 5 SVs, mean speed 

= 110 km/h 

 
Figure 3: Comparison of average cost, 5 SVs, mean speed = 

110 km/h 

 

V. Conclusion 

 In this paper, we presented a deep reinforcement 

learning based coded computation offloading approach 

for mode-2 of 5G NR-V2X. Results show that the 

proposed approach can adapt with the dynamic 

vehicular environment and outperform widely used 

methods. In future, we aim to extend this work to 

multiuser scenario with optimized energy consumption 

model. 
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