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Abstract

This paper investigates the performance of an intelligent reflecting surface (IRS)-aided multiple input single output communication
system by considering practical hardware limitations in IRS reflection. A deep reinforcement learning (DRL) based algorithm is
implemented to maximize the received signal-to-noise ratio (SNR) when the amplitudes of IRS elements depend on their phases.

Ⅰ. Introduction

Intelligent reflecting surface (IRS) has been shown to be a key
technology enabling beyond 5G communication networks by providing
improved coverage while keeping the power consumption low [1]. To
realize the gains promised with an IRS, the reflective coefficients of
the IRS elements should be be optimized to match the base station
(BS) and user channels. Recently, deep reinforcement learning (DRL)
has applied to optimize the IRS reflection [2]. A practical IRS control
circuit also undergoes phase-dependent amplitude distortion that has
an effect on the performance of the IRS [3]. In this paper, we apply
the deep deterministic policy gradient (DDPG) algorithm [4] to
optimize the practical IRS phase shifts undergoing reflection
impairment to improve the performance.

Ⅱ. System Model and Problem Formulation

A single-user multiple-input single-output (MISO) downlink
system as shown in Fig. 1 is considered. The BS consists of 

antennas, the IRS is composed of   × reflecting elements
whilst where  and  are the number of elements in each row and
column of the IRS respectively. The channels from the BS-IRS and
IRS-user are denoted as G ∈× and h


∈× respectively. We

assume that the channel between the BS and user is blocked and thus
there is no direct BS-user link.
For this system, the signal received at the user can be written as

where diag⋯ is the phase shift matrix at the IRS,

w ∈× is the beamforming vector at the BS with the constraint

w  ≤max , max is the maximum transmit power of the BS,  is

the transmitted signal, and ∼ is the noise. For a
practical IRS control circuit, the IRS reflection can be expressed as

where

with ∈, ≥, min ≥, and  ≥. The received
signal-to-noise ratio (SNR) for this system can then be obtained as

The most effective beamforming method to maximize the received
SNR for a given phase shift matrix  is the maximum-ratio
transmission (MRT); The beamforming vector is given by

and the corresponding SNR is given by

Thus, the IRS reflection optimization is equivalent to

This problem is an NP-hard problem as the objective function is a
non-convex function. Considering the practical reflection scenario
increases the complexity of the problem. We propose employing a DRL
based framework to efficiently address this problem.

Ⅲ. DRL Based Framework

In a reinforcement learning system, there are two primary
components: the agent and the environment. For each time step , the
agent takes as input the current state information  and outputs an

action  . This action is used to calculate the reward  and the state

is updated to get the next state . The algorithm executes for 

episodes, and within each episode, it undergoes  iterations or steps.
Our optimization problem requires us to generate actions from a
continuous space, therefore we employ the DDPG algorithm, which is
a model-free, off-policy actor-critic algorithm, as it has been shown
to provide good performance in environments with a continuous action
space. It employs an actor-critic structure with two neural networks,
where the actor suggests actions and the critic evaluates them.
Through experience replay and target networks, DDPG stabilizes
training, and by outputting deterministic actions, it navigates
continuous action spaces. The algorithm updates the policy using
policy gradient methods and Q-value updates, striking a balance
between exploration and exploitation for effective learning in complex
environments.
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Fig. 1. IRS-assisted MISO system.



To be able to use DDPG for our optimization problem, we need to
define our state space, action space and reward. For the given system,
the communication system can be regarded as the environment and
the IRS can be considered as the agent. The construction of the state
space, action space and the reward is as follows:
1. State space: The state space provides a description of the
environment at the current time step. We define the state  as

where  is the received SNR at time step .
2. Action space: The agent uses the state  at each time step 
to output the new phase shifts for the IRS elements. The action is
therefore defined as

3. Reward function: The objective of this paper is to maximize the
received SNR, thus the reward function is chosen as the received
SNR defined in (2). The output of the action network is used to
calculate the reward at each time step .
At the start of each episode, the channel state information is

obtained which includes the BS-IRS channel and the IRS-user
channel. The first action vector  is initialized with random phase
shifts for the IRS to obtain the initial state . This is then used to

generate the subsequent actions, rewards and states.

IV. Results and Discussion

For our simulations, we take  antennas at the BS,
max dBm, and  dBm . The positions of the BS, IRS
and user are    ,    , and    meters,
respectively. To model the practical IRS reflection, we take   ,
min  , and   as in [3]. For the DDPG algorithm, the

maximum number of steps per episode were set to . The
learning rate for all neural networks was set to . The target
networks were updated with a decaying rate of . Buffer size for
the experience replay was set to  and each mini-batch
consisted of  samples. Simulation results are obtained by averaging
over  realizations of the random components in the channels.
In Fig. 2, we compare the performance as the number of IRS

elements increases. As can be seen from the simulation results, the
DRL based agent provides significant gain to the performance of the
IRS. Typical convex optimization methods have a high complexity and
the computing time for these methods increases exponentially with the
increase in number of IRS elements. The complexity of the DRL based

framework does not increase significantly with the number of IRS
elements and can therefore be scaled to utilize a larger IRS to increase
performance.
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Fig. 2. Received SNR vs BS-user horizontal distance
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