

Comparative Analysis of Coordinated Checkpoint Protocol in

Real-time Messaging System

Thandar Aung

NETsys Research Lab

University of Information Technology

Yangon, Myanmar

thandaraung@uit.edu.mm

Hnin Thiri Zaw

NETsys Research Lab

University of Information Technology

Yangon, Myanmar

h.thirizaw@uit.edu.mm

Aung Htein Maw

NETsys Research Lab

University of Information Technology

Yangon, Myanmar

ahmaw@uit.edu.mm

Abstract—In today’s technological environments, the

improvement of real-time messaging system also depends on the

effectiveness of fault tolerance. The techniques of coordinated

checkpoint protocol play a critical role in the development of

real-time messaging systems. In this paper, we investigate the

comparative analysis of coordinated checkpoint protocol by

using Fixed Checkpoint Interval (FCI) method and Incremental

Checkpoint Interval (ICI) method on real-time messaging

system. In this study, the checkpoint interval protocol evaluates

various batch sizes on Apache Kafka. The experimental results

show the FCI method is more reliable than ICI method.

Keywords—fixed checkpoint interval (FCI), incremental

checkpoint interval (ICI), Apache Kafka, real-time

I. INTRODUCTION

Today, real-time processing is essential to improve the
processing of IT industry work. Organizations need to
enhance the performance of real-time processing more and
more. In the distributed system environment, a popular
technique for increasing dependability demand is fault
tolerance. The effect of checkpoint interval impacts the
development of fault tolerance. The reaction time of
checkpoint interval is critical in real-time applications: traffic
monitoring systems, healthcare, banking, or e-commerce.

Researchers evaluated the different techniques for fault

tolerance in the real-time messaging system. Kumar et al.[1]

compared the effective methods for various failures in the

real-time distributed system. The author confirmed that the

system is scalable, reliable and feasible by applying the fault

tolerance method. Most of the systems consider the

coordinated checkpoint protocol which is the effective method

to define optimal checkpoint intervals with checkpoint cost,

rollback overhead cost and total overhead cost. Checkpoints

can be taken using either fixed checkpoint interval or

incremental checkpoint interval [2]. In the case of fixed

checkpoint interval, checkpoint interval size remains the same

between any two successive checkpoints, but the incremental

checkpoint interval methods take the different checkpoint

interval sizes. It takes the second checkpoint interval size to

be two times larger than the first one, the third checkpoint

interval is three times more than the first one, and so on in each

processing cycle. Daly, J, et al. [3] described by comparing

the modified two models which provide accurate high-order

approximations to the optimal checkpoint interval.

This paper emphasizes the high-performance checkpoint

interval approach. The system examines and compares the

two checkpoint interval methods (FCI and ICI). The system

performs the reliability of a real-time messaging system by

developing fault tolerance.

The paper is structured as follows: Section II explains

coordinated checkpoint protocol on Apache Kafka pipeline

architecture. Section III demonstrates the Performance

Investigation on Apache Kafka. Finally, the system

concludes in Section IV.

II. APACHE KAFKA PIPELINE ARCHITECTURE WITH

COORDINATE CHECKPOINT PROTOCOL

Nowadays, data ingestion has become the critical

process of real-time processing in the big data platform.

Apache Kafka is a fault tolerant, reliable messaging system

for data transferring in real-time. Fig.1. illustrates the system

architecture of coordinated checkpoint protocol on Apache

Kafka. The coordinated checkpoint protocol evaluates the

processing flow of Apache Kafka.

Fig.1. System Architecture of Coordinated Checkpoint Protocol on

Apache Kafka

The system calculates the time between failure based on

total uptime (uptime and downtime) and number of

breakdowns that depend on the publishing batch size (file

size). In Equation (1), the Mean Time Between Failure

(MTBF) is the predicted time interval between system

failures during real-time operation.

The optimal checkpoint interval (Topt) is calculated

using MTBF and the save time (Tsd) of the Kafka

configuration in Equation (2).

 Topt = √2 × Tsd × MTBF (2)

A. Fixed Checkpoint Interval (FCI) Method

Fig.2. illustrates the procedures for the FCI method as

well as the number of checkpoints in the ith cycle. The system

determines the starting time of the ith checkpoint (Ci) based

on Topt and Tsd in Equation (3) to represent the total

overhead cost of Apache Kafka.

𝑀𝑇𝐵𝐹 =
𝑇𝑜𝑡𝑎𝑙 𝑢𝑝𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛
 (1)

Ci = iTopt + (i − 1)Tsd (3)

 In FCI method, the length of each checkpoint interval is

fixed i.e., TCi = TC. The system assumes the save time (Tsd)

of 5 seconds from the default save time from Apache Kafka

and accepts failure time (Tif) from dynamic server failure

time in the running process for overall calculation of the

system. During failure recovery, the system calculates the

total overhead cost due to checkpointing and restarting.

 Tif, Topt and Tsd are used in Equation (4) to compute

the number of checkpoints taken in the ith cycle (Ni).

Equation (5) calculates checkpointing cost in the ith

cycle (𝐂𝐂𝐢) by using 𝐍𝐢 and 𝐓𝐬𝐝 .

In Equation (6), 𝐍𝐢 and optimal checkpoint interval and

save time (𝐓𝐨𝐩𝐭 + 𝐓𝐬𝐝) in Kafka. Rollback recovery (𝐑𝐛𝐢)

has measured the difference between current server failure,

the number of checkpoints to be taken in ith cycle and each

checkpoint interval cost. The system needs to know the

restart time (𝐓𝐫𝐭) after the failure case, Kafka defines the

restart time as 5 seconds by default.

In Equation (7) , the overall total overhead cost in the ith

Kafka processing cycle E(Tcost) is determined by rollback,

checkpoint, and restart costs.

B. Incremental Checkpoint Interval (ICI) Method

Fig.3. demonstrates the procedures of the ICI method

and the number of checkpoints in the ith cycle. In each cycle

the first checkpoint is initiated after Topt1, the second

checkpoint is initiated after (Topt1 + Topt2 + Tsd) and the third

checkpoint is initiated after (Topt1 + Topt2+ Topt3 + 2Tsd) and

so on. The checkpoint interval size of ICI method can vary

from one checkpoint to another checkpoint. In each cycle, the

increment of checkpoint interval size increases based on the

initial checkpoint interval time. Thus, the rollback cost of

ICI method can increase more than the rollback cost of FCI

method.

Fig.3. Procedures for ICI method

The system considers ICI for processing i.e., TCi = iTC

in followings and then calculates in Equation 8.

If T1 <(Topt1 +Tsd), N1=0

If (∑ 𝐾Topt + 𝑛𝑇𝑠𝑑) < Ti
𝑖
𝑘=1 and

If Ti < (∑ 𝐾Topt + (𝑛 + 1)𝑇𝑠𝑑)𝑖
𝑘=1

 In Equation (9), the size of first checkpoint interval is

Topt that performs more than its previous checkpoint interval

in each cycle.

Equation (10) calculates based on the Equation (9) and

𝑇𝑠𝑑in kafka.

Rbi has measured the difference of current server failures

and the number of checkpoints to be taken in ith cycle and

each checkpoint interval cost. Rbi can calculate by using

parameters Ni, Tif, Topt and Tsd in Equation (11). Ni is the

number of checkpoints to be taken in ith cycle and the time of

optimal checkpoint interval (KTopt).

Rollback, checkpoint, and restart costs are used to

calculate the total overhead cost in the ith Kafka processing

cycle E(Tcost).

The system’s reliability can be measured by using

Equation (13) with the parameters (R1, R2, R3,.., Rn). The

system decides the whole system’s reliability by evaluating

the parallel system reliability.

III. EXPERIMENTAL STUDIES AND PERFORMANCE

INVESTIGATION

The performance of the coordinated checkpoint protocol

has been evaluated on the Kafka pipeline architecture. The

comparative analysis of the Fixed Checkpoint Interval (FCI)

method and Incremental Checkpoint Interval (ICI) method

are performed. The system tests the two experiments on the

four types of batch size: B5, B10, B20 and B40 on data size

(file sizes)184 MB from real-time messages in Kaggle Web

site.

A. Experiment 1: Comparison of Rollback Recovery Cost

on Various Batch Sizes

The system demonstrates the comparison of rollback

recovery cost in Fig.4. The testing focuses on how the

effectiveness of the FCI method and ICI method.

The results show the different rollback recovery costs

among batch sizes. Reducing the rollback recovery cost is the

main point for calculating the total overhead cost. The FCI

 Rs = 1 − (1 − R1)(1 − R2) … (1 − R𝑛) (13)

 (13)

Ni = ⌊
Tif

(Topt + Tsd)⁄ ⌋ (4)

CCi = NiTsd (5)

Rbi = (Tif − Ni(Topt + Tsd)) (6)

 E(Tcost) = CCi + (Tif – Ni(Topt + Tsd)) + Trt (7)

 𝑁𝑖 = ⌊
𝑇𝑖𝑓

(𝑇𝑜𝑝𝑡 + 𝑇𝑠𝑑)⁄ ⌋ (9)

 CCi = NiTsd (10)

 E(Tcost) = CCi + (Tif – (Ni × Tsd + ∑ 𝐾Topt
𝑖
𝑘=1)) + Trt

 (12)

 Ci = ∑ ToptK + (i − 1)Tsd
𝑖
𝑘=1 (8)

Fig.2. Procedures for FCI Method

 Rbi = (Tif − (NiTsd + ∑ 𝐾Topt
𝑖
𝑘=1)) (11)

Ni=n where
n=1,2,3,…

i=1,2,3, ..

method reduces the time complexity on different batch sizes

than the ICI method.

Hence, the FCI method can implement any batch sizes in

real-time messaging system.

B. Experiment 2: Comparison of Total Overhead Cost on

Various Batch Sizes

The system evaluates the comparison of total overhead

cost in Fig.5. The total overhead cost is calculated based on

the server failure time that varies the number of batch sizes

(file sizes).

Fig.5. Comparison of Total Overhead Cost in FCI and ICI Method

The results show FCI method outperforms for measuring

the total overhead cost of the system. Hence, the FCI method

reduces the total overhead cost compared to the ICI method.

Hence, the system recovers total overhead costs in more

efficient time for different batch sizes.

C. Reliability Measure on Experimental Results

Table I summarizes the comparative analysis of

coordinated checkpoint protocol based on the experiments.

TABLE I. RELIABILITY PERFORMANCE FOR EXPERIMENTS

Number of Batch size

(184 MB)

Roll Back

Recovery Cost

Total

Overhead Cost

B5 17% 11%

B10 17% 20%

B20 29% 28%

B40 58% 46%

Table I shows the time complexity for the rollback

recovery cost of FCI method absolutly reduces than the ICI

method on different batch sizes (file sizes). Then, the total

overhead cost of the FCI method is better than ICI method to

measure the reliability of Apache Kafka.

The system analyzes the reliability improvement on the

experiments by comparing FCI and ICI method. Hence, the

system reliability raises 79% in rollback recovery cost and

72% in total overhead cost by applying the FCI method.

IV. CONCLUSION

Fault tolerance is the importance in the reliability of

Apache Kafka. The development of Kafka's fault tolerance

relies on a reliable checkpoint interval method. The system

compares two checkpoint interval methods on different batch

sizes. The analysis indicates the advantages of the Fixed

Checkpoint Interval (FCI) method which reduces the recovery

cost than the Incremental Checkpoint Interval (ICI) method.

Hence, the FCI method is more appropriate for measuring the

reliability of the real-time messaging system. The paper

confirmed that the FCI method improves about 80% for the

real-time messaging system.

REFERENCES

[1] Kumar, A., Yadav, R.S. and Ranvijay, A.J., 2011. “Fault tolerance in
real time distributed system”. International Journal on Computer
Science and Engineering, 3(2), pp.933-939.

[2] Silva, L.M. and Silva, J.G., 1999, April. “The performance of
coordinated and independent checkpointing”. In Proceedings 13th
International Parallel Processing Symposium and 10th Symposium on
Parallel and Distributed Processing. IPPS/SPDP 1999 (pp. 280-284).
IEEE.

[3] Daly, J., 2003, June. “A model for predicting the optimum checkpoint
interval for restart dumps”. In International Conference on
Computational Science (pp. 3-12). Springer, Berlin, Heidelberg.

[4] Shastry, M.P. and Venkatesh, K., 2010. “Selection of a Checkpoint
Interval in Coordinated Checkpointing Protocol for Fault Tolerant
Open MPI”. International Journal on Computer Science and
Engineering, 2(6)., ISSN: 0975-3397, Engg Journals Publications,
India.

[5] Aung, T., Min, H.Y. and Maw, A.H., "CIMLA: Checkpoint Interval
Message Logging Algorithm in Kafka Pipeline Architecture." In 2020
International Conference on Advanced Information Technologies
(ICAIT), Yangon, Myanmar, pp. 30-35, November, 2020, IEEE
Digital Library, DOI: 10.1109/ICAIT51105.2020.9261812.

Fig.4. Comparison of Rollback Recovery Cost in FCI and ICI Method

