
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Concurrent Workload Scheduling for Cloud
Microservices using Multi-Instance GPU Utilization

1st Jonghwan Park
Department of Data Science

Korea Electronics Technology Institute
Seongnam, Gyeonggi-do, Republic of Korea

bomebug15@gmail.com

2nd Jaegi Son
Department of Computer Science

Korea Electronics Technology Institute
Seongnam, Gyeonggi-do, Republic of Korea

jgson@keti.re.kr

3rd Dongmin Kim
Department of Computer Science

Korea Electronics Technology Institute
Seongnam, Gyeonggi-do, Republic of Korea

dmkim@keti.re.kr

Abstract—The utilization of cloud infrastructure for
microservices is steadily increasing. However, a specific drawback
in certain microservices is that even though there is sufficient
capacity for each GPU in the cloud environment, when one Pod
preemptively acquires a GPU, it prevents other Pods created later
from utilizing that GPU. In this paper, we propose a scheduling
approach that leverages NVIDIA A30's Multi-Instance GPU
(MIG) feature to partition physical GPUs into multiple GPU
instances (GI). This allows for concurrent workload execution of
microservices that require GPU resources.

Keywords—Kubernetes, Microservice, Multi-Instance GPU,
GPU Scheduling, MLOps

I. INTRODUCTION
In recent times, microservices architecture utilizing cloud

infrastructure has been gradually gaining attention in the
corporate and technological sectors. This architecture enhances
modularity and scalability of services, offering advantages such
as efficient resource management and rapid deployment.
However, in such a microservices environment, where each
service has various requirements, efficient allocation and
management of resources have become prominent challenges.

Particularly, for microservices that require GPU
resources[1], traditional virtualization technologies face
difficulties in resource sharing and efficient allocation among
multiple Pods. This can lead to the problem where once a Pod
preempts GPU resources, other Pods created later are unable to
utilize the same GPU resources[2]. Consequently, tasks
requiring GPUs may experience indefinite waiting or errors,
causing delays in GPU workload operations.

Fig. 1. Differences between local and Kubernetes GPU sharing methods.

In this paper, we propose a method for mitigating
interference between concurrently executing machine learning
workloads using NVIDIA's A30 graphics card's Multi-Instance
GPU (MIG) feature. MIG is a technology that partitions a
physical GPU into multiple virtual GPU Instances (GI), each
operating in an isolated environment with dedicated resources
for service provision. This enables improved task performance
and stability. Through this approach, we aim to efficiently share
GPU resources among multiple microservices and investigate
and propose a scheduling method for concurrent workload
execution. Figure 1 illustrates the phenomenon that occurs when
sharing GPUs in both local and cloud environments. The
utilization of MIG ensures efficiency and stability in GPU
sharing within the cloud environment.

The goal of this paper is to maximize the performance and
resource utilization of microservices in a cloud environment. By
proposing a scheduling method based on MIG, we aim to
achieve efficient distribution of GPU resources and fair resource
sharing among microservices, thus harnessing the advantages of
microservices architecture in the cloud environment more
effectively. Additionally, this paper introduces a method for
processing stable microservices with minimal resources, based
on isolated GIs.

The subsequent sections will begin by reviewing relevant
research trends, followed by an exploration of NVIDIA's MIG
feature and its applicability in cloud microservices environments.
Finally, we provide a detailed explanation of the proposed
scheduling method and validate its effectiveness through
experimental results.

II. BACKGROUND

A. Gpu Scheduling on Kubernetes
In the past, we have conducted multi-process service (MPS)

based GPU sharing experiments in traditional local and Docker
environments. However, Kubernetes does not provide direct
support for GPU MPS, leading to GPU resource wastage in
cloud environments. Figure 2 illustrates the differences between
GPU scheduling using MPS and MIG.

For this reason, numerous research cases have emerged to
implement MPS in Kubernetes environments to minimize
resource wastage. There are instances where custom schedulers
and GPU allocation mechanisms were combined to implement
GPU sharing in Kubernetes environments [3]. Additionally,

there is research that modified the 'k8s-device-plugin' for
collecting GPU information in Kubernetes, enabling scheduling
of multiple containers (Pods) on a single GPU, and developed a
resource monitoring and adaptive batch placement tool called
Kube-Knot [4].

While these studies have made GPU sharing possible by
modifying settings to use custom MPS schedulers, even for
GPUs that do not support MIG, they have the drawback that if
GPU issues arise due to conflicts between local, container, or
service-level collisions, it may not prevent error propagation
among services. Providing an isolated environment where errors
occurring on one GPU do not adversely affect all services can
ensure stable service provision.

Fig. 2. GPU Scheduling in MPS and MIG.

B. MIG(Muilti-Instance GPU)
MIG(Multi-Instance GPU) is a technology that divides a

single GPU device into multiple GIs (GPU Instances), providing
isolated GPU environments[5]. With NVIDIA A30, up to 4 GIs
can be created from a single GPU, and these divided GIs can be
allocated in both Docker and Kubernetes environments. Because
the units of division vary, it ensures diversity in service
provision and provides isolated environments between GIs,
ensuring security and quality for the services offered to users.
Table 1 outlines the available GI Profiles for NVIDIA A30.
'MIG 1g.6gb+me' represents a specialized resource type for
media processing tasks and offers enhanced GPU processing
efficiency.

TABLE I. NVIDIA A30 MIG Profile
Profile
Name

Fraction of
Memory

Hardware
Units

L2 Cache
Size

Number of
Instances
Available

MIG
1g.6gb

1/4 0 NVDECs
/0 JPEG /0

OFA

1/4 4

MIG
1g.6gb+me

1/4 1 NVDEC /1
JPEG /1

OFA

1/4 1

MIG
2g.12gb

2/4 2 NVDECs
/0 JPEG /0

OFA

2/4 2

MIG
4g.24gb

Full 4 NVDECs
/1 JPEG /1

OFA

Full 1

 As products featuring MIG become available, various research
studies related to MIG have emerged. In B. Li's research[6],
experiments compared the training and inference speeds and
energy usage of GIs on NVIDIA A100 GPUs when MIG was
enabled, across various models such as ResNet50, Bert, GNN,
and more. Robroek's study[7] divided experiments into three

cases: Native, where users share CUDA stream memory; MPS,
which isolates kernel context switching due to automatic
process division by the MPS daemon; and MIG, which holds
isolated vGPUs, and compared ML training time, GPU
utilization, and Memory Footprint Capacity. Additionally, there
are studies that have developed tools like MIGPerf[8] and
MISO[9] to efficiently schedule vGPUs created by MIG,
minimizing entry barriers such as manual division and resource
optimization.

 However, it's worth noting that the aforementioned studies
were conducted in local and Docker environments rather than in
a cloud environment. There is currently a lack of research
comparing the performance of MIG and MPS in a cloud
environment.

III. CONCURRENT WORKLOAD SCHEDULING
The purpose of this paper is to enhance the experimental

environment using NVIDIA MIG to address issues arising from
concurrent workload execution based on MPS in a GPU cluster.
To improve ML workload execution times, experiments were
conducted by measuring ML workload execution times in local
MPS and MIG environments and comparing them with
Kubernetes-based MPS and MIG environments. To implement
concurrent ML workloads, Python-based multiprocessing was
utilized in the Docker environment for time measurement, and
Kubernetes employed Job-based Pod execution for deployment.

The MIG profile configuration used was 'MIG 1g.6gb,' with
settings designed to enable each process to handle tasks without
pending, as the number of splits increased. Each GI possessed
6016MiB of VRAM, and this profile was chosen to
accommodate a large number of workloads with the smallest
instance. In this study, 2 A30 GPUs were used, and the divided
GIs were split into 4 GIs per A30 GPU, totaling 8 GIs used for
experimentation. Additionally, NVIDIA's NVLink was utilized
to enable communication between the 2 A30 GPUs, allowing
the allocation of 8 GIs to a single container. An environment
capable of recognizing MIG successfully was configured in the
GPU cluster through the 'GPU Feature Discovery (GFD)'
package provided by NVIDIA.

Fig. 3. NVLink MIG GPU Structure.

IV. EXPERIMENT
In this paper, the ML workload used was constructed to

perform sentiment analysis by training an LSTM model on the
'Naver sentiment movie corpus' dataset. To maximize the
memory usage of each GI, a batch size of 1024 was configured,
and the training data was composed of 150,000 rows, with a test
data ratio of 50,000 rows. For each workload, the complete tasks
of data preprocessing, training, and inference were executed,
with the training epochs set to 5.

The measurement environment for ML workloads was
configured into three categories: GPU Batch, GPU Parallel, and
MIG Parallel.

GPU Batch: This environment operates with processes using
GPU resources sequentially, without duplication between them.

GPU Parallel: In this setup, processes are duplicated as per
the environment requirements, allowing parallel execution.

MIG Parallel: This environment is structured to execute
processes on each GI separately within the MIG setup.

TABLE II. CONCURRENT ML WORKLOAD TRAINING TIME AT DOCKER

Process Num 2 4 6 8

GPU Batch 35m 11s 66m 49s 99m 21s 145m 41s

GPU Parallel 19m 01s 23m 08s 32m 57s 38m 26s

MIG Parallel 22m 49s 23m 4s 22m 31s 23m 21s

TABLE III. CONCURRENT ML WORKLOAD TRAINING TIME AT KUBERNETES

Process Num 2 4 6 8

GPU Batch 34m 58s 64m 42s 87m 04s 122m 28s

GPU Parallel 17m 43s 36m 04s 52m 51s 69m 13s

MIG Parallel 21m 9s 21m 46s 21m 55s 24m 27s

A. Docker MPS & MIG
In the case of Docker, all 8 GIs were integrated into a single

container. It exhibited faster speeds in GPU Parallel compared
to Kubernetes due to the fact that, in Kubernetes, when a GPU
is preempted, other Pods may come to a complete halt. Docker's
ability to utilize MPS contributes to its faster performance
compared to Kubernetes.

B. Kubernetes MPS & MIG
While there may not be a significant difference compared to

Docker, we observed a notable decrease in speed in Batch
execution as the number of processes increased. Additionally,
when handling multiple workloads using MIG, it is possible to
achieve processing speeds similar to local environments. This
signifies the ability to provide services at a faster pace and with
high efficiency. Moreover, by integrating MIG into pure
Kubernetes without the need for custom schedulers, it allows for
the simplest and fastest service provision. Furthermore, by
offering isolated GIs, it helps avoid situations where service
disruptions occur across the entire GPU due to errors.

V. RESULT
This paper conducted research on providing services in an

isolated environment for multiple workloads using NVIDIA
MIG devices in a cloud environment. It was confirmed that,
when using MIG in cloud environments that do not support
traditional MPS operations, GPU resources can be shared
without the need for custom schedulers. Furthermore, when
comparing performance with local environments, it was
observed that there is not a significant difference when applying
it to actual services. Using MIG, it is possible to provide services
with guaranteed stability through isolated GIs. Currently,
NVIDIA offers MIG on three GPU models: H100, A100, and
A30. As GPUs with better capacity than A30 become available,
it will be possible to handle a larger volume of ML workloads
for large-scale services in the cloud.

ACKNOWLEDGMENT
This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded by
the Korea government(MSIT) (No.2022-0-00047, Development
of microservices development/operation platform technology
that supports application service operation intelligence)

REFERENCES
[1] Y. Zhou, Y. Yu and B. Ding, "Towards MLOps: A Case Study of ML

Pipeline Platform," 2020 International Conference on Artificial
Intelligence and Computer Engineering (ICAICE), Beijing, China, 2020,
pp. 494-500, https://doi.org/doi:10.1109/ICAICE51518.2020.00102.

[2] Zeineb Rejiba and Javad Chamanara. 2022. “Custom Scheduling in
Kubernetes: A Survey on Common Problems and Solution Approaches,”
ACM Comput. Surv. 55, 7, Article 151 (July 2023), 37 pages.
https://doi.org/doi:10.1145/3544788

[3] Shaoqi Wang, Oscar J. Gonzalez, Xiaobo Zhou, Thomas Williams, Brian
D. Friedman, Martin Havemann, and Thomas Woo. 2020. “An efficient
and non-intrusive GPU scheduling framework for deep learning training
systems,” In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC '20).
IEEE Press, Article 90, 1–13.
https://dl.acm.org/doi/10.5555/3433701.3433820

[4] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir and C. R.
Das, "Kube-Knots: Resource Harvesting through Dynamic Container
Orchestration in GPU-based Datacenters," 2019 IEEE International
Conference on Cluster Computing (CLUSTER), Albuquerque, NM, USA,
2019, pp. 1-13, https://doi.org/doi:10.1109/CLUSTER.2019.8891040

[5] “NVIDIA Multi-Instance GPU,” NVIDIA, accessed Sep 1,
2023,https://www.nvidia.com/en-us/technologies/multi-instance-gpu/

[6] B. Li, V. Gadepally, S. Samsi and D. Tiwari, "Characterizing Multi-
Instance GPU for Machine Learning Workloads," 2022 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Lyon, France, 2022, pp. 724-731,
https://doi.org/doi:10.1109/IPDPSW55747.2022.00124.

[7] Robroek, Ties, Ehsan Yousefzadeh-Asl-Miandoab, and Pınar Tözün. "An
Analysis of Collocation on GPUs for Deep Learning Training." arXiv e-
prints (2022): arXiv-2209. https://doi.org/10.48550/arXiv.2209.06018

[8] Zhang, Huaizheng, et al. "MIGPerf: A Comprehensive Benchmark for
Deep Learning Training and Inference Workloads on Multi-Instance
GPUs." arXiv preprint arXiv:2301.00407 (2023).
https://doi.org/10.48550/arXiv.2301.00407

[9] Baolin Li, Tirthak Patel, Siddharth Samsi, Vijay Gadepally, and Devesh
Tiwari. i. MISO: exploiting multi-instance GPU capability on multi-
tenant GPU clusters. In Proceedings of the 13th Symposium on Cloud
Computing (SoCC '22). Association for Computing Machinery, New
York, NY, USA, 173–189. https://doi.org/10.1145/3542929.3563510

