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Abstract—This short paper presents an AUV-Assisted Cut-
Vertex-Aware Data Collection for Underwater Wireless Sensor
Networks (UWSNs). In a multi-hop UWSN, the death of a special
node, namely the cut-vertex (CV), divides the network into the main
network and an ISN. This results in a loss of data generated by the
ISN. To overcome this problem, in the proposed protocol, the AUV
first determines a CV by utilizing the information collected from
the sensor nodes. Then, using the Chapman–Kolmogorov equation,
the AUV predicts the residual energy of the CV in future time-slots
and guarantees that it reaches the CV before the CV’s energy is
depleted and an ISN is formed. The AUV then collects data from
the sensor nodes instead of the CV. During the time-slots in which
the AUV performs data collection, the CV harvests energy from
ambient underwater sources and rejoins the network after it has
sufficiently recharged its energy. Our preliminary simulation results
show that the proposed protocol outperforms the stratification-
based data collection scheme and Q-learning-based topology-aware
routing protocol in terms of network lifetime and delay.

Index Terms—AUV, Chapman–Kolmogorov, data-collection, en-
ergy harvesting, cut-vertex, Markov chain, underwater wireless
sensor networks.

I. INTRODUCTION

Underwater wireless sensor networks (UWSNs) have gained
popularity for underwater data collection, monitoring, naviga-
tion, and disaster prediction. However, the adverse conditions
of the underwater acoustic channel and the energy limitations of
underwater sensor nodes present challenges to the performance
of UWSNs [1]. For power, underwater sensor nodes rely on
batteries that are difficult and costly to replace. Usually, the
sensor nodes far from the sink have to relay data through
other nodes in a multi-hop fashion. However, the death of a
single next-hop forwarder node, called cut-vertex (CV), can
divide a network into a main network and isolated sub-network
(ISN) [2]. Understanding the significance of a CV, a study
in [3] developed a protocol to identify the CV by considering
the network topology in order to achieve balanced and reduced
energy consumption. Thus, the lower-level nodes (nodes far from
the sink) of the CV become aware of their isolation once the
CV dies and save energy by entering sleep mode. Nonetheless,
the death of the CV leads to a shorter network lifetime (the
time when the first node in the network dies). Due to the loss
of connectivity to the main network, the data collected by the
ISNs cannot be relayed to the sink, decreasing the network’s
reliability.

Many studies have demonstrated that autonomous underwater
vehicles (AUVs) can be used for a variety of purposes to extend
network lifetime and reduce energy consumption. Based on
water velocity, a protocol in [4] divides the network into two
layers. Multi-hop transmission is employed in the upper layer,

where nodes experience high water velocity. AUV-aided data
collection is employed in the lower layer, where nodes are
relatively static. However, there may be a significant delay since
the gateway nodes in the upper layer must wait for the AUV to
collect and relay the data to the sink. Moreover, the lower layer
network is not available once the AUVs fail in reality. In [5],
[6], the AUVs carry the replacement sensor node and replace
them in the areas where there is no communication possible
due to the absence of a next-hop forwarder on the routing
path. According to [7], underwater sensor nodes equipped with
acoustic communication interfaces could last for two weeks,
even if the node activity is very low. Thus, sensor nodes need to
be replaced repeatedly, which is an expensive operation. Some
other studies explored energy harvesting as a solution to extend
the network lifetime by collecting energy and storing it in an
energy buffer from sources in the aquatic environment such as
flows/tides, solar, and electrochemical [8]. The authors of [8],
[9] consider the predicted harvestable energy and residual energy
of sensor nodes while making routing decisions. However, these
solutions are associated with high deployment costs.

Motivated by the issues presented above, this paper employs
the AUV to explore the network and identify the CV, predicts
the future residual energy of the CV using the Chapman-
Kolmogorov (C-K) equation and the collected information,
ensures arrival before the CV dies, and collect data instead of the
CV until the CV rejoins the network after sufficiently recharging
its energy. The proposed protocol reduces the network deploy-
ment cost, prolongs the network lifetime, and reduces the delay
of UWSNs.

II. SYSTEM MODEL

The 3D network deployment model is presented in Fig. 1,
which consists of a static sink on the water surface, randomly
distributed underwater sensor nodes, and an AUV. The sink has
no prior knowledge about the location of sensor nodes. Sensor
nodes determine their hierarchical level (HLV) through network
initialization, which is defined as the number of hops from the
sink denoted by an integer starting from level-0 (highest-level),
as it is incrementally assigned to each level. The information
about the neighboring nodes’ ID and HLV are stored by each
sensor node in a list called the neighbors’ list. Sensor nodes
consume energy in three states: listening, receiving, and trans-
mitting. We divide the time into time-slots, and sensor nodes stay
in one of those states during a time-slot. We assume the sensor
nodes are equipped with rechargeable batteries capable of energy
harvesting. We suppose the AUV has higher energy and storage
capacities than sensor nodes and can establish a communication



Fig. 1: Network model.

link with a range much longer than the sensor nodes. When the
AUV energy falls below a specific energy threshold, it returns
to the sink for a recharge. We suppose that the required number
of sea current turbines are installed that are sufficient for the
sensor nodes to harvest the energy.

III. PROPOSED PROTOCOL

The proposed protocol consists of two phases: 1) Knowledge-
gathering phase and 2) Data-gathering phase. The knowledge-
gathering phase is further divided into two sub-phases: a)
Network exploration and CV detection phase; and b) CV residual
energy prediction phase. In the network exploration and CV
detection phase, the AUV moves around in a lawn-mower pattern
to collect information such as sender ID, HLV, location, and
neighbors’ list of the sensor nodes. The AUV then identifies
the CVs as follows: If a sensor node has only one higher-level
neighbor (nodes closer to the sink) in its neighbors’ list, then
the neighbor is classified as a CV. Then, AUV creates a list of
the CVs.

The proposed protocol then enters the CV residual energy
prediction phase. Since the speed of the AUV is slow, it takes
a certain amount of time to reach the CV to collect data from
its lower-level nodes. The AUV should arrive at the CV before
the CV has drained its energy; otherwise, the data collected by
the CVs and its lower-level nodes is lost. Thus, we propose a
prediction model based on the C-K equation [10] to estimate
the residual energy of the CVs in future time-slots. This model
enables the AUV to plan its route ahead of time and visit each
CV before the energy depletes. To predict the residual energy of
the CVs in the future time slots, AUV first collects information
about the CV’s state and one-slot transition probability matrix
(discussed in the below paragraph) by visiting each CV in the
list. The AUV visits each CV, starting with the one closest to
its current location and moving to the next closest one until
all listed CVs are visited. After collecting this information, the
AUV uses the C-K equation to predict the CV’s future residual
energy.

Let {Xn : n = 0, 1, 2, . . .} be a state of Markov chain,
where Xn represents the state at the time-slot n. The transition
probability matrix of the Markov chain is denoted by P, which
is a 3 × 3 matrix and has an element = pij , {i, j} ∈ 1, 2, 3,
representing the probability of transitioning from state i to state
j, i.e.,P (Xn = j | Xn−1 = i), it implies the probability of
being in state Xn only depends on the previous state Xn−1.
The probability of transitioning from state i at the n-th time-
slot to state j after m time-slots, is denoted by P (Xn+m = j |

Xn = i) = p
(m)
ij ,m = 0, 1, 2, . . ., which is obtained by statistics

on the history states of sensor nodes.
According to the Chapman–Kolmogorov equation, m-slot

transition probabilities are given by,

p
(m)
ij =

∑
k∈{1,2,3}

p
(r)
ik p

(m−r)
kj , 0 ≤ r < m, ∀i, k, j, (1)

where k is an intermediate state between state i and state j.
Then, the energy consumption of the CV over ϕ time-slots at
state i, Eϕ

CV,i, is calculated as

Eϕ
CV,i ≜

ϕ∑
τ=1

3∑
j=1

p
(τ)
ij · Ej , (2)

where Ej represents the energy consumption by the CV in any
state j per time-slot. Then, the expected energy consumption
value of the CV over ϕ time-slots is determined as

Eϕ
CV =

3∑
i=1

Eϕ
CV,i · pi, (3)

where pi is the probability that the CV is in state i. Given the
initial energy of the CV, Eini

CV, we can then calculate the future
residual energy of the CV in ϕ time-slots, Eres

CV, as

Eres
CV = Eini

CV − Eϕ
CV. (4)

The AUV creates a CV priority list to prioritize the visits to
CVs as follows. Let ϕthr

res be the number of remaining time-slots
before Eres

CV falls below the CV threshold energy (Ethr
res). The CVs

are ranked in ascending order of their ϕthr
res values, i.e., the CV

having the least ϕthr
res value assigned the highest priority. The

AUV then calculates the time required to reach the CV, ψAUV
CV ,

as

⌈ψAUV
CV ⌉ =

√
(Ax − CVx)2 + (Ay − CVy)2 + (Az − CVz)2

L · vAUV
,

(5)
where L denotes the length of a time-slot, (Ax, Ay, Az) rep-
resents the current coordinates of the AUV, (CVx, CVy, CVz)
represents the coordinates of the CV, and vAUV represents the
speed of the AUV. Before entering into the data-gathering phase,
the AUV goes back to the sink and recharges its battery if the
following condition is true:

⌈ϕthr
res⌉ > ⌈ψAUV

CL-sink⌉+ ⌈ψAUV
sink-CV⌉, (6)

where ψAUV
CL-sink is the time AUV takes to travel back to the sink

from the current location and ψAUV
sink-CV is the time AUV takes to

travel from the sink to the CV of next highest priority.
In the data-gathering phase, the AUV travels near the CV

according to the priority listed in the CV priority list to collect
data in place of the CV. Upon the AUV’s arrival at the ensured
position, the CV transitions to sleep mode to begin energy
harvesting, and the AUV starts its data collection instead of
the CV. Simultaneously, AUV calculates the ψAUV

CV to the next
highest priority CV from the current location. The data collection
process by the AUV continues until the Eres

CV reaches the Ethr
res

and re-joins the network. Then, the AUV starts moving on to the
next CV in the CV priority list. Notably, the energy harvesting
process is only possible when the sensor node is in sleep mode,
and it is assumed that the energy consumption during sleep mode
is negligible. The Eres

CV can be updated as Eres
CV = Eres

CV + Eh
CV,



TABLE I: Simulation Parameters

Parameter Value

Network size 6 km × 6 km × 4 km
Data rate 2400bps
Propagation speed 1500m/s
Transmission range 1200m
Transmission mode power 20W
Receiving mode power 756mW
Listening mode power 30mW
Node’s initial energy 10 kJ
Speed of AUV 8m/s
Packet arrival rate 0.001
Energy harvesting rate 4W [11]
Simulation time 36 000 s
Energy threshold 2000 J

where Eh
CV is the energy that the CV harvested. The collected

data is then delivered to the sink node for further processing
when the AUV returns to the sink for a recharge.

IV. PERFORMANCE RESULTS AND FUTURE WORK

We evaluate the performance of the proposed protocol in
comparison with the stratification-based data collection scheme
(SDCS) and Q-learning-based topology-aware routing protocol
(QTAR) in terms of the: 1) Average lifetime of the CVs,
which is the duration that the CV actively engages in the routing
process. 2) Delay, which is the average time interval between
generating and successfully delivering a data packet to the sink.
The simulations are performed in MATLAB software, and the
values of the simulation parameters are given in Table I. A total
of 100 runs are conducted for each simulation.

In Fig. 2, we present the average lifetime of the CVs. We can
observe that the proposed protocol improves the lifetime of the
CVs. This is because, in the proposed protocol, the AUV can
predict the future residual energy of a CV and prevent it from
dying. Furthermore, while the AUV performs the data collection,
the CV harvests energy, extending the CV’s lifetime. In contrast,
QTAR and SDCS are incapable of preventing the death of a CV,
shortening the lifetime of the CV. Furthermore, as the number of
nodes increases, the average lifetime of the CVs decreases. The
reason is that as the number of nodes in the network increases,
a CV has to forward more data, resulting in increased energy
consumption that leads to faster death of the CV.

In Fig. 3, we present the delay. Compared to SDCS and
QTAR, the proposed protocol exhibits a lower delay because
the sender selects a next-hop forwarder from higher-level nodes
closer to the sink, thus reducing the delay. Additionally, the
AUV temporarily collects and delivers data from the CV to the
sink in this approach. QTAR may experience more delay than
proposed as all isolated group member nodes enter sleep mode
if they do not receive an acknowledgment for the successful
packet reception from the CV. The isolated member nodes
wake up from sleep mode and rejoin the network when a new
transmission is overheard. While in SDCS, the AUV alone
collects data, causing more delay than QTAR and the proposed
protocol. Our future works include analyzing the packet delivery
ratio and the lifetime of the network.
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Fig. 2: Average lifetime of the CV’s versus the number of nodes.
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Fig. 3: Average data collection delay versus the number of nodes.
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