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Abstract— As electric vehicle (EV) adoption surges, the power 
grid faces growing challenges from increased charging demands. 
Unregulated charging can strain the grid, underscoring the need 
for an intelligent power allocation strategy. This paper presents a 
proactive solution, utilizing historical data to forecast future 
charging demands and strategically deciding which vehicles to 
charge. Our approach aims to optimize charging across all 
vehicles while reducing associated costs. Empirical results validate 
the efficacy of our strategy: not only does it ensure all EVs reach 
their specified charge levels, but it also manages to do so more cost-
effectively, resulting in a saving of at least 1% when compared to 
conventional methods. 

Keywords—Cost minimization, electric vehicle charging, 
scheduling algorithm. 

I. INTRODUCTION 
As the world shifts towards an eco-friendly paradigm, the 

automotive industry is transitioning to electric vehicles (EVs) 
powered by electric energy. With the growing prevalence of 
EVs, Information and Communication Technology (ICT) 
related to them has become a focal point of discussion. A 
significant challenge in this domain is optimizing the charging 
process to minimize costs and achieve desired battery levels. 

One approach, as described in [1], employs deep 
reinforcement learning to determine which vehicle to charge. 
While effective, this method faces challenges in designing a 
reward function that balances cost and the desired State of 
Charge (SoC) of the battery. As the scale of vehicles increases, 
the experiment with numerous episodes becomes time-
consuming. Conversely, the method in [2] bases charging 
decisions on the individual information of each vehicle and the 
available power. This strategy can be implemented without 
extensive data collection. However, it occasionally results in 
overcharging during peak times or fails to attain the target SoC. 

To address these issues, our study introduces algorithms that 
promote low-cost charging during the vehicle's stay time and 
leverage previously collected EV patterns to forecast future 
demand. Our aim is to ensure all vehicles reach their target 
battery levels while keeping the total charging cost to a 
minimum. Through simulations, the proposed method 
demonstrated that all vehicles achieved the target energy level 

with a cost reduction of at least 1% compared to the existing 
method [2]. 

 

II. SYSTEM MODEL 

A. Scenario 
Consider a scenario where we have K electric vehicles (EVs) 

denoted by a set of indices EV={1,2,...,K}. Each of these EVs 
corresponds to an on-off charging station that can be coordinated 
by a Charge Point Operator (CPO). Upon the arrival of an EV 
and its subsequent connection to a charging station, data from 
the EV is transmitted to the CPO. 

Before the onset of the next time slot, the CPO decides 
whether to charge a particular vehicle. This decision is based on 
data obtained from all plugged-in EVs, current available power, 
and the associated charging costs. The CPO then dispatches on-
off signals to the respective stations for each time slot. 

Each hour is divided into Nslot time slots, culminating in a 
total of 24 Nslot time slots in a day. These can be represented by 
a set of time slot indices T={1,2,...,24Nslot}. The charging cost 
varies according to the Time-of-Use (TOU) rates, which are 
categorized into on-peak, mid-peak, and off-peak periods. 

B. Notation 
� 𝑛!

"#$(𝑡): Number of required time slots to reach the 
target SoC level of k-th EV at time slot 𝑡. 

� 𝑛!
%&'(𝑡): Number of sojourn time slots, or the duration 

of stay, for the k-th EV at time slot 𝑡. 

� 𝑛()*(𝑡): Maximum number  of EVs that can be charged 
at time slot 𝑡. 

� 𝑉+",(𝑡): Set of EVs for which 𝑛!
%&'(𝑡) − 𝑛!

"#$(𝑡) ≤ 0. 
This set includes EVs that have an urgent charging need 
at time slot 𝑡. 

� 𝑉-&"*(𝑡): Set of EVs for which 𝑛!
%&'(𝑡) − 𝑛!

"#$(𝑡) > 0. 
These EVs have a normal or non-urgent charging 
requirement at time slot 𝑡. 



� 𝑉%./(𝑡): Set of EVs scheduled to be charged at time slot 
𝑡. 

 

III. PROPOSED SCHEDULING 
The proposed scheme is outlined as follows: 

1. Initial Analysis: 

• Identify EVs that have not yet reached their target SoC 
level at the time slot t among the currently stationed 
EVs. 

• For each of these EVs, compute 𝑛!
"#$(𝑡) and 𝑛!

%&'(𝑡) as 
defined earlier. 

• Evaluate the difference, 𝑛!
%&'(𝑡) − 𝑛!

"#$(𝑡) , and 
arrange the EVs in ascending order based on this value. 

2. Urgent Charging Assessment: 

• If 𝑛!
%&'(𝑡) − 𝑛!

"#$(𝑡) is less than 1, the respective EV is 
added to V+",(𝑡) in the given order; otherwise, it is 
added to 𝑉-&"*(𝑡). 

• EVs in 𝑉+",(𝑡)  have little to no discretion in their 
charging choice due to their impending departure or 
immediate charging needs. Consequently, they should 
be prioritized in 𝑉%./(𝑡), but not exceeding 𝑛()*(𝑡). 

3. Non-Urgent Charging Assessment: 

• In off-peak times, all necessary EVs are added to 
𝑉%./(𝑡) sequentially, subject to availability. 

• For mid-peak and on-peak times, the algorithm 
determines the number of each TOU time slot an EV 
has remaining until departure, comparing it with 
𝑛!
"#$(𝑡) . Depending on the sufficiency of available 

time slots in relation to the required slots, the algorithm 
decides the charging status of the EV. 

Example: If 𝑛!
"#$(𝑡) is 5, and an EV has slots distributed as 

3 off-peak, 3 mid-peak, and 2 on-peak until departure, the 
charging decision for an on-peak slot 𝑡  would be negative. 
However, for a mid-peak slot 𝑡, the EV would be scheduled for 
charging. 

4. Adaptation Under Power Constraints:  

The initial algorithm assumes an always-available charging 
option for all EVs. In reality, under stringent power constraints, 
this assumption can lead to unsatisfactory outcomes. Therefore, 
during mid-peak slots, the system: 

• Uses historical EV and power data to predict incoming 
EVs. 

• Runs a virtual simulation based on the main algorithm. 

• Identifies EVs that either fail to meet the target SoC or 
are overcharged during on-peak times. 

• Determines the time slots when such EVs were 
deprioritized during off-peak charging. 

• Schedules these EVs for charging during this mid-peak 
slot by adding them to 𝑉%./(𝑡). 

This augmented strategy ensures optimal scheduling during 
mid-peak times, thereby reducing off-peak demand and enabling 
the power grid to manage potential capacity shortages more 
effectively. 

 

IV. SIMULATION RESULTS 
Table 1 presents the parameters adopted for our case studies. 

We set 𝑁%(&0 = 4, with the number of EV arrivals within a day 
and the load power profile being drawn from reference [2]. The 
notation 𝑁(𝑎, 𝑏1) represents a normal (or Gaussian) distribution 
with a mean of 𝑎 and a standard deviation of 𝑏. 

TABLE I.  SIMULATION PARAMETER SETTING. 

Parameters Values 

Total number of EVs 1000 

Total days 3 

EV battery capacity 58 kWh 

EV charging rate 7kWh 

SoC at the arrival 𝑁(0.5, 0.2!) 

Sojourn time slots 𝑁"#$% × 𝑁(13, 3.8!) 

 

Table 2 displays the TOU electricity pricing. 

TABLE II.  TIME-OF-USE ELECTRICITY PRICES. 

TOU Time Price 
On-peak 11:00 ~ 12:00 

13:00 ~ 18:00 168.5(₩/kWh) 

Mid-peak 08:00 ~ 11:00 
12:00 ~ 13:00 
18:00 ~ 22:00 

115.5(₩/kWh) 

Off-peak 22:00 ~ 08:00 57.3(₩/kWh) 

 

Table 3 provides a comparative simulation outcome over a 
span of three days using both the proposed method and the 
method from [2], based on the parameters specified. 

TABLE III.  COMPARISON OF CHARGING COSTS. 

Power 
capacity Algorithm Total cost Unsatisfied EV 

5400kWh 

[2] 4145272.76 532 

Proposed 4167180.21 0 

5500kWh 
[2] 4081761.3 0 

Proposed 4033457.68 0 

 

For a power capacity of 5400kWh, the total cost incurred by 
the proposed algorithm closely aligns with that of [2]. However, 
the proposed approach notably reduces the number of 
unsatisfied EVs when compared to [2]. When the power 
capacity is increased to 5500kWh, both methods do not have 



unsatisfied EVs. Yet, the total cost under the proposed algorithm 
is reduced by 1% compared to [2]. 

 

V. CONCLUSIONS 
In this paper, we introduced an algorithm tailored for 

minimizing charging costs under ideal conditions, as well as an 
extended approach that considers both EV patterns and power 
capacity. This enhancement was designed to address the 
limitations inherent to minimal-cost algorithms. Our simulation 
results demonstrate that, compared to pre-existing methods, our 
proposed solution can maintain or even reduce the overall 
charging costs while simultaneously improving the number of 
vehicles charged to their target SoC levels. 
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