

DRL-aided Coded Computation Offloading Framework for Mode-2 of 5G NR-V2X

Pritom Das, *Rajib Paul, Young-June Choi**

Department of Artificial Intelligence, Ajou University

pritom@ajou.ac.kr, *rajib@ajou.ac.kr, **choiyj@ajou.ac.kr

Abstract

 In Mode-2 of 5G NR-V2X, computation offloading decisions have to made by the user vehicles

autonomously to satisfy latency and reliability requirements. In this paper, we propose a coded

edge computing (CEC) based computation offloading framework that minimizes the end-to-end

latency and the cost of edge computing. Powered by deep reinforcement learning, the proposed

approach is able to cope with the dynamic environment characterized by high mobility, time-

varying sidelink resources and heterogeneous edge resources. We also present the simulation

results and comparison of the proposed method to baseline approaches.

Ⅰ. Introduction

 5G new radio Vehicle-to-Everything (5G NR-V2X)

services involves computations under rigorous latency

and reliability requirements. Multi-access edge

computing (MEC) provides improvement in latency by

offloading computations to the servers at the network

edge, However, heterogeneous computing resources on

the servers cause straggler effect. To remedy this,

many researchers have considered coded edge

computing (CEC) where computation are split and

encoded into subtasks before they are sent to several

servers [1]. Although promising, CEC has not been

considered in the context of 5G NR-V2X, particularly

mode-1, where no gNB (base station defined in 5G) is

involved in managing radio resources, makes offloading

decisions or acts as a mediator among the vehicles.

In this paper, we consider that the user vehicle (UV)

must make the offloading decisions autonomously.

Specifically, the UV must maintain the recovery

threshold i.e. the minimum number of subtasks to

ensure reliability, the number of coded subtasks and

select the servers while considering the available

server vehicles (SV) within its coverage area,

computing resources on the servers as well as the

sidelink resources, all of which are time-varying. The

decision-making is facilitated by a deep Q learning

(DQN) based algorithm, capable of adaptively learning

to robustly address the dynamic and mobile

environment. We formulate the problem as an

optimization of end-to-end computation latency and the

cost of edge computing.

Ⅱ. System Model and Problem Formulation

We consider that the UV and 𝑁 number of SVs moving

along a highway and their speeds are defined by a

truncated gaussian distribution. The distance of the SVs,

𝑑௡and the available computing resources on them, 𝑓௡ is

known to the UV through cooperative messaging. In

each time-frame, UV needs to perform a multiplication

of two matrices, A and B. UV employ PolyDot coding to

split and encode the computation [2].

 Firstly, A is split so that it contains 𝑡 submatrices as

rows and 𝑠 submatrices as columns, such as 𝑠𝑡 = 𝜑,

where 𝜑 is the number of uncoded subtasks, whereas B

contains 𝑠 submatrices as rows and 𝑡 submatrices as

columns. We obtain the recovery threshold as 𝜓௧௛௥௘௦ =

 𝑡ଶ(2𝑠 − 1). Considering 𝑡 = 1, 𝜓௧௛௥௘௦ = (2𝑠 − 1), given

that 𝑠 = 𝜑. Since 𝜓௧௛௥௘௦ ≤ 𝑁 , therefore 1 ≤ 𝜑 ≤
ேାଵ

ଶ
.

These subtasks are then encoded to generate ψ

number of coded subtasks to be offloaded to ψ SVs .

Since ψ must be smaller than the number of available

subchannels, 𝐾௔௩, therefore 𝜓௧௛௥௘௦ ≤ 𝜓 ≤ min (𝑁, 𝐾௔௩).

 Computations are performed in two modes: local and

edge computing. 𝑇௧௢௧௔௟ is the time required for UV to

perform the computation locally. In the edge computing

mode, for the 𝑛-th SV, the end-to end latency, 𝑇௡
ாଶா is

the summation of the transmit time, 𝑇௡
௧௥௔௡௦ , time to

compute the task on the SV, 𝑇௡
௖௢௠௣

, and the time to

download the outputs from the SV to UV, 𝑇௡
ௗ௢௪௡. Since

the output size is much smaller compared to the coded

subtasks. 𝑇௡
ௗ௢௪௡ is negligible. Therefore, we obtain,

𝑇௡
ாଶா = 𝑇௡

௧௥௔௡௦ + 𝑇௡
௖௢௠௣

. The total latency to receive the

outputs from all the servers is the time required for the

slowest of the SVs. Thus, the end-to-end edge

computing latency for each time-step is 𝑇஼ா஼ =

max(𝜆ଵ𝑇ଵ
ாଶா , . . 𝜆ே𝑇ே

ாଶா) , 𝜆௡𝜖𝛬 , where 𝛬 = {𝜆ଵ. . 𝜆ே}

denotes the SVs selected by the UV. If the 𝑛 -th SV is

selected then 𝜆௡ = 1, otherwise 𝜆௡ = 1. Computations

are offloaded to the SVs only when 𝑇஼ா஼ < 𝑇௟௢௖௔௟ . Now,

we can obtain the overall end-to-end latency of the

system by

𝑇௦௬௦௧௘௠ = ൜
𝑇஼ா஼ , 𝑖𝑓 𝑇஼ா஼ < 𝑇௟௢௖௔௟

𝑇௟௢௖௔௟. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 SVs offer computing services for a price. If the cost at

computing on the 𝑛 -th SV is 𝐸௡, then the total cost of

edge computing is 𝐸௧௢௧௔௟ = ∑ 𝐸௡
ே
௡ୀଵ .

 Our objective is to minimize the overall end-to-end

latency of the system and the computing cost. Thus we

obtain the utility of the system, 𝑈஼ா஼ =

 −𝛺ଵ𝑙𝑜𝑔ଵ଴𝑇௦௬௦௧௘௠ − 𝛺ଶ𝑙𝑜𝑔ଵ଴𝐸௧௢௧௔௟ , where 𝛺ଵ and

𝛺ଶ denote the priority of the utility components. Now

we can define our objective function as the

maximization of the total utility of the UV by selecting

𝜑 and 𝛬 , given that 𝑑௡ ≤ 𝑅௖௢௩ , where 𝑅௖௢௩ is the

coverage radius of UV:

max
ఝ, ௸

𝑈஼ா஼, (1)

subjected to

1 ≤ 𝜑 ≤
ேାଵ

ଶ
, (2)

𝜓௧௛௥௘௦ ≤ 𝜓 ≤ min (𝑁, 𝐾௔௩), (3)

 𝑑௡ ≤ 𝑅௖௢௩, (4)

Ⅲ. DQN-based Offloading Algorithm
 We model the optimization problem in Eqs (1)-(4) as a

Markov decision process (MDP) problem with the UV

acting as an agent and the following state and action

spaces and reward function:

State space: The state space includes the information

required for the UV to make offloading decision. Thus

the state space 𝑆(𝑡) = {𝐷, 𝐹, 𝐾௔௩ , where 𝐷 = {𝑑௡} and

𝐹 = {𝑓௡}.

Action space: Action space is defined as𝐴(𝑡) = {𝜑, 𝛬}.

Reward function: We define the instant reward as

𝑟(𝑡) = 𝑈஼ா஼ + ∑ 𝜆௡𝐶௡
ே
௡ୀଵ , where 𝐶௡ = 𝑐, if the

computation is done within the time the n-th SV stay

within𝑅௖௢௩ . Otherwise, 𝐶௡ = 0 . Over time, the agent

learns so that the cumulative reward 𝑅஼ + ∑ 𝑟(𝑡)்
௧ୀଵ ,

where 𝑇 is the number of total time steps.

 The agent follows an ε -greedy policy. At each

timestep, the agent acquires the sate space information,

takes an action 𝑎௧, and obtains the reward 𝑎௧and the

next state 𝑆′. This information i.e., {𝑆௧, 𝑎௧, 𝑆௧, 𝑟௧} is then

stored in the experience replay. The agent updates the

Q-parameter by randomly extracting a batch of

experiences from the replay and calculating the mean

squared difference between the Q-value 𝑄(𝑆, 𝑎, 𝜃) and

target Q-value, 𝑟 + 𝛾ௗ௤௡ max
௔

𝑄(𝑆′, 𝑎′, 𝜃′), where 𝛾ௗ௤௡ is

the discount factor. This process is iterated for a

number of episodes, each of which consists of a number

of steps.

IV. Performance Analysis

 Fig. 1 shows the convergence performance of the

proposed approach. It is evident that the convergence

is fastest when the mean speed is lowest and slowest

when the mean speed is the highest. The reason is that

as the mean speed increases, the variance in the speeds

of the UV and SVs also increases. That increases the

unpredictability of the environment leading to slower

convergence.

Figure 1: Training reward for 10 SVs, mean speed = 70, 110,

150 km/h

 Fig. 2 and Fig. 3 compare the proposed method to

other commonly applied methods such as local only

computation (LO), edge only computation (EO) and

random coding (RC) i.e., 𝜑 and Λ are randomly

selected. Results shows that better latency and cost

performance are achieved with the proposed method.

Figure 2: Comparison of average latency, 5 SVs, mean speed

= 110 km/h

Figure 3: Comparison of average cost, 5 SVs, mean speed =

110 km/h

V. Conclusion

 In this paper, we presented a deep reinforcement

learning based coded computation offloading approach

for mode-2 of 5G NR-V2X. Results show that the

proposed approach can adapt with the dynamic

vehicular environment and outperform widely used

methods. In future, we aim to extend this work to

multiuser scenario with optimized energy consumption

model.

REFERENCES

[1] A. Asheralieva and D. Niyato, "Fast and Secure

Computational Offloading With Lagrange Coded

Mobile Edge Computing," in IEEE Transactions on

Vehicular Technology, vol. 70, no. 5, pp. 4924-

4942, May 2021, doi: 10.1109/TVT.2021.3070723.

[2] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V.

Cadambe and P. Grover, "On the Optimal Recovery

Threshold of Coded Matrix Multiplication," in IEEE

Transactions on Information Theory, vol. 66, no. 1,

pp. 278-301, Jan. 2020, doi:

10.1109/TIT.2019.2929328.

