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Abstract—As robotic technologies continue to advance, their
integration into daily human lives becomes ever more paramount.
At the heart of this integration lies the challenge of fostering
seamless human-robot interactions. This paper introduces a ro-
bust visual perception framework tailored for real-time operation
on mainstream mobile devices. By harnessing the power of
deep neural networks, our approach not only detects but also
interprets human activities from visual cues. Such interpretation
aids robots in making informed decisions during interactions.
We demonstrate the efficiency of our framework on the Sam-
sung Galaxy A24, a mid-tier smartphone, achieving impressive
real-time performance. The results highlight the framework’s
potential to revolutionize human-robot interactions across diverse
real-world scenarios.

Index Terms—human-robot interaction, computer vision, mo-
bile computing, deep learning, system integration.

I. INTRODUCTION

In the realm of robotics, mobilizing visual perception stands
as a transformative approach to revolutionizing human-robot
interactions. With advancements in deep neural networks,
robotic technology is evolving towards more intelligent robots
[1]–[5]. While robots were once primarily used in industrial
settings, their applications are now extending into our everyday
lives. This shift has been made possible due to the robust
performance of deep neural network-based visual perception
modules, which outperform traditional methods.

Previous researches have touched upon the importance of
visual perception in robotics, but few have delved into optimiz-
ing it for real-time mobile operations. Our research fills this
gap, presenting an approach that not only recognizes but antici-
pates human interactions using visual cues Robots like delivery
bots and service robots no longer simply function within fixed
standards and predefined environments as their industrial coun-
terparts do. Instead, they are expected to flawlessly execute
tasks in varied and unpredictable settings. However, one of the
largest variables in these settings is humans themselves. Thus,
it’s imperative for modern intelligent robots to be developed
with human-robot interaction in mind. In this paper, we present
a range of neural network-based computer vision algorithms
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essential for facilitating human-robot interactions. We delve
into how these algorithms can discern interactions rooted in
specific relationships. Given the constraints of robotic systems
with limited hardware capabilities, it is vital to employ an
appropriate neural network configuration. To this end, neural
network optimization, or ’lightening’, is imperative. We put
forth a comprehensive pipeline that encapsulates all these
considerations.

At its core, to assess human-robot interactions, we chose to
gather information that can be visually ascertained, rather than
relying on verbal cues from human speech. For instance, as a
robot navigates a path and comes across a myriad of individu-
als, deciphering their spoken expressions for interaction could
be computationally demanding due to the varied inputs from
multiple sources. Moreover, it’s uncommon for passersby to
engage in profound conversations with a robot in such settings
[6], [7]. Consequently, our proposed technique seeks to gather
data on various individuals via a camera. By inferring cues
from the interactions they exhibit, we aim to discern whether
their interactive intent is directed towards the robot or towards
another individual or entity.

To discern human interactions, we gather several key data
points. First, we identify the human figure and the sur-
rounding objects. This enables us to approximately gauge a
person’s position or context using information about both the
individual and the nearby objects. For example, detecting a
person beside a car can suggest various interactions such as
entering the car, exiting, avoiding the vehicle, or opening
the trunk. Accordingly, through object detection techniques,
we identify both human and non-human entities within the
robot’s surroundings. We then employ an ’object detection
perception module’ to either directly or indirectly deduce their
interrelations. Secondly, our approach identifies key points on
a human’s face, serving as the sole method to discern facial
expressions. For many, the face is the quickest canvas for
emotions, especially during interactions with robots. It’s cru-
cial to understand that our proposed human-robot interaction
system doesn’t signify deep connections; rather, it pertains to
the myriad interactions robots have with diverse individuals
while performing tasks. As such, uncommon scenarios like
maintaining a ’poker face’—where emotions are deliberately
concealed—are not typical in daily interactions [8], [9]. Hence,



merely detecting facial expressions can be significantly helpful
in gauging a person’s feelings. Finally, we detect human
posture. Humans convey emotions through their arms and
legs and their posture can also hint at their current actions.
Furthermore, when deducing emotions, considering posture
can help rectify potential misinterpretations. For example, if
we detect an expression indicating discomfort but observe
the person in a running posture, we can surmise that the
discomfort isn’t a result of the robot’s presence but likely due
to the physical exertion from running.

Our proposed system functions as a pipeline that integrates
multiple computer vision algorithms. Facilitating its real-
time operation on mobile devices presents a formidable chal-
lenge. To address this, we’ve employed lightweight algorithms
tailored for each module, allowing the system to function
seamlessly on mainstream smartphones. Given its strong com-
patibility with the Robot Operating System (ROS), our human-
robot interaction pipeline is well-suited for integration with
various robotic platforms [10].

II. PROPOSED FRAMEWORK

A. Object Detection Module

In our proposed framework, the object detection module
incorporates a model provided by MLKit, which utilizes a
technique derived from RCNN (Region-based Convolutional
Neural Networks). RCNN is a groundbreaking method in
object detection that combines region proposals with convolu-
tional neural networks. Instead of treating object detection as
a single regression problem, RCNN first identifies potential
object-bound regions in an image using a method called
Region Proposal Network (RPN) [11], [12]. These proposed
regions are then passed through a CNN to classify objects and
refine bounding box coordinates. RPN is a neural network that
scans an image and proposes candidate object-bound regions.
It does so by sliding a small window across the image and,
at each position, predicting multiple bounding boxes and their
associated objectness scores. One of the key strengths of the
RCNN and its variants is the flexibility in the classifier. By
substituting the classifier, one can adapt the model to operate
in diverse environments and detect various object categories.
MLKit’s variation on RCNN maintains this versatility, en-
suring that the object detection model is adaptable and can
function in a wide range of scenarios.

B. Facial Key-points Estimation Module

The Facial Key-points Estimation Module boasts a compre-
hensive suite of functionalities critical to human-robot inter-
action. By harnessing advanced facial feature recognition, this
module can accurately determine the coordinates of significant
features such as the eyes, ears, cheeks, nose, and mouth. This
detailed recognition assists the robot in understanding not only
the orientation of a face but also where a person might be
focusing their gaze. In addition to feature recognition, the
module meticulously maps the contours of the face, detailing
the eyes, eyebrows, lips, and nose. This in-depth analysis

provides the robot with a nuanced understanding of facial ex-
pressions, equipping it to detect and interpret subtle emotional
shifts [13], [14]. Emotions are integral to interactions, and the
module’s proficiency in recognizing specific facial expressions
like smiles or closed eyes offers invaluable insights into the
individual’s emotional state. Such insights enable the robot to
tailor its responses to resonate with the user’s emotions and
expectations.

Consistency is paramount in dynamic scenarios, especially
in video streams. The module’s capability to track faces
across video frames, attributing a unique identifier to each,
ensures that interactions remain consistent and coherent. Such
continuous tracking guarantees that the robot remains engaged
and responsive, even if the individual changes their position
or orientation. Furthermore, the emphasis on real-time video
frame processing ensures seamless and rapid operations. This
means the robot can promptly interpret facial cues and respond
in real time, mirroring the pace of human interactions and
ensuring fluid communication. In conclusion, the advanced
features of the Facial Key-points Estimation Module allow the
robot to achieve a deeper understanding of human users. By
astutely interpreting facial cues and emotions, the robot can
engage in interactions that are not only responsive but also
empathetic, cultivating a more intuitive and natural human-
robot interaction experience.

C. Posture Detection Module

Our posture detection module utilizes MLKit’s pose esti-
mation model to detect a total of 33 key points on the human
body. These key points provide a comprehensive representa-
tion of human posture, capturing crucial joints and body parts
including the head, shoulders, elbows, hips, knees, and feet,
among others. Identifying these key points and understanding
the spatial relationships between them allows us to infer the
direction a person is facing or moving towards [15]. For in-
stance, the relative positions of the shoulders and hips can give
insights into the orientation of the torso, while the positioning
of the feet can indicate the direction of movement. In the
context of human-robot interaction, discerning the direction
a person is facing or heading is of paramount importance.
A robot’s ability to recognize if a person is facing towards or
away from it can drastically affect its decision-making process
[16]. If a person is facing the robot, it might indicate potential
engagement or interaction. On the other hand, if they are
facing away, the robot might interpret it as disinterest or intent
to move in another direction.

Furthermore, understanding a person’s orientation can assist
the robot in anticipating human actions and consequently, in
making proactive decisions. For instance, if a person’s posture
indicates they are about to turn towards the robot, the robot
can prepare for potential interaction, perhaps slowing down
or stopping if it’s in motion. In essence, capturing these 33
key points and interpreting them correctly forms the crux of
effective human-robot interaction. It ensures that the robot
operates in harmony with human intent, paving the way for
smoother and more intuitive interactions.



D. Mobilizing Visual Perception
For our framework to operate efficiently on mobile de-

vices, we have applied quantization techniques, including
Quantization-Aware Training (QAT) [17]. Quantization is the
process of constraining an input from a large set to output in a
smaller set. In the context of neural networks, it usually means
reducing the precision of the weights and activations to reduce
memory and computational costs. Mobile devices, with their
limited computational resources and memory, can struggle
to run large deep learning models. Additionally, the power
consumption associated with running these models can be a
significant issue for battery-operated mobile devices. While
reducing the size of the neural network is one solution, it often
comes at the cost of model accuracy [18], [19]. Quantization,
on the other hand, provides a balance. It reduces the model size
and computational requirements without significantly compro-
mising the model’s performance. Quantization-Aware Training
(QAT) is an advanced technique where the training process
itself is aware of the quantization, ensuring that the quantized
model maintains the accuracy of the original model.

One might wonder why not just reduce the network’s size
instead of quantizing? While reducing the network’s size can
lead to faster inference, it might not always result in reduced
memory usage, especially when considering the storage of
model parameters. Quantization not only speeds up inference
but also drastically reduces the memory footprint of the model.
This is particularly crucial for mobile devices where both
speed and memory are at a premium. In conclusion, quan-
tization, especially with techniques like QAT, is essential for
deploying deep learning models on mobile devices. It ensures
that the models are not only fast but also memory-efficient,
allowing for real-time operations without draining the device’s
battery. Furthermore, we utilize TensorFlow Lite (TF Lite) for
deploying our models on mobile platforms [20]. TF Lite is
TensorFlow’s lightweight solution for mobile and embedded
devices. It allows deep learning models to run on-device,
ensuring low latency and small binary sizes. By leveraging
TF Lite, we ensure that our framework is not only accurate
but also efficient and easily deployable across a variety of
devices.

III. EXPERIMENTAL SETUP

In order to validate the effectiveness and efficiency of our
proposed human-robot interaction framework, we conducted
experiments on a mainstream smartphone, the Galaxy A24.
The choice of this device is strategic. It represents a typical
mid-range smartphone, ensuring that our system is not tailored
only for high-end devices but can be applied broadly across a
spectrum of devices that people use daily.

Device Specifications Relevant to our Experiments:
• Processor: MediaTek Helio G99 MT6789 SoC. This mid-

tier processor is representative of the general processing
capabilities of most smartphones in the market.

• Memory: 4 GB LPDDR4X SDRAM and 128 GB UFS
2.2 internal storage. The memory ensures adequate speed
for real-time operations.

Fig. 1. Screenshot of our system in action on the Galaxy A24.

• Display: 6.5-inch 19.5:9 aspect ratio 2340 x 1080
Infinity-U Display (396 ppi). The display size and res-
olution are ideal for visual interactions.

• Camera: Front camera with 13 million pixels (F/2.2).
Essential for our framework’s visual perception module.

• Battery: Integrated Li-Ion 5,000 mAh. This ensures that
our system can run for prolonged periods without drain-
ing the device’s battery quickly.

• Operating System: Android 13 with Samsung One UI
5.1. This modern OS ensures compatibility with the latest
algorithms and tools.

The Galaxy A24, while boasting decent specifications, does
not have the computational prowess of high-tier smartphones.
Yet, it is crucial for human-robot interaction systems to be
deployable on such devices, given their widespread use. By
choosing the Galaxy A24, we deliberately placed our sys-
tem in a challenging environment. Our decision to refactor
all our programs into Java further ensured the framework’s
compatibility with the Android ecosystem. This optimization
is paramount as Java is the primary development language for
Android, offering direct integration with the device’s hard-
ware and software functionalities. In essence, if our proposed
system can efficiently function in real-time on the Galaxy
A24, it signifies that our framework is not just robust but
also highly optimized. Demonstrating effectiveness on such
a device underscores the practicality and universality of our
approach, making it a viable solution for a myriad of real-
world applications.

In Figure 1, we present a snapshot taken directly from the



Galaxy A24, showcasing our system in action. The system
impressively achieved a frame rate of 40 FPS, which is near
real-time for most human-robot interaction scenarios. The
image vividly depicts a person seated and engaging with a
computer. Our system, true to its capabilities, successfully
detects various objects in the scene, such as the desk, com-
puter, person, and keyboard. Beyond mere object detection, the
granularity of information acquired paints a clear picture of the
individual’s activity: working at a desk using a computer. This
demonstration underscores the prowess of our approach. Not
only does our system accurately detect and discern objects,
but it also effectively contextualizes human activities. Such
context is pivotal for robots to interpret human intentions
and subsequently make informed decisions. The ability to run
this sophisticated system on the Galaxy A24, a mainstream
smartphone with the given hardware constraints, serves as a
testament to the efficiency of our system. It also highlights
the significance of our work as we endeavor to make human-
robot interaction more intuitive and widespread. Given these
promising results, we envision our framework being employed
in various real-world scenarios, fostering seamless interactions
between humans and robot

IV. CONCLUSION

Human-robot interaction is at a crossroads, where the need
for intuitive and seamless communication between humans and
machines has never been more paramount. This paper sought
to address this pressing need by introducing a comprehensive
visual perception framework, specifically optimized for real-
time operations on mainstream mobile devices. Throughout
our research, we underscored the significance of detecting
and interpreting human activities through visual cues, em-
phasizing that such insights are fundamental for robots to
respond appropriately in real-world interactions. A primary
distinction of our work lies in its deployment on the Samsung
Galaxy A24, a mid-tier smartphone. By choosing a device
that represents an average computational capability available
to many, we showcased that our system is not just for the
elite few with access to high-end devices but is a solution
designed for the masses. Our experiments yielded impressive
results, with the system achieving near real-time performance,
even in the constrained environment of the Galaxy A24. Such
results not only highlight the efficiency and optimization of
our framework but also underscore its robustness. The ability
to detect and contextually interpret complex human activities,
like a person working at a desk, indicates the depth and
granularity of our approach. Furthermore, the successful de-
ployment on a popular smartphone operating system, through
our decision to refactor our programs into Java, signifies a
broader applicability. Android, being the dominant OS in the
global market, ensures that our approach has the potential to
be rolled out on a large scale, making human-robot interaction
more accessible and widespread. However, the journey of
refining human-robot interactions does not end here. While
our framework offers a promising step forward, continuous
iterations and improvements are essential to cater to the ever-

evolving dynamics of human behaviors and technological
advancements. It is also crucial to test our framework across
a wider variety of devices and real-world scenarios to further
ascertain its robustness. In conclusion, our research stands as
a testament to the potential of integrating advanced computer
vision techniques with mobile computing for revolutionizing
human-robot interactions. By bridging the gap between hu-
mans and robots in real-world scenarios, we pave the way for
a future where robots are not mere machines but collaborative
partners that understand and resonate with human intentions
and emotions.
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