π Type 구조를 이용한 Harmonic suppression 및 Wilkinson divider의 소형화 설계

선은정*. 김정현

*한양대학교 전자공학과

*alal8000@hanyang.ac.kr, junhkim@hanyang.ac.kr

Design of Harmonic Suppression and Miniaturized Wilkinson divider using π Type Structure

Seon Eun Jung*, Kim Jung Hyun

*Department of Electrical and Electronic Engineering Hanyang Univ.

요 약

본 논문은 capacitive loading을 통해 conventional wilkinson power divider의 layout size를 감소시키며 harmonic을 억제하는 wilkinson power divider를 설계하였다. 설계된 divider는 center frequency 0.8 GHz frequency에서 0.29 dB의 Insertion Loss (IL)를 가지며, 5th harmonic frequency까지 harmonic suppression이 효과적으로 나타남을 simulation을 통해 확인하였다.

I. 서 론

Wilkinson power divider와 combiner는 power amplifier와 구성하여 쓰기에 매우 중요한 component이다. Conventional wilkinson divider는 구조가 간단하여 비교적 설계가 용이하지만, wilkinson power divider의 quarter-wave line의 physical length로 인해 circuit의 layout size가 증가하게 된다. 이는 추후 cost의 증가로 이어지므로 wilkinson power divider의 size를 줄이면서 harmonic을 억제하는 설계를 진행하였다.

본 논문에서는 conventional wilkinson power divider의 quarter-wave line을 사용하지 않고 capacitive loading을 통해 layout size를 최적화 하는 설계를 제안한다. Quarter-wave line 구조를 open stub와 45 degree의 electrical length를 가진 line의 π 구조로 대체하여 구성하였다. 이때 center frequency는 0.8 GHz이다.

Ⅱ. 본론

Fig.1은 제안된 capacitive loading π 구조인 wilkinson divider의 schematic과 layout을 보여준다. 제안된 wilkinson divider는 FR4 dielectric substrate (constant = 4.2, height = 400 um) 기판으로 설계하였다. 이때 π 구조 line의 electrical length는 quarter—wave line의 절반인 45 degree로 하여 전체 layout의 크기를 줄일 수 있게 하였다. Pad를 포함한 전체 layout의 폭과 길이는 27×21 때 이며 conventional wilkinson divider의 layout (41×18 때)과 비교하였을 때 24 %의 면적 감소를 확인하였다.

The state of the s

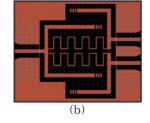


Fig.1. 제안된 Wilkinson power divider
(a) Schematic (b) Layout

Ⅲ. 결론

Fig.2는 제안된 wilkinson power divider와 coventional wilkinson power divider의 s-parameter의 비교를 나타낸다. S₁₁의 경우 두 divider 모두 0.8 GHz에서 -27 dB 미만의 결과를 보이며 S₂₂, S₃₃의 경우 역시 두 divider 모두 -36 dB 미만으로 확보되어 모든 port에서 matching 되었음을 확인하였다. S₂₃는 0.8 GHz에서 두 경우 모두 -40 dB 미만으로 output port 간의 isolation을 충분히 확보하였다. Conventional divider의 경우 0.8 GHz에서의 IL이 0.18 dB, 제안된 divider의 IL은 0.29 dB로 제안된 divider의 IL이 약 0.1 dB 낮은 차이를 보이지만 conventional 구조와 비교하여 제안된 divider의 S₂₁이 high order harmonic frequency에서 -11 dB 미만임을 통해 harmonic 억제를 효과적으로 이루었음을 확인하였다.

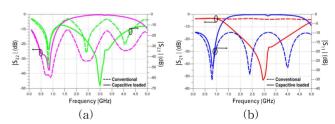


Fig.2. Conventional divider와 제안된 divider의 s-parameter 비교 plot

(a) S_{21} and S_{11} (b) S_{22} and S_{23}

ACKNOWLEDGMENT

본 연구는 IDEC에서 EDA Tool를 지원받아 수행하였습니다. 이 논문은 2023년도 과학기술정보통신부 (과학기술사업화진흥원) 정부 재원으로 2023년 지역산업연계 대학 Open-Lab 육성지원사업의 지원을 받아 수행

참고문헌

- [1] M. C. Scardelletti, G. E. Poncchak, and T. M. Weller "Miniaturized Wilkinson Power Dividers Utilizing Capacitive Loading" IEEE Microwave and Wireless Components Letters. vol. 12, no. 1, January. 2002.
- [2] Xiaolong Wang. Zhewang Ma, Iwata Sakagami "A Compact and Harmonic Suppression Wilkinson Power Divider with General π Type Structure" IEEE MTT-S International Microwave Symposium, 2015