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Abstract—This paper investigates the performance of quantum
reinforcement learning (QRL) under different quantum encoding
schemes. In QRL, quantum encoding undertakes a significant
role in transforming input data i.e., states and actions, which
are in the form of classical values into quantum states. Quantum
encoding has various schemes, it can be challenging to decide the
most appropriate scheme which results in the highest prediction
accuracy for the QRL. Thus, in this paper, some of the well-
known quantum encoding schemes are employed on the QRL to
optimize unmanned aerial vehicle (UAV) trajectory for maximum
sum-rate as a study case. The performances of QRL under
different quantum encoding schemes are compared and analyzed
based on the achievable sum-rate as a performance metric.
The results show that QRL with angle encoding outperforms
QRL with amplitude encoding by achieving higher sum-rate as
cumulative rewards.

Index Terms—Accuracy, quantum encoding, quantum rein-
forcement learning, sum-rate, UAV trajectory.

I. INTRODUCTION

Quantum reinforcement learning (QRL) has gained popular-
ity in research interests because of its ability to solve various
time-sequential optimization problems with lower complexity
compared to classical methods [1], [2]. Quantum encoding,
one of the vital processes in QRL, transforms input data
into quantum states. Several works employed one of the
existing quantum encoding schemes i.e., amplitude encoding,
angle encoding, etc., in their proposed quantum algorithms
[3], [4]. However, to the best of authors’ knowledge, limited
works have investigated the comparison performance of each
quantum encoding scheme that is beneficial to acknowledge
the most appropriate scheme that returns the highest prediction
accuracy for the QRL. This paper provides a comparison and
performance analysis of QRL for different quantum encoding
schemes. As a study case, the QRL with several quantum
encoding schemes are employed to optimize UAV trajectory
for achieving maximum sum-rate in UAV communication
networks scenario.

II. QUANTUM ENCODING SCHEMES FOR QUANTUM
REINFORCEMENT LEARNING

In general, the QRL is akin to classical RL, where given the
current states condition S(t), a learning agent aims to choose
the best action A(t) and obtain maximum cumulative rewards
R(t) over time τ by learning the optimal action policy,
denoted by ΓA, that is predicted employing neural networks.
The difference is highlighted in the classical RL which utilizes

classical neural networks, whereas QRL employs quantum
neural networks for predicting the optimal action policy. In
QRL, the states as learning inputs, which originally formed in
classical values are required to be transformed into quantum
states. The process of transforming classical values to
quantum states, in quantum machine learning, is well-known
as quantum encoding. Quantum encoding has various schemes
which can be presented as follows: (i) Amplitude encoding,
where the classical input data is encoded into the amplitudes
of a quantum state. Let us consider the states information S(t)

as classical input data of QRL that consists of K samples,
with D features each, which can be expressed as S(t) =
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The amplitude vector of S(t) can be defined as
λ = C̄
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, where C̄ denotes the normalization constant. It is

worth noting that the amplitude vector has to be normalized
|λ|2 = 1. Finally, the states of QRL can be represented by
the amplitudes of a m-qubit1 of a quantum state, which can
be expressed as

∣∣∣S(t)
〉

=
∑2m

i λi |i⟩ , where λi denotes the
element of the amplitude vector λ and |i⟩ is the computational
basis state. The amplitude encoding operation can be presented
as Eatd(S(t)) = S(t) →

∣∣∣S(t)
〉

=
⊗B

b=1 RY(tanh (sb))H, where

RY(·) denotes the rotation on Y -axis on
∣∣∣s(t)b

〉
by ψ phase,

H denotes Hadamard gate and sb represents b-th data of S(t).
(ii) Angle encoding, allows to encode classical input data as
rotation angles. Let us consider the states of QRL consisting
of B data, the operation of angle encoding can be presented
as Eangle(S(t)) = S(t) →

∣∣∣S(t)
〉

=
⊗B

b=1 RX(tanh (sb)),

where RX(·) denotes the rotation on X-axis on
∣∣∣s(t)b

〉
by ψ phase and sb represents b-th data of S(t). In QRL,
the encoding operation is also applied to network weights
Θ, which can be expressed as E{atd,angle}(Θ(t)), where
index {atd, angle} denotes amplitude encoding and angle
encoding, respectively. Based on the quantum encoding
scheme that is utilized, the feed-forward operation of QRL
can be defined as FQRL ≜

(
E{atd,angle}(Θ(t))

(∏M
m=1 CZ(q2|q1)⊗

. . . ⊗ CZ(qM|qM-1)
)
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)
, where M denotes the

number of qubits. At the end of FQRL operation, quantum

1In quantum computing, a qubit is a term for quantum bits.



Figure 1. Achievable sum-rate under QRL with different quantum encoding
schemes.

measurements, denoted by Z(|·⟩), are conducted to attain
outputs in classical values. Subsequently, learning loss can
be calculated as L(Θ) = 1/K

∑
k

(
yk − FQRL(sk, ak; Θ)

)
, where

yk = rk + γ
(
FQRL

(
sk+1,FQRL(sk+1; Θ);Θ

))
, where K is the

number of sample data. The gradient of QRL can be calculated
employing parameter-shift rules [5], which can be expressed
as follows ∇θL(Θ) =

1

2 sinh(ϕ)

(
L(Θ + ϕ) − L(Θ − ϕ))

)
,

where ϕ is the shifting parameter value. Finally, the networks
weights can be updated using Θ = Θ − ϑ∇θL(Θ), where ϑ
denotes a learning step.

III. STUDY CASE: UAV TRAJECTORY OPTIMIZATION

As a particular study case, the QRL with different quantum
encoding schemes are employed to optimize UAV trajectory
for achieving the maximum achievable sum-rate. The details
of the wireless system model are as follows. A UAV is consid-
erably employed as an aerial base station with limited battery
energy. The UAV flies over a targeted service area, denoted
by G ∈ R3, and serves N terrestrial users. The UAV position
at the t-th time can be defined as g(t) = {x(t), y(t), a(t)}, whilst
the position of the n-th user at the t-th time can be defined
as g

(t)
n = {x(t)

n , y
(t)
n }. Herein, non-orthogonal multiple access

(NOMA) is employed to enhance spectral efficiency, where
multiple users are grouped into several groups. Let us assume
J NOMA groups, where each j-th group accommodates Nj

users. The distance between UAV and the n-th user in the
j-th group can be defined as V
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. Moreover, the transmitted power allocation
for the n-th user in the j-th group at t-th time can be defined
as p

(t)
n,j = µn,jPTx, where µn,j ∈ (0, 1] is NOMA power

coefficient for the n-th user in the j-th group and PTx denotes
the UAV transmit power. The achievable rate of the n-th
user in the j-th group at the t-th time can be defined as
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, where |h(t)n,j |

2

denotes the channel gain between the UAV and the n-th user
in the j-th group. The objective is to optimize UAV trajectory
that results in the maximum achievable sum-rate, which can
be defined as follows

max
g(t)

SR(t) =

Nj∑
n=1

R
(t)
n,j , (1a)

s.t. C1 :

Nj∑
n=1

p
(t)
n,j ≤ PTx, C2 : R

(t)
n,j ≥ κ, (1b)

where κ is the minimum required achievable rate.
Based on the objective problem, the state space for QRL can

be defined as S(t) = {h(t)
n,j , ∀n ∈ Nj , j ∈ J }, where h(t)n,j ,∀n ∈

Nj , j ∈ J is the channel condition between UAV and all
the terrestrial users at t-th time. Moreover, the action space
can be formulated as A(t) = {φα = χφα .π, φβ = χφβ .π},
where φα and φβ denote angular and polar velocities of UAV,
respectively. Finally, the reward can be defined as follows

R(t) =

{
SR(t) =

∑Nj

n=1 R
(t)
n,j , if C1, C2 are satisfied,

0, otherwise.
(2)

IV. PERFORMANCE ANALYSIS AND CONCLUSION

The simulation parameters were presented as follows: G =
100 × 100 × 100 m3, a(0) = 50 m, v = 5.56 m/s, Nj = 2,
B = 1 MHz, PTx = 30 dBm, ϑ = 0.001, γ = 0.99,
M = 6, Episode = 20, Step = 20. The quantum operation
FQRL was performed employing IBM Qiskit [6]. Figure 1
shows the achievable sum-rate that represents a reward of
QRL which was designed in Section III. As can be seen in
Fig. 1, QRL with angle encoding achieved a higher sum-rate
compared to QRL with amplitude encoding for the case of
UAV trajectory optimization. The results indicate that the angle
encoding scheme can improve prediction accuracy than the
amplitude encoding. This is due to the angle encoding allows
for a more flexible representation by adjusting the phase angles
of the quantum state.
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