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Abstract—In the realm of computer vision, real-time object
detection plays a pivotal role in a plethora of applications,
from autonomous vehicles to smart surveillance systems. This
paper presents an in-depth exploration of utilizing the YOLOv4-
tiny model for the task of object detection, specifically focusing
on road surface imagery classification into five distinct classes
namely plain, crack, pothole, black ice, and obstacle. The focus
on road surface imagery introduces challenges related to varying
roads and weather conditions making the anomaly detection
both important and challenging. By leveraging YOLOv4-tiny’s
lightweight architecture, we demonstrate its effectiveness in
achieving road surface anomaly detection accuracy on par
with larger models. On top of the great detection accuracy
already achieved, we propose an enhancement of the existing
model that has the potential to gain commendable compactness,
making it an ideal candidate for deployment on edge devices,
including resource-constrained platforms such as mobile phones.
We limit the results presented in this paper to the great detection
results achieved for the mentioned five classes. We outline the
framework of the potential enhancement of our model towards
being embedded in mobile devices end of the paper.

Index Terms—Object Detection, YOLOv4-tiny, Embedded Sys-
tems, Lightweight Models

I. INTRODUCTION

YOLOv4, the fourth iteration of the You Only Look Once
(YOLO) series developed by Alexey Bochkovskiy, represents
a significant advancement in real-time object detection [1] [2]
[3]. Released in 2020, YOLOv4 builds upon the strengths of
its predecessors, incorporating several innovations to enhance
both accuracy and speed. YOLOv4’s architecture is a fusion
of various techniques, including the CSPDarknet53 backbone
[4], PANet, PANet Neck [5], and SAM block [6], which
collectively enable better feature extraction and multi-scale
detection. Darknet is a framework that includes a Convolu-
tional Neural Network (CNN) [7] [8] architecture for various
computer vision tasks, particularly object detection. The in-
troduction of the CIOU loss function [9] in YOLOv4 further
refines the model’s bounding box predictions. By addressing
challenges posed by previous versions, YOLOv4 delivers state-
of-the-art performance in object detection tasks, outperforming
its predecessors and competing models.

The YOLOv4 Tiny model marks a significant milestone
in the evolution of real-time object detection algorithms.
Introduced as a compact and efficient variant of the YOLOv4
architecture, YOLOv4 Tiny addresses the demand for object
detection models that can be seamlessly integrated into edge
devices with limited computational resources. This model

achieves a remarkable balance between size and performance,
enabling its deployment on edge devices without sacrificing
detection accuracy. By adopting a streamlined architecture that
maintains the core principles of YOLO—such as anchor-based
detection and multi-scale feature extraction—YOLOv4 Tiny
optimizes the model for resource-constrained environments.
Its reduced size and computational requirements make it ideal
for applications such as surveillance cameras, drones, robotics,
and IoT devices, where real-time object detection is essential.

YOLO serial methods are generally complicated network
structures because of larger number of network parameters.
They have limited computing power and limited memory, and
require real-time object detection for some mobile devices
and embedded devices in everyday applications. The available
computing resources to do such challenging tasks are limited
to a combination of low-power embedded GPUs or even
just embedded CPUS with limited memory. Therefore, it is
very difficult task to do the real-time object detection on
embedded devices and mobile devices. In order to solve this
problem, the lightweight methods have come in, that have
comparatively simpler network structure and fewer parameters.
Hence the required computing resources and memory are at
managable limits and they have faster detection speed. Because
of their smaller size, they are more suitable for deploying on
mobile devices and embedded devices. The detection accuracy
is tempered because of all these imposed restrictions but
still meets the demand. Their widespread applications include
vehicle detection, pedestrian detection, bus passenger object
detection, agricultural detection, human abnormal behavior
detection, etc.

In this paper we propose an innovative object detection
model based on the YOLOv4 tiny methodology, designed to
effectively discern five distinct road surface classes namely
plain, crack, pothole, black ice, and obstacle. Our proposed
model not only demonstrates great accuracy but also possesses
the potential for real-time object detection because of its
smaller size suitable to be deployed in mobile devices. We
presented the object detection result using YOLOv4 algorithm
for the mentioned five classes and proposed a framework for
further enhancing the efficacy of the model by embedding it
to mobile devices.

The rest of the paper is organized as follows: section 2 has
the details of the base model of our framework i.e. YOLOv4
model, section 3 gives the elaborated system model that we
proposed, section 4 has our object detection results for the



mentioned five classes and the relevant discussion, section 5
has the details of our future work that we are currently working
on building on top of the object detection results that we got
and the last and final section of the paper has the conclusion
followed by references.

II. YOLOV4 NETWORK ARCHITECTURE

Yolov4-tiny method is designed based on Yolov4 that has
a speed of object detection about 371 Frames per second
using 1080Ti GPU with the accuracy that meets the demand
of the real application. Unlike Yolov4 method, the Yolov4-
tiny method uses CSPDarknet53-tiny network as backbone
network instead of the CSPDarknet53. The CSPDarknet53-
tiny network uses the CSPBlock module in cross stage partial
network instead of the ResBlock module in residual network.
This makes it possible that the gradients propagate in two
different network paths to increase the correlation difference
of gradient information. The CSPBlock module enhances
the learning ability of convolution network (10 − 20)% as
compared to ResBlock module. CSPBlock module removes
the computational bottlenecks that have higher amount of
calculation and thus improves the accuracy of Yolov4-tiny
method in the case of constant or even reduced computation.
To simplify the computation process, YOLOv4-tiny employs
the LeakyReLU activation function within the CSPDarknet53-
tiny network, foregoing the Mish activation function used in
YOLOv4. Unlike YOLOv4, it omits spatial pyramid pool-
ing and path aggregation. YOLOv4-tiny employs two scale-
specific feature maps (13x13 and 26x26) to predict detections.

To address the issue of redundant bounding boxes during
prediction, a confidence threshold is introduced. If a bounding
box’s confidence score exceeds this threshold, the box is
retained; otherwise, it’s discarded. The confidence score is
determined by comparing predicted and ground truth bounding
boxes through the Intersection over Union (IoU) measure.
The objectness score reflects the proximity of the predicted
box to the ground truth. YOLOv4-tiny employs the same loss
function as YOLOv4, encompassing confidence, classification,
and bounding box regression losses. The confidence loss
function differentiates between bounding boxes responsible for
detection (with corresponding weights). The classification loss
involves comparing predicted and actual class probabilities.
Weighted by parameters, these loss components contribute to
the overall optimization. This approach streamlines bounding
box predictions and class assignments, enhancing the effi-
ciency of YOLOv4-tiny’s object detection framework.

The loss function calculates the difference between pre-
dicted and ground truth bounding boxes’ dimensions, widths,
and heights. This difference is scaled by factors such as
the intersection over the union between predicted and truth
bounding boxes, the diagonal distance of the boxes, and the
truth width and height.

III. OUR PROPOSED OBJECT DETECTION MODEL

We gathered a diverse dataset comprising images of road
surfaces captured under five different safety and weather

conditions namely plain, crack, pothole, black ice and obstacle.
The dataset was manually annotated with bounding boxes and
class labels for the five targeted classes. The YOLOv4 Tiny
architecture was selected due to its compact size and ability to
maintain a balance between accuracy and speed. It consists of
a backbone network, feature extraction layers, and detection
layers. The dataset was split into training and validation sets.
Our system model is depicted in Figure 1.

Fig. 1. System model

The system model encompasses a streamlined process for
effective road surface detection utilizing the YOLOv4 Tiny
neural network. Commencing with image collection, diverse
road surface images depicting plain, crack, pothole, black ice,
and obstacle scenarios are gathered. These images undergo
annotation and bounding box labeling during preprocessing,
essential for training the YOLOv4 Tiny model. The dataset is
then divided into training and validation sets, facilitating model
training and performance evaluation. The Darknet neural net-
work is employed to train on the training dataset, enabling it
to identify and localize different road surface elements. The
trained model is tested on validation images with the highest
percentage value in favor of a class being the final decision
rule.

The model was trained from the scratch using annotated
images i.e. we did not utilize transfer learning by initializing
the model with pre-trained weights. Darknet provides the
foundation for training and deploying the YOLOv4 tiny model.
The framework supports various neural network architectures
and optimization techniques and is well-suited for training cus-
tom YOLO models on specific datasets. The training process
involved adjusting hyperparameters and optimizing the model
to achieve accurate predictions. The model’s performance was
assessed in terms of percentage accuracy with a focus on real-
time application feasibility.

IV. RESULT AND DISCUSSION

The performance of the YOLOv4 Tiny model in object
detection for different road surface classes was evaluated, and
the average accuracy of the model’s decisions for each class
was analyzed. The obtained results are presented in Table 1,
which displays the accuracy percentages for each class.

The YOLOv4 Tiny model demonstrated high accuracy in
detecting various road surface classes. The class ”Plain”
achieved the highest accuracy of 96%, indicating the model’s
proficiency in recognizing normal road surfaces. ”Crack” and
”Pothole” classes also exhibited commendable accuracy levels



TABLE I
AVERAGE OBJECT DETECTION ACCURACY OF OUR PROPOSED MODEL FOR

DIFFERENT CLASSES

Class Average Accuracy
Plain 96%
Crack 93%

Pothole 93%
Black Ice 82%
Obstacle 94%

of 93%, showcasing the model’s ability to identify common
road surface anomalies. The challenge of collecting sufficient
black ice images was encountered during the training process.
The ”Black Ice” class achieved an accuracy of 82%, which is
relatively lower than other classes. This decrease in accuracy
can be attributed to the scarcity of black ice images in the
training dataset. Obtaining authentic images of black ice is
inherently challenging due to its transient and often dangerous
nature. As a result, the limited availability of diverse black
ice images hinders the model’s exposure to this critical road
surface condition, impacting its overall accuracy. Lastly, the
”Obstacle” class achieved an accuracy of 94%, highlighting
the model’s success in detecting obstructions on the road.

The obtained results affirm the YOLOv4 Tiny model’s effec-
tiveness in road surface detection. It demonstrates promising
accuracy levels across diverse road surface conditions.

V. WORK IN PROGRESS TOWARDS EMBEDDING THE
MODEL INTO MOBILE DEVICES

In our forthcoming endeavors, we are focused on advancing
the deployment capabilities of our specialized object detection
model tailored for road surface analysis. The future roadmap
of our project is outlined in the block diagram given by Figure
2.

Fig. 2. work in progress roadmap towards an embedded object detection
model

Our primary objective is to transition from the existing
YOLOv4 model, fine-tuned for detecting five distinct classes
of road conditions—plain, crack, pothole, black ice, and
obstacle—to a TensorFlow-compatible variant. This conver-
sion process involves adapting the model’s architecture and
transferring the meticulously learned weights, ensuring the
retention of valuable insights derived from training. Subse-
quently, we plan to harness the capabilities of TensorFlow Lite
(tfLite), a specialized framework designed for efficient deploy-
ment on resource-constrained devices like mobile phones. By
converting the TensorFlow model to a tfLite model, we will
achieve a streamlined version optimized for real-time road

surface analysis while upholding a high level of accuracy.
This compact and efficient tfLite model will be well-suited
for integration into mobile devices, facilitating on-the-go road
condition detection. By adopting this approach, we antici-
pate empowering mobile devices to swiftly and accurately
identify specific road surface types—plain, crack, pothole,
black ice, and obstacle—in diverse environmental conditions,
consequently fostering safer and more efficient transportation
systems.

VI. CONCLUSION

In conclusion, our object detection model, based upon
the YOLOv4 tiny architecture, has exhibited commendable
performance in accurately identifying the distinct road surface
anomalies belonging to five distinct classes namely plain,
crack, pothole, black ice, and obstacle. The only disparity in
performance was the black ice image detection that showed
slightly lower detection accuracy because of the scarcity
of training images. We have already set our roadmap for
converting our current model to a tfLite model to be able
to embed the model into a mobile device. Our intermediate
results showing great signs in favor of achieving our target.
Once we achieve that the final model will be able to do real
time detection of road surface anomalies.
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