

A Survey on Reinforcement Learning Approaches for Serverless Computing

Auto-scaling

Minh Ngoc Tran, Young Han Kim*

Soongsil University

mipearlska1307@dcn.ssu.ac.kr, younghak@ssu.ac.kr*

Abstract

Efficient auto-scaling is a vital requirement for serverless computing to to optimize service

performance and resource provisioning. Recently, by utilizing reinforcement learning

technique’s benefits, many enhanced serverless auto-scaling approaches were proposed to

improve the performance of threshold-based auto-scaling mechanisms in current serverless

platform. This paper provides a short comprehensive review of current existing solutions,

categorizes, analyzes their characteristics, and discusses their limitations.

Ⅰ. INTRODUCTION

Serverless computing is the emerging paradigm for

deploying applications at the cloud and edge

environment. This paradigm enables users to focus on

application development, while the serverless platform

automatically handles service deployment, service

scheduling, resource provisioning, etc. Auto-scaling is

one of these automated service of serverless

computiung. In current open-source and commercial

serverless platforms, auto-scaling is controlled by

using threshold-based mechanisms. When a specific

resource consumption of all service instances reaches

the pre-configured threshold, new instances are

deployed or deleted. However, these static

mechanisms are not the optimal solutions when

handling dynamic service demands such as real time

traffic adaptation, resource contention, or service-

level-objectives (SLO) requirements, etc.

Recently, several works has applied Reinforcement

Learning (RL) and Deep Reinforcement Learning

(DRL) to optimize the auto-scaling performance of

serverless computing. RL is known for its great

capabilities of solving decision-making problems that

have dynamic requirements. Hence, it is a suitable

method for finding dynamic auto-scaling solution in

complex serverless computing environment. To the

best of our knowledge, there is lack of studies that put

together and analyze existing RL auto-scaling

approaches for serverless computing. The work [1]

only listed and described several existing RL works

without categorization or analysis.

This paper provides a short comprehensive review

of current state-of-the-art research on RL auto-

scaling for serverless computing. We categorizes and

analyzes them based on types and characteristics. The

current open issues and challenges of these works are

also discussed.

Ⅱ. REINFORCEMENT LEARNING SERVERLESS

AUTO-SCALING APPROACHES TAXONOMY

Current RL serverless auto-scaling works have

different optimization targets. In this section, we

catogorize and discuss them based on 4 different

aspects: Scaling methods (how the instances are

scaled), Serverless sytem types (the solution targets

which kind of serverless system), Concurrent services

consideration (the solution optimizes for separate or

multiple concurrent services), and Timing (when the

auto-scaling decision is applied). Figure 1 shows the

different aspects of related works that we discuss.

Figure 1. Different categories of Reinforcement

Learning serverless auto-scaling

A. SCALING METHODS

There are 2 types of scaling methods being used in

existing works: Horizontal scaling and Hybrid scaling.

- Horizontal Scaling: There are 2 types of action

sets for RL models used in related works of this

category. The first type is modifying the number

of instances. The sescond type is modifying the

resource threshold of the serverless platform’s

default horizontal auto-scaler configuration. For

the first type, in [2] and [3], the RL model

analyzes current running services’ request

queue characteristics and system available

resource to choose the appropriate number of

instances to scale. In [4] and [5], the RL agent

prepares the optimal number of service

instances in advance to avoid the cold-start

problem of serverless services. For the latter

type, the Knative service’s request concurrency

scaling threshold is the target action set in [6].

The Kubernets horizontal auto-scaling’s CPU

and memory thresholds are the target action

sets in [7], [8]

- Hybrid Scaling: RL agent’s actions of this

category simutaneously change both number of

instances (horizontal scaling) and each

instance’s assigned resource (vertical scaling).

Only 3 works [9], [10], [11] belongs to this

category. The horizontal actions are similar to

horizontal scaling only’s work. The vertical

actions are changing the container resource

limitation in [9], [10] and function’s memory

size in [11].

B. SERVERLESS SYSTEM TYPES

Based on the solution’s optimization goal, current

RL serverless auto-scaling works can be applied to 2

different kinds of serverless systems: Resource

consumption-based and Resource quota-based.

- Resource consumption-based: In this type, the

serverless system provides resource amount

equal to how much the serverless services need

to consume. Related works of this category do

not have any upper total resource constraint or

limitation defined in the RL agent’s environment.

Generally, these solutions target pay-as-you-

go serverless users, optimize services’

resource consumption and performance. Most of

the current RL auto-scaling works belong to

this category ([4]-[12]).

- Resource quota-based: In this type, the total

available resource that serverless services can

consume is limited by a quota. This quota can

be the whole system resource (e.g. limited

resource in edge environment) or an assigned

part of the total resource. For this serverless

environment, the RL agent need to analyze the

remaning resource in each environment state to

decide the optimal scaling action that does not

overuse the resource quota. Only 2 works ([2]

and [3]) of the same author belongs to this

category.

C. CONCURRENT SERVICES CONSIDERATION

The major of existing works optimizes auto-scaling

performance for each separate service. A separate RL

agent is required for each service. By optimizing each

one, the aggregated performance of all services can

also be optimized. Generally, these works target the

resource consumption-based serverless system

where there are no total system resource limitation.

Hence, although all services are concurrently running

inside the same system, each service’s RL agent is

assumed to have little impact on the others.

Meanwhile, few works consider the auto-scaling

performance optimization problem of multiple

concurrent services. In [9], the authors point out the

performance degradation problem when different

separate RL agents of each service run simultaneously.

They propose a solution to integrated the reward of

all concurrent RL agent to optimize the aggregate

auto-scaling performance of the whole system. In [2]

and [3], the authors consider the limited total

resource of serverless computing system at the edge..

Hence, the RL agent need to decide a suitable action

that can guarantee enough resource for all concurrent

services.

D. TIMING

There are 2 auto-scaling timing categories:

reactive and proactive. Reactive auto-scaling methods

decide and execute scaling action based on current

monitored states of the environment. Meanwhile,

proactive auto-scaling methods predict the future

states of the environment and pre-execute scaling

action before the future states actually happen.

Currently all of existing RL serverless auto-scaling

works are reactive auto-scaling solutions.

E. CATEGORIZATION SUMMARY

Table 1 presents how all current existing RL

serverless auto-scaling works belongs to different

categories that are discussed above. Note that all

works belong to reactive scaling timing category.

Hence, Table 1 does not include the Timing category

aspect.

Work Scaling

Method

System

Type

Concurrent

Service

[2] Horizontal Quota Multiple

[3] Horizontal Quota Multiple

[4] Horizontal Consumption Separate

[5] Horizontal Consumption Separate

[6] Horizontal Consumption Separate

[7] Horizontal Consumption Separate

[8] Horizontal Consumption Separate

[9] Hybrid Consumption Multiple

[10] Hybrid Consumption Separate

[11] Hybrid Consumption Separate

[12] Horizontal Consumption Separate

Table 1. Reinforcement Learning serverless auto-

scaling works categorization

III. CURRENT RESEARCH GAPS AND DIRECTION

In this section, we diecuss several current

remaining challenges of current existing works and

possible future directions.

- Proactive RL auto-scaling: All current works

are reactive auto-scaling methods, which

execute scaling actions only when new demands

are detected. During new scaled instances

initializing, the whole system performance will

be affected until new instances are ready.

Proactive auto-scaling has been proposed and

tested in several normal machine learning auto-

scaling methods and significantly improve auto-

scaling performance against reactive methods.

Hence, proactive methods should also be

applied to RL solutions.

- Vertical Scaling Instances Restart: This is

general problem of vertical scaling in hybrid

scaling methods. A method that avoid service

instances restart or redeployment when

changing their assigned resource is required to

further improve performance of hybrid scaling

approaches. It can help to avoid additional

resource usage while scaling new assigned

resource instances. Additionally, service

interruption can also be avoided. Recently,

Kubernetes has announced this feature in the

alpha test of version 1.27 [13], which can solve

the mentioned problem. It is suggested to apply

this feature In the future works of serverless

computing auto-scaling.

- Scalability: This is a consideration for RL

methods that consider multiple concurrent

services. The simpler implemetation method is

using a single RL agent that handle the

environment consisting of all services ([2], [3]).

However, the RL model is required to be re-

trained if the total number of services changes.

The more services the system has, the more

complex the environment is. It can cause long

training and convergence time. Meanwhile, if

there are multiple agents for each separte

service and a reward aggregation function is

applied as proposed in [9], many RL models are

required to be trained for each service. The

complexity of the reward aggregation function

should also be evaluated.

ACKNOWLEDGMENT

This work was partly supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)

grants funded by the Korea government (MSIT) (No. 2022-

0-01015, 6GRC and No. 2020-0-00946, Development of

Fast and Automatic Service recovery and Transition

software in Hybrid Cloud Environment).

REFERENCES

[1] A. Y. Majid, E. Marin, “A Review of Deep Reinforcement

Learning in Serverless Computing: Function Scheduling

and Resource Auto-Scaling", arXiv Library,

arXiv:2311.12839, Oct, 2023.

[2] M. Bensalem, E. Ipek, A. Jukan, “Scaling Serverless

Functions in Edge Networks: A Reinforcement Learning

Approach”, arXiv Library, arXiv:2305.13130, May, 2023

[3] M. Bensalem, F. Carpio, A. Jukan, “Towards Optimal

Serverless Function Scaling in Edge Computing Network”,

arXiv Library, arXiv:2305.13896, May, 2023.

[4] S. Agarwal, M. A. Rodriguez, R. Buyya, “A

Reinforcement Learning Approach to Reduce Serverless

Function Cold Start Frequency”, 2021 IEEE/ACM 21st

International Symposium on Cluster, Cloud and Internet

Computing (CCGrid), May, 2021.

[5] S. Agarwal, M. A. Rodriguez, R. Buyya, “A Deep

Recurrent-Reinforcement Learning Method for Intelligent

AutoScaling of Serverless Functions”, arXiv Library,

arXiv:2308.05937, Aug, 2023.

[6] L. Schuler, S. Jamil, N. Kühl, “AI-based Resource

Allocation: Reinforcement Learning for Adaptive Auto-

scaling in Serverless Environments”, 2021 IEEE/ACM

21st International Symposium on Cluster, Cloud and

Internet Computing (CCGrid), May, 2021.

[7] P. Benedetti, M. Femminella, G. Reali, K. Steenhaut,

“Reinforcement Learning Applicability for Resource-

Based Auto-scaling in Serverless Edge Applications”,

2022 IEEE International Conference on Pervasive

Computing and Communications Workshops and other

Affiliated Events (PerCom Workshops), March, 2022.

[8] A. Zafeiropoulos, E. Fotopoulou, N. Filinis, S.

Papavassiliou, “Reinforcement learning-assisted

autoscaling mechanisms for serverless computing

platforms”, Simulation Modelling Practice and Theory,

Volume 116, April, 2022.

[9] H. Qiu et. al, “SIMPPO: a scalable and incremental online

learning framework for serverless resource

management”, SoCC '22: Proceedings of the 13th

Symposium on Cloud Computing, Nov, 2022.

[10] Z. Zhang, T. Wang, A. Li, W. Zhang, “Adaptive Auto-

Scaling of Delay-Sensitive Serverless Services with

Reinforcement Learning”, 2022 IEEE 46th Annual

Computers, Software, and Applications Conference

(COMPSAC), June, 2022.

[11] H. Wang, D. Niu, B. Li, “Distributed Machine Learning

with a Serverless Architecture”, IEEE INFOCOM 2019 -

IEEE Conference on Computer Communications, Apr,

2019.

[12] S. Agarwal, M. A. Rodriguez, R. Buyya, “On-Demand

Cold Start Frequency Reduction with Off-Policy

Reinforcement Learning in Serverless Computing”, Pre-

print, SSRN, https://ssrn.com/abstract=4661993, Dec,

2023.

[13] Kubernetes, “Kubernetes 1.27: In-place Resource

Resize for Kubernetes Pods (alpha)”, Available Online at

https://kubernetes.io/blog/2023/05/12/in-place-pod-

resize-alpha/, Last Accessed on Dec, 2023.

