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Abstract—The utilization of cloud infrastructure for 
microservices is steadily increasing. However, a specific drawback 
in certain microservices is that even though there is sufficient 
capacity for each GPU in the cloud environment, when one Pod 
preemptively acquires a GPU, it prevents other Pods created later 
from utilizing that GPU. In this paper, we propose a scheduling 
approach that leverages NVIDIA A30's Multi-Instance GPU 
(MIG) feature to partition physical GPUs into multiple GPU 
instances (GI). This allows for concurrent workload execution of 
microservices that require GPU resources. 
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I. INTRODUCTION 
In recent times, microservices architecture utilizing cloud 

infrastructure has been gradually gaining attention in the 
corporate and technological sectors. This architecture enhances 
modularity and scalability of services, offering advantages such 
as efficient resource management and rapid deployment. 
However, in such a microservices environment, where each 
service has various requirements, efficient allocation and 
management of resources have become prominent challenges. 

Particularly, for microservices that require GPU 
resources[1], traditional virtualization technologies face 
difficulties in resource sharing and efficient allocation among 
multiple Pods. This can lead to the problem where once a Pod 
preempts GPU resources, other Pods created later are unable to 
utilize the same GPU resources[2]. Consequently, tasks 
requiring GPUs may experience indefinite waiting or errors, 
causing delays in GPU workload operations. 

 
Fig. 1. Differences between local and Kubernetes GPU sharing methods. 

In this paper, we propose a method for mitigating 
interference between concurrently executing machine learning 
workloads using NVIDIA's A30 graphics card's Multi-Instance 
GPU (MIG) feature. MIG is a technology that partitions a 
physical GPU into multiple virtual GPU Instances (GI), each 
operating in an isolated environment with dedicated resources 
for service provision. This enables improved task performance 
and stability. Through this approach, we aim to efficiently share 
GPU resources among multiple microservices and investigate 
and propose a scheduling method for concurrent workload 
execution. Figure 1 illustrates the phenomenon that occurs when 
sharing GPUs in both local and cloud environments. The 
utilization of MIG ensures efficiency and stability in GPU 
sharing within the cloud environment. 

The goal of this paper is to maximize the performance and 
resource utilization of microservices in a cloud environment. By 
proposing a scheduling method based on MIG, we aim to 
achieve efficient distribution of GPU resources and fair resource 
sharing among microservices, thus harnessing the advantages of 
microservices architecture in the cloud environment more 
effectively. Additionally, this paper introduces a method for 
processing stable microservices with minimal resources, based 
on isolated GIs. 

The subsequent sections will begin by reviewing relevant 
research trends, followed by an exploration of NVIDIA's MIG 
feature and its applicability in cloud microservices environments. 
Finally, we provide a detailed explanation of the proposed 
scheduling method and validate its effectiveness through 
experimental results. 

II. BACKGROUND 

A. Gpu Scheduling on Kubernetes 
In the past, we have conducted multi-process service (MPS) 

based GPU sharing experiments in traditional local and Docker 
environments. However, Kubernetes does not provide direct 
support for GPU MPS, leading to GPU resource wastage in 
cloud environments. Figure 2 illustrates the differences between 
GPU scheduling using MPS and MIG. 

For this reason, numerous research cases have emerged to 
implement MPS in Kubernetes environments to minimize 
resource wastage. There are instances where custom schedulers 
and GPU allocation mechanisms were combined to implement 
GPU sharing in Kubernetes environments [3]. Additionally, 



there is research that modified the 'k8s-device-plugin' for 
collecting GPU information in Kubernetes, enabling scheduling 
of multiple containers (Pods) on a single GPU, and developed a 
resource monitoring and adaptive batch placement tool called 
Kube-Knot [4]. 

While these studies have made GPU sharing possible by 
modifying settings to use custom MPS schedulers, even for 
GPUs that do not support MIG, they have the drawback that if 
GPU issues arise due to conflicts between local, container, or 
service-level collisions, it may not prevent error propagation 
among services. Providing an isolated environment where errors 
occurring on one GPU do not adversely affect all services can 
ensure stable service provision. 

 
Fig. 2.   GPU Scheduling in MPS and MIG. 

B. MIG(Muilti-Instance GPU) 
MIG(Multi-Instance GPU) is a technology that divides a 

single GPU device into multiple GIs (GPU Instances), providing 
isolated GPU environments[5]. With NVIDIA A30, up to 4 GIs 
can be created from a single GPU, and these divided GIs can be 
allocated in both Docker and Kubernetes environments. Because 
the units of division vary, it ensures diversity in service 
provision and provides isolated environments between GIs, 
ensuring security and quality for the services offered to users. 
Table 1 outlines the available GI Profiles for NVIDIA A30. 
'MIG 1g.6gb+me' represents a specialized resource type for 
media processing tasks and offers enhanced GPU processing 
efficiency. 

TABLE I.  NVIDIA A30 MIG Profile 
Profile 
Name 

Fraction of 
Memory 

Hardware 
Units 

L2 Cache 
Size 

Number of 
Instances 
Available 

MIG 
1g.6gb 

1/4 0 NVDECs 
/0 JPEG /0 

OFA  

1/4 4 

MIG 
1g.6gb+me 

1/4 1 NVDEC /1 
JPEG /1 

OFA  

1/4 1 

MIG 
2g.12gb 

2/4 2 NVDECs 
/0 JPEG /0 

OFA  

2/4 2 

MIG 
4g.24gb 

Full 4 NVDECs 
/1 JPEG /1 

OFA  

Full 1 

  As products featuring MIG become available, various research 
studies related to MIG have emerged. In B. Li's research[6], 
experiments compared the training and inference speeds and 
energy usage of GIs on NVIDIA A100 GPUs when MIG was 
enabled, across various models such as ResNet50, Bert, GNN, 
and more. Robroek's study[7] divided experiments into three 

cases: Native, where users share CUDA stream memory; MPS, 
which isolates kernel context switching due to automatic 
process division by the MPS daemon; and MIG, which holds 
isolated vGPUs, and compared ML training time, GPU 
utilization, and Memory Footprint Capacity. Additionally, there 
are studies that have developed tools like MIGPerf[8] and 
MISO[9] to efficiently schedule vGPUs created by MIG, 
minimizing entry barriers such as manual division and resource 
optimization. 

 However, it's worth noting that the aforementioned studies 
were conducted in local and Docker environments rather than in 
a cloud environment. There is currently a lack of research 
comparing the performance of MIG and MPS in a cloud 
environment. 

III. CONCURRENT WORKLOAD SCHEDULING 
The purpose of this paper is to enhance the experimental 

environment using NVIDIA MIG to address issues arising from 
concurrent workload execution based on MPS in a GPU cluster. 
To improve ML workload execution times, experiments were 
conducted by measuring ML workload execution times in local 
MPS and MIG environments and comparing them with 
Kubernetes-based MPS and MIG environments. To implement 
concurrent ML workloads, Python-based multiprocessing was 
utilized in the Docker environment for time measurement, and 
Kubernetes employed Job-based Pod execution for deployment. 

The MIG profile configuration used was 'MIG 1g.6gb,' with 
settings designed to enable each process to handle tasks without 
pending, as the number of splits increased. Each GI possessed 
6016MiB of VRAM, and this profile was chosen to 
accommodate a large number of workloads with the smallest 
instance. In this study, 2 A30 GPUs were used, and the divided 
GIs were split into 4 GIs per A30 GPU, totaling 8 GIs used for 
experimentation. Additionally, NVIDIA's NVLink was utilized 
to enable communication between the 2 A30 GPUs, allowing 
the allocation of 8 GIs to a single container. An environment 
capable of recognizing MIG successfully was configured in the 
GPU cluster through the 'GPU Feature Discovery (GFD)' 
package provided by NVIDIA. 

 
Fig. 3.  NVLink MIG GPU Structure. 



IV. EXPERIMENT 
In this paper, the ML workload used was constructed to 

perform sentiment analysis by training an LSTM model on the 
'Naver sentiment movie corpus' dataset. To maximize the 
memory usage of each GI, a batch size of 1024 was configured, 
and the training data was composed of 150,000 rows, with a test 
data ratio of 50,000 rows. For each workload, the complete tasks 
of data preprocessing, training, and inference were executed, 
with the training epochs set to 5. 

The measurement environment for ML workloads was 
configured into three categories: GPU Batch, GPU Parallel, and 
MIG Parallel. 

GPU Batch: This environment operates with processes using 
GPU resources sequentially, without duplication between them. 

GPU Parallel: In this setup, processes are duplicated as per 
the environment requirements, allowing parallel execution. 

MIG Parallel: This environment is structured to execute 
processes on each GI separately within the MIG setup. 

TABLE II.  CONCURRENT ML WORKLOAD TRAINING TIME AT DOCKER 

Process Num 2 4 6 8 

GPU Batch 35m 11s 66m 49s 99m 21s 145m 41s 

GPU Parallel 19m 01s 23m 08s 32m 57s 38m 26s 

MIG Parallel 22m 49s 23m 4s 22m 31s 23m 21s 

TABLE III.  CONCURRENT ML WORKLOAD TRAINING TIME AT KUBERNETES 

Process Num 2 4 6 8 

GPU Batch 34m 58s 64m 42s 87m 04s 122m 28s 

GPU Parallel 17m 43s 36m 04s 52m 51s 69m 13s 

MIG Parallel 21m 9s 21m 46s 21m 55s 24m 27s 

A. Docker MPS & MIG 
In the case of Docker, all 8 GIs were integrated into a single 

container. It exhibited faster speeds in GPU Parallel compared 
to Kubernetes due to the fact that, in Kubernetes, when a GPU 
is preempted, other Pods may come to a complete halt. Docker's 
ability to utilize MPS contributes to its faster performance 
compared to Kubernetes. 

B. Kubernetes MPS & MIG 
While there may not be a significant difference compared to 

Docker, we observed a notable decrease in speed in Batch 
execution as the number of processes increased. Additionally, 
when handling multiple workloads using MIG, it is possible to 
achieve processing speeds similar to local environments. This 
signifies the ability to provide services at a faster pace and with 
high efficiency. Moreover, by integrating MIG into pure 
Kubernetes without the need for custom schedulers, it allows for 
the simplest and fastest service provision. Furthermore, by 
offering isolated GIs, it helps avoid situations where service 
disruptions occur across the entire GPU due to errors. 

V. RESULT 
This paper conducted research on providing services in an 

isolated environment for multiple workloads using NVIDIA 
MIG devices in a cloud environment. It was confirmed that, 
when using MIG in cloud environments that do not support 
traditional MPS operations, GPU resources can be shared 
without the need for custom schedulers. Furthermore, when 
comparing performance with local environments, it was 
observed that there is not a significant difference when applying 
it to actual services. Using MIG, it is possible to provide services 
with guaranteed stability through isolated GIs. Currently, 
NVIDIA offers MIG on three GPU models: H100, A100, and 
A30. As GPUs with better capacity than A30 become available, 
it will be possible to handle a larger volume of ML workloads 
for large-scale services in the cloud. 
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