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Abstract— In the current, 5G and future 6G networks era, the 

development of low-latency tactile Internet (TI) is expected to 

bring new impact globally. The tactile internet will enable haptic 

and kinesthetic interactions between humans and machines in real 

and virtual environments through robots/machines. This 

necessitates low-latency, high capacity, and reliability. Therefore, 

in this paper we present an edge intelligence based Dynamic 

Wavelength Bandwidth Allocation (EI-DWBA) scheme in H2M 

services in optical mobile fronthaul. Simulation results show that 

the proposed scheme significantly improves the system 

throughput and reduces delay in different traffic situations, and 

also promises the quality-of-service (QoS) performance.  
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I. INTRODUCTION  

Currently, the transition from the first generation (1G) to the 
fifth generation (5G) and subsequently to beyond future 6G 
networks mobile internet has brought about a significant 
advancement in information and communication technology. 
Communication networks have progressed from merely 
sending conventional traffic (i.e. Voice, Video, and Data) to 
also deliver machine-oriented traffic, such as the Internet of 
Things (IoT). The next stage of tactile internet (TI) has 
achieved a significant milestone in advancing human-to-
machine (H2M) communication [1]. The objective is to enable 
remote control of both real and virtual objects through tactile 
and haptic communications. This allows humans to feel touch, 
force in their activities as if they were in a distant environment 
interacting with them. Fig.1 shows bidirectional haptic 
communications in the teleoperation system enabling a real-
time exchange of control commands from human operators and 
robot feedback. The H2M enables a wide variety of applications 
such as healthcare, autonomous vehicles, augmented 
reality/virtual reality (AR/VR), gaming, etc. [2]. These H2M 
applications require ultra-low-latency, high capacity, high 
reliability and high bandwidth.  

The implementation of optical access and 5G mobile 
fronthaul networks in close proximity to end-users and robots 
presents a viable architectural approach for facilitating low-
latency human-to-machine communication. Further, the 
improved fronthaul connectivity is necessitated by the ultra-low 
latency need in 5G and the future communication transmission 
and density of cell sites [3]. In order to achieve this objective, 
the IEEE 802.3ca task force released the 25G and 50G high 
capacity Next Generation Passive Optical Networks (NG-
EPON). The NG-EPON utilizes multiple wavelength channels 
with a capacity of 25 Gbps each, enabling the transfer of data 
at different rates in both the downstream and upstream 
directions. In addition, channel bonding is a feature that enables 
NG-EPON to attain elevated data rates, resulting in aggregated 
data rates of Nx25Gbps [4]. Towards this end, NG-EPON 
technologies widely used in today's fiber-to-the-home (FTTH), 
residential, business, IoT and TI constitute promising solutions 
to 5G mobile fronthaul traffic flows. NG-EPONs should also 
meet the fronthaul network's requirements for low latency, 
jitter, and high throughput. Therefore, it is crucial to implement 
dynamic wavelength bandwidth allocation (DWBA) schemes 
that meet these demands [5]. NG-EPON DWBA scheme is 
contains the three-mechanism based on the wavelength 
manages such as single scheduling (SSD), multi-scheduling 
(MSD) and wavelength agile (WA).  

As a result, various early studies have been conducted to 
improve bandwidth allocation through the implementation of 
predictive dynamic bandwidth allocation (DBA) or DWBA, 
employing a variety of methodologies, including predictive and 
genetic expression-based approaches, as mentioned in [6]. In 
recent years communication networks like, software-defined 
networking (SDN), cloud/edge and machine learning 
technologies have played a major role in optical and wireless 
network resource allocation. SDN is an essential part of low-
latency networks because it decouples the control and data 
planes and offers centralized management over network 
devices. Also, the bandwidth allocation DWBA scheme for 
H2M telesurgery system based on SDN integrated optical 
access network is proposed in [7,8]. Moreover, Edge computing 
intelligently allocates computing and storage resources to 
devices at the edge of the wired and wireless network to reduce 
latency and jitter. Despite increasing interest in deep learning 
for optical access networking, the potential of edge intelligence 
to improve immersive and transparent H2M operation for 
human operators remain largely unexplored. Therefore, we use 

 
Fig. 1. H2M generic communication architecture.  

 



deep learning at the edge of our communication network to 
create immersive, seamless H2M experiences. Furthermore, in 
this study machine learning based DBA schemes are 
investigated in [9]. In this paper, in order to meet H2M 
application requirements, we propose a novel edge intelligence 
DWBA (EI-DWBA) mechanism for NG-EPON based on deep 
learning. Specifically, we construct a gated recurrent network 
(GRU)-Recurrent Neural Network (RNN) and predict the 
bandwidth. 

II. LOW-LATENCY OPTICAL MOBILE FRONTHAUL 

ACCESS NETWORK ARCHITECTURE 

Figure. 2 shows the proposed edge intelligence based integrated 

optical mobile fronthaul access system architecture for H2M 

applications. The optical fiber backhaul consists of a IEEE 

802.3ca 25G NG-EPON with typical fiber range 20 km between 

the central office (CO) optical line terminal (OLT) and optical 

network unit (ONU) integrated radio unit (RU). Each stage of 

NG-EPON is separated by a splitter/combiner or wavelength 

multiplexer/demultiplexer. The proposed architectural design 

involves the bonding of two 25G wavelength channels, 

resulting in a combined transmission capacity of up to 50G. In 

order to facilitate the allocation of bandwidth in the specified 

wavelength channels, each optical network unit (ONU) is 

equipped with a pair of transceivers, denoted as λ1 and λ2. The 

connection between the OLT and the ONUs is conducted via 

the multi-point control protocol (MPCP), enabling the ONU to 

send a REPORT message to the OLT, informing it about its 

upstream bandwidth demands. In response, the OLT would 

send a GATE message to the ONU granting it a time interval. 

Moreover, the OLT and ONU-RUs are enhanced with SDN and 

AI-assisted MEC server and divided into three different 

services such as application service, connection service and 

transport services.  

The application service consists of a service module and 

SDN controller module. The service module is responsible for 

achieving differentiated services (i.e. H2M applications, cloud 

data center and machine learning etc.) for the clients. The SDN 

controller module is responsible for transmitting and receiving 

control packet data between client-side applications and the 

SDN controller. The SDN controller interfaces with OLTs and 

ONUs to gain insight into and manage the entire access network.  

The connection services comprise the OLT, ONU-RRUs 

and AI-assisted MEC server. The OLT is outfitted with a pair 

of transceivers operating at distinct wavelengths, denoted as λ1 

and λ2. The ONU-RU establishes a connection between 

subscribers and the OLT through the utilization of two 

transceivers that have the capability to be bonded. Moreover, 

the OLT has managed the DWBA scheme to allocate 

bandwidth to ONU-RUs. These AI-MEC servers are equipped 

with OLT and ONU-RUs based on cost, bandwidth, and latency 

constraints. Note that the H2M teleoperation services contain 

the master and slave devices, these devices are connected to an 

ONU of long-reach PON [10]. Such remote H2M teleoperation 

can be facilitated by various AI-enhanced edge-computing 

servers to minimize its latency. Therefore, the system uses AI-

enhanced edge-computing servers to predict bandwidth 

requirements. 

Transport services would combine application and 

connectivity services in a hybrid access network. NG-EPON 

intelligently supports network slices in different systems, 

applications, and vendors using SDN. Two bonded transceiver 

channels allow ONUs to transmit up to 50G to an OLT.  

A. Edge-Intelligence DWBA (EI-DWBA) Mechanism 

The AI-assisted MEC server plays a critical role in the 
SDN-enhanced NG-EPON system, particularly in the DWBA 
allocation process. In our proposed EI-DWBA schemes the AI-
MEC server will provide the GRU-RNN model to predict and 
allocate the bandwidth. Gated recurrent unit (GRU) is an 
enhancement of recurrent neural network (RNN). GRU is able 
to solve problems involving long-term dependencies because it 
retains the knowledge acquired during earlier stages of the 
learning process. There are two main gates in the GRU namely 
the update gate and reset gate. The update gate Ut is used to 
control how much information from the previous state is 
brought into the current state. The reset gate Rt is used to control 
how much the GRU ignores the previous moment's status 
information [11].  

The NG-EPON bandwidth assignment, the grant/report 
mechanism is implemented using GATE and REPORT 
messages exchanged between OLT and ONUs. The 
communication made between the OLT and ONU based on its 
cycle time. In this way we applied the GRU algorithm to predict 
bandwidth demand for next P cycles based on its demands in 
the past R cycles. The bandwidth demands can be collected in 
two ways. First, the ONU buffer occupancy report messages R 
and second OLT GATE message G in every cycle time t. These 
two-time series messages contain essential information 
regarding the operational standing of every ONU. Therefore, an 
EI-DWBA needs the two kind of cycles; the ONU buffer 
occupancy reporting cycle (𝑅1, 𝑅2′ … … . , 𝑅𝑟)  and the 
prediction cycle (𝑃1, 𝑃2′ … … . , 𝑃𝑝). During cycles, each ONU 

sends a report message to request bandwidth allocation, which 
is determined by its queue size, and the OLT calculates and 
sends the grant for the next cycles. This is similar to 
conventional dynamic wavelength bandwidth allocation 
(DWBA) methods. But, the OLT records the above request for 
predictions. In the last reporting cycle 𝑅𝑟 , when the OLT 
receives the Rth REPORT message from the ONU, it utilizes the 

 
Fig. 2. Edge intelligence supporting H2M optical mobile fronthaul 

networks.  



R saved requests of this ONU as input to the GRU model in 
order to predict the request sizes for the future P cycles. When 
the GRU model generated predictions, and the OLT possesses 
these predicted request sizes for all ONUs, these predictions are 
treated as though they were REPORT messages received from 
the ONUs across the cycles (𝑃1, 𝑃2′ … … . , 𝑃𝑝). After prediction, 

the OLT uses the same DWBA operation used to assign 
transmission windows to each ONU for cycles 
(𝑃2′ … … . , 𝑃𝑝, 𝑃1,)  and does not require any more report 

messages. This prediction mechanism reduces the control 
message overhead and increases the system throughput. 

III. PERFORMANCE EVALUATIONS 

We collect training data and run extensive OPNET simulator 
simulations to test the proposed system. The proposed approach 
uses 64 ONU and OLT with two transceivers. OLT and ONU 
downlink/uplink channel rates were dynamically assigned 1-25 
Gbps. OLT and ONUs were evenly spaced at 10–20 km, and 
the ONU buffer was 10 Mb. Network traffic models for HT, 
AF, and BE traffic were self-similarity and long-range 
dependence, with maximum transmission cycles of 1.0 ms. The 
model generated high-burst HT, AF and BE traffic with a hurst 
parameter of 0.7 and a packet size uniformly distributed 
between 64 and 1518 bytes. The traffic on the EF was based on 
a Poisson distribution with a fixed packet size (70 bytes). The 
network traffic ratios of scenario 1, Expedited Forwarding-EF 
(10%), H2M Traffic-HT (6%) Assured Forwarding-AF (34%) 
and Best effort (50%); scenario 2 (EF-10%, HT-7.5%, AF-
42.5% and BE-40%); scenario 3 (EF-10%, HT-9%, AF-51% 
and BE-30%), respectively. 

The dataset was collected offline with limited DWBA 
schemes and the traffic models are generated for EF-Poisson 
distribution, HT-Pareto, AF and BE are uniform distribution. 
The data set has 9 features: EF Report, HT Report, AF Report, 
BE Report, EF Grant, HT Grant, AF Grant, BE Grant, and 
Cycle time. This means observations are taken every 1 ms. Our 
dataset includes 2 lakh data point samples from all network 
loads. The training dataset will comprise 80% of the rows from 
the original data, while the testing dataset will comprise the 
remaining 20%. 

 In addition, we analyses the performance of the proposed 
EI-DWBA under a offline limited scheme and contrast it to a 
conventional limited scheme using a different of traffic profiles 

to evaluate its efficacy. Fig. 3 shows the mean packet delay of 
EI-DWBA vs. limited DWBA scheme. The packet delay 
includes polling, grant, and queueing delays. The EI-DWBA 
may greatly improve compared to the limited DWBA in all 
traffic profiles in terms of packet delay. Using historical data, 
the EI-DWBA can reduce control message overheads by 
predicting the EF, HT, AF, and BE REPORT messages next 
steps in advance.  

IV. CONCLUSION 

The main objective of this paper is to facilitate H2M 

applications with an AI-MEC server over optical mobile 

fronthaul networks. Our contribution is more encouraging for 

future H2M immersive research on edge-intelligence 

communications. Moreover, we proposed a edge intelligence 

DWBA scheme for improving the bandwidth efficiency of NG-

EPON by utilizing the GRU-RNN model. These proposed 

models significantly improve the prediction accuracy, and 

reduce the loss to improve the system performance.  
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Fig. 3. Mean packet delay for H2M traffic in 1.0 ms.  


