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Abstract—The 6TiSCH wireless sensor network architecture
combines the time-slotted channel hopping (TSCH) medium
access layer (MAC) with the routing protocols for low-power
and lossy networks (RPL). However, most RPL studies overlook
the integration with TSCH MAC or focus solely on carrier-
sense multiple access (CSMA) MAC. Existing RPL methods use
an objective function (OF) based on an expected transmission
count (ETX) link metric, yet this fails to fully capture network
conditions and traffic load representation. Moreover, the RPL
hysteresis method uses a static threshold without considering
dynamic network conditions. Thus, it may not hold excessive
parent changes and prevent better parent selection. To address
these issues, we propose an adaptive parent change and cell
usage aware objective function (AC) RPL method, which utilizes
Q-learning to decide the optimal policy to change parent and
an RPL OF based on traffic and cell usage. Experiments were
conducted over simulation using the 6TiSCH simulator and real
hardware tests using a testbed prepared by FIT IoT-Lab with
OpenWSN firmware. The result demonstrates that AC-RPL
outperforms the benchmarks. Compared to the standard RPL,
AC-RPL can increase the packet delivery ratio and received
packets by 9% and 13%. Also, it reduces energy consumption
and latency by -21% and -8%.

Index Terms—6TiSCH, RPL, Objective function, Wireless
sensor network, Q-learning

I. INTRODUCTION

The 6TiSCH working group is responsible for standard-
izing IPv6 protocols for low-power industrial networks by
utilizing the TSCH mode of the IEEE802.15.4-2015 stan-
dard [1]. The TSCH MAC layer adopts a TDMA-based
medium access and channel hopping approach, dividing time
into uniform slots for packet exchanges between nodes and
forming a repetitive pattern, known as a slotframe [2]. This
working group facilitates low-power IoT applications, such
as those used in smart industries and home appliances.
6TiSCH employs 6LoWPAN to facilitate IPv6 transmission
over the network through header compression and packet
fragmentation [3]. RPL manages the routing at the network
layer, and a minimal scheduling function (MSF) is used for
dynamic scheduling. MSF enhances the minimal scheduling
setup and modifies child-parent links via the 6top protocol
(6P) [4]. MSF utilizes a minimal cell for control packets
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Fig. 1: Illustration of a TSCH schedule and RPL route in
6TiSCH network.

and dedicated cells for data transmission. An example of a
slotframe schedule can be seen in Figure 1.

RPL establishes routes towards a border router [5]. The
protocol uses DIO and DAO messages to create a downward
and upward route. Nodes join the network by sending DIS
and obtaining their DODAG rank using OF. OF0 [6] provides
the mechanism for rank calculation and relies on hop count
metric. Minimum Rank with Hysteresis OF (MRHOF) [7]
enhance OF0 with hysteresis function and apply ETX metric,
which represents the required number of re-transmission to
send a packet. ETX metric depicted in Equation 1. MRHOF is
designed to find the shortest path cost and prevent excessive
parent churn in the network. Hysteresis function set a node
to change path only if the rank difference exceeds a certain
rank increment threshold following Equation 3.

The use of reinforcement learning (RL) algorithms in tasks
like MAC scheduling, routing protocol development, and
congestion control is progressively becoming more prevalent
in IoT networking applications [8]. RL aims to maximize
rewards through optimal state-action interactions involving
an agent and its environment [9]. Q-learning (QL) algorithm
[10] is a prominent RL method that operates off-policy. A Q-
value represents the potential reward for a state-action pair,
Q(s, a), updated after each action based on a reward r(s, a),
expressed in Equation 4. QL utilizes learning, discount,
and epsilon rate parameters, α, β, ε ∈ [0, 1]. α balances
the learning trade-off between existing knowledge and new
values. β balances the importance of immediate versus future
rewards. ε balances between exploration and exploitation of
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the learning based. In the exploitation phase, optimal action
will be aopt = argmaxa. In the exploration phase, any
random a will be performed.

This study proposes AC-RPL, an adaptive parent change
algorithm based on QL and cell usage aware objective func-
tion for RPL routing. AC-RPL aims to solve two problems.
First, existing RPL routing is not designed specifically for
TSCH in the 6TiSCH network, since MAC layer traffic
information may help to improve routing quality. Second,
the static threshold policy to change parent in MRHOF is
not suitable for dynamic network conditions since we set the
high threshold to a low traffic node, which may prevent the
selection of a better parent from improving its quality; if we
set the low threshold to a high traffic node may create unsta-
ble, excessive parent change. Therefore, AC-RPL considers
MAC transmission load by cell usage along with queue load
and packet transmission quality, which represent the network
traffic and load condition. AC-RPL also formulated adaptive
parent change so the node can proactively seek a better parent
or prevent change to maintain stability.

PRR = NAck/NTx

ETX = 1/PRR
(1)

Sp = ⌊(3×Metric)− 2⌉
rankinc = (Rf × Sp + Sr)×MHRI

ranki = min{rankp + rankinc | p ∈ Pc}
(2)

Decision =

{
Change rankcurrent − ranknew ≥ threshold

Stay Otherwise
(3)

∆Q(s, a) = r(s, a) + β ×maxa Q(snext, a)

Q(s, a)′ = (1− α)×Q(s, a) + α×∆Q(s, a)
(4)

II. RELATED WORK

ARMOR [11] utilizes a mobility-aware routing metric
known as time to reside (TTR) along with a corresponding
parent replacement strategy. TTR estimates the duration for
which nodes will remain within each other’s transmission
range. TTR allows a node to choose a parent with a more
prolonged connection time, enhancing reliability. PLC-OF
[12] makes use of power line communication (PLC) physical
(PHY) layer diversity as a routing metric, identifying the
optimal path while taking sudden interference or congestion
in power lines into account. EN-RPL [13] introduced a
composite efficient routing (CER) metric that takes into
account latency, queue utilization, node lifetime, link quality,
and the number of bottleneck nodes, with weights that can
be adjusted according to the needs of the application. ELITE
[14] offers a routing metric called the Strobe Per Packet
Ratio (SPR), which captures transmission operations at the
MAC layer with the goal of selecting a route that minimizes
strobe transmissions. FL-HELR-OF [15] presents an objec-
tive function that incorporates four metrics using fuzzy logic.
The metrics are received signal strength indicator, hop count,
latency and energy consumption. TA-RPL [16] leverages

TABLE I: List of notations.

Notation Description

Rf , Sp, Sr Rank factor, Step of rank, Stretch of rank
SL Slotframe length
MHRI Minimal hop rank increase
aC Autonomous cell
Pc, p Parent candidates, Parent
mC Minimal shared cell
nCp

used Negotiated cells used by node to parent
nCavail Negotiated cells available from parent
UC Utilized cells from slotframe
nTxp Number of negotiated Tx cells to parent
nRxp Number of negotiated Rx cells to parent

the cell allocation information from TSCH MAC, where
the number of allocated TSCH cells reflects the bandwidth
each node reserves and incorporates link quality and traffic
information measured at the MAC layer. BEEX [17] proposes
a multiarmed bandit (MAB)-based approach for predicting
energy usage, enabling nodes to adapt and optimize total
network energy consumption.

However, none of the works consider adaptive parent
changes and study RPL routing incorporated with TSCH
MAC, except for TA-RPL. Thus, this study proposed AC-
RPL that incorporated traffic load information from the
TSCH MAC layer and formulated an adaptive parent change
triggered using QL.

III. PROPOSED METHOD

Based on the earlier problems, we proposed AC-RPL as
an adaptive parent change function using QL and cell usage-
aware RPL OF. The related notations are listed in Table I.

A. Cell Usage aware Objective Function

We proposed RPL OF that considers negotiated cell usage
that represents TSCH MAC traffic load, called cell available
rate (CAR). CAR calculates from the reverse ratio of cell
usage rate (CUR). CUR represents the number of negotiated
cells used by the node to its parent nCp

used with available
negotiated cells from the candidate parent nCavail, expressed
in Equation 7. Furthermore, we also consider packet enqueue
success rate (ESR), calculated from the reverse ratio of packet
enqueue drop rate (EDR) because of the full load of the queue
buffer or dropped by higher priority packet that described in
Equation 5. We formulate ESR rather than queue load since
it can represent the queue processing since the full queue
buffer size was good as long as the node can maintain the
transmission without any drop. Next, the packet reception
rate (PRR) between the node and its parent indicates the
number of packet transmission successes, shown in Equation
1. These metrics are combined as average reciprocal metrics
following the calculation of ETX and then put into the step
of the rank calculation shown in Equation 8. This OF has a
broader route condition, starting from queue load condition,
MAC layer traffic condition, and transmission link quality.

Node with low PRR indicates high re-transmission or
higher failed transmission. Hence, we avoid selecting such
connections and vice versa. ESR will promote the node to
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Algorithm 1 AC-RPL
Input α, β, ε, nCavail, Pc

1: function PARENTCHECK ▷ Periodic per NTx or NSL

2: Update parent Metric and rankinc
3: ▷ Learning end checkpoint
4: Record SURt+1, st+1, pt+1, Metrict+1

5: Update r(st, at) and Q(st, at)
6: Call StartLearning
7: Call UpdateParent
8: function STARTLEARNING ▷ Learning start checkpoint
9: Record SURt, st, pt, Metrict

10: if rand < ε then random action at ▷ Exploration
11: else action at = aoptt ▷ Exploitation
12: function UPDATEPARENT ▷ Update preferred parent
13: if No parent or Spp > Spmax then
14: Parent change ▷ Must change
15: else if p ̸= top & at = 1 then
16: Parent change ▷ Trigger change
17: else Stay with current parent
18:
19: Initialize empty Q-table
20: while Node is active do
21: if First time joining then ▷ Start learning
22: Call StartLearning
23: if Has parent and done NTx or NSL then Call

ParentCheck

select the path with a loose queue buffer. Last, to illustrate
CAR calculation based on Equation 7, let say we have
nCp

used = 20 with nCavail = 80 from candidate parent 1
and we have nCavail = 40 from candidate parent 2. So, CAR
values are 1−(20/80) = 0.75 and 1−(40/80) = 0.5. Hence,
the node will select candidate parent 1. The node reinforce to
select a candidate parent that can handle the load while also
providing more cells for future allocation. It will maximize
bandwidth while also lowering traffic congestion.

EDR = Qdrop/Qenqueue

ESR = 1− EDR
(5)

UC = mC + aC + nCused

nCavail = SL−UC

nCp
used = nTxp + nRxp

(6)

CUR =




nCp
used

nCavail + nCp
used

Current p

1 nCavail ≤ nCp
used

nCp
used

nCavail
Otherwise

CAR = 1− CUR

(7)

Metric =
(1/PRR) + (1/ESR) + (1/CAR)

3
(8)

B. Adaptive Parent Change using Q-learning

The proposed method utilizes Q-learning to enhance the
performance of the RPL routing algorithm, with each node
operating as an individual agent. We set the state s as a traffic
class that categorizes traffic rate with size of Trmax

class, while
the traffic rate itself calculated from the slotframe utilization
rate, all depicts in Equation 9. Traffic class can represent how
much transmission occurs to/from the node, which can show
how many child or lower transmission depends on it. The
higher class also represents higher traffic. The actions a are
between staying with current parent a = 0 or allowing parent
change a = 1. We want the node to select the optimal policy
for each traffic class to define the tendency to actively seek
a better parent or keep current conditions with its parent to
maintain stability.

The reward is determined using Equation 10. When the
node stays with the same parent (pt+1 = pt), the reward
would be highly positive if the parent maintains a stable
or improved metric (Metrict+1 ≤ Metrict). Otherwise, the
negative value is set if the metric is unstable or deteriorates
(Metrict+1 > Metrict). When the node changes with a new
parent (pt+1 ̸= pt), the reward is subtracted by -1 to penalize
the changing process. Changing the parent will result in
more control packet exchange, leading to a higher energy
charge and distracted transmission. This way, we want to
promote nodes to change parents if the metric is stable or
improved. We select metric as the comparison since it can
represent parent and node connection quality, consisting their
transmission quality, queue processing, and cell allocation.
The higher metric value represents worse quality.

Within the exploration phase, AC-RPL will select random
action on whether to change parent. In the exploitation phase,
QL selects the optimal action for a specific state-action
pair by opting for the highest Q-value, which signifies the
cumulative reward over previous iterations. st, Metrict, and
a measurement triggered when the node first time joined
the tree. Then, st+1, Metrict+1, and reward updating trig-
gered on the next periodic check and also for the following
action. This periodic parent quality check is triggered after
a certain number of transmissions NTx or slotframes NSL.
The proposed method is presented as a hysteresis function in
Algorithm 1.

SUR = UC/SL

s = min(⌊SUR× Trmax
class⌋,Tr

max
class − 1)

s ∈ {0, 1, . . . ,Trmax
class − 1}

(9)

r(s, a) =




2 Metrict+1 ≤ Metrict & pt+1 = pt

−1 Metrict+1 > Metrict & pt+1 = pt

1 Metrict+1 ≤ Metrict & pt+1 ̸= pt

−2 Metrict+1 > Metrict & pt+1 ̸= pt

(10)

IV. EXPERIMENTS

Experiments were carried out using the 6TiSCH simulator
[18], a tool created by the 6TiSCH working group, pro-
grammed in Python. It employs the Pister-hack propagation
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TABLE II: Experiment parameters.

Parameter Value

Simulation tool 6TiSCH Simulator
Scheduling function MSF
Queue size and Spmax 10 and 9
Rf and Sr 1 and 0
SL and MHRI 101 and 256
Runs x Duration 3 x 60 minutes
Root position Bottom-Left
α, β, ε 0.7, 0.7, 0.5
Packet interval 0.5 / 1 / 2 seconds
Topology (size) 5x5 (25) / 5x10 (50) / 10x10 (100)

Testbed settings
Site Lille, FIT IoT-Lab
Firmware OpenWSN
Board Arm Cortex M3
Topology (nodes) 5x5 (25)

TABLE III: Number of packet received in experiment.

Packet Interval Network Size Method Packet Received

2 50

MRHOF 72702
AC-RPL 74256
BEEX 58996

TA-RPL 70427

0.5 50

MRHOF 194099
AC-RPL 228871
BEEX 178892

TA-RPL 207241

1 50

MRHOF 137769
AC-RPL 146676
BEEX 107371

TA-RPL 134640

1 25

MRHOF 72352
AC-RPL 73138
BEEX 58883

TA-RPL 68008

1 100

MRHOF 137594
AC-RPL 191783
BEEX 143314

TA-RPL 137509

loss model to construct the node-link quality [19]. We con-
figured data transmission based on an agricultural monitoring
application [20] that set 20 bytes as the packet size and one
second as the packet transmission interval. We doubled and
halved the period into 0.5 and 2 seconds to mimic a range of
packet transmission intervals. We set α, β, and ε with 0.7,
0.7, and 0.5, respectively. It focus more on exploitation phase
while reinforcing learning new values and future rewards.
We performed the scenario with 3 times runs to observe the
variability in simulation results. The experiment parameters
are listed in Table II.

We compared AC-RPL with several related benchmark
algorithms: MHROF as the existing RPL OF standard, BEEX
[17] due to its similar method of using RL for RPL routing,
and TA-RPL [16] which also takes into account 6TiSCH cell
usage to optimize RPL routing. Several evaluation metrics
were used in this study. First, the packet delivery ratio depicts
the rate of successful packet transmission. Second, the total
packet received. Third, the latency shows the average delay in
packet transmission from the source node to the root node and
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Fig. 2: Convergence evaluation on AC-RPL.

is expressed in seconds (s). Third, energy represents energy
consumption expressed in milliampere per hour (mAh) and
calculated based on the 6TiSCH energy model [21]. 6TiSCH
set 2821.5 mAh as the node’s battery capacity. Last, the total
number of parent changes in the network, including the first
time joining RPL.

A. Evaluation on Q-learning convergence

We monitored the variation in related variables of AC-RPL
to evaluate their convergence across Q-learning iterations.
We randomly chose one node for observation. Figure 2
shows that in the beginning, the reward is positive for a
few moments but then negative, which depicts that it has
worsened metric quality. It will promote the node to change
the parent. Variable parent changes increment indicates the
number of changes done by the node. After the change, the
reward becomes stable. PRR and ESR were very low initially,
indicating many failed transmissions occur and packet drops
in the queue buffer. Later, when the node changes to the
better parent, it can increase PRR and ESR. A higher
rate of successful packet transmission will trigger MSF to
request more negotiated cells to provide higher transmission
requirements. Therefore, CAR also decreased after the node
changed to a better parent, indicating the node has better link
quality and allocated more cells to accommodate the traffic.

B. Evaluation on benchmark algorithms

Table III, Figure 3 and 4 show the evaluation result on
different packet transmission intervals and network sizes. We
can observe that lower intervals will have more traffic conges-
tion, resulting in lower PDR and vice versa. The performance
indicators deteriorate as the network size increases. There
is barely any difference in the results when the network
size is 25 nodes. The most notable difference was found
at the largest network size of 100 nodes and the shortest
packet transmission interval of 0.5 seconds. AC-RPL, in
several scenarios, can have higher parent changes than other
benchmarks.

In contrast, the other benchmarks can stick with their par-
ent, which leads to performance stagnation. It indicates that
AC-RPL can adaptively select parent change policy based
on node traffic conditions and whether the change is stable

4



(MRHOF, 2)

(AC-RPL, 2)

(BEEX, 2)

(TA-RPL, 2)

(MRHOF, 1)

(AC-RPL, 1)

(BEEX, 1)

(TA-RPL, 1)

(MRHOF, 0.5)

(AC-RPL, 0.5)

(BEEX, 0.5)

(TA-RPL, 0.5)

0.7

0.8

0.9

1.0

(Method, Packet Interval)

 PDR   Parent Changes   Latency (s)   Energy (mAh)

50

55

60

65

70

0.8

1.0

1.2

1.4

0.06

0.08

0.10

0.12

0.14

0.16

Fig. 3: Benchmark evaluation on different packet interval.

or unstable. Although more parent changes result in more
control packet exchange to connect a node with a new parent,
high changes do not mean it maintains lower performance.
Otherwise, parent changes can give better performance. A
better parent can prevent the network from maintaining
traffic congestion or packet drops. In that case, the network
can improve its packet reception, lower energy consumption
and latency. Hence, AC-RPL maintains optimized parent
selection based on the packet transmission quality, negotiated
cell utilization representing MAC traffic, and queue load.
Then, it can lower transmission failure, which is inherent in
lower energy consumption needed for re-transmitting failed
transmission and having more packet receptions. The other
benchmarks result in lower performance since when the
node has high traffic transmission and load that it cannot
handle, it will result in congested traffic and higher latency. In
comparison, AC-RPL can handle such conditions better since
it considers the comprehensive metrics and has a proactive
parent change that allows the node to seek a better parent.

The constructed topology of benchmark algorithms from
50 nodes network size is presented in Figure 5. The topol-
ogy represents the RPL node connection. We discover that
MRHOF and BEEX have dense connections upon the middle
layers, though the distribution of child nodes also seems
unbalanced. TA-RPL has quite a balanced topology, and it
can distribute the load into several sub-trees but is quite
dense in the middle layers and skewed in the lower layers.
In comparison, AC-RPL has a more balanced topology than
the other benchmarks by distributing the nodes into subhier-
archies. By not being too deep, too wide or skewed, AC-
RPL can achieve a level of resilience and manage fair cell
utilization and queue allocation while minimizing congestion.
AC-RPL reinforces better parent selection and results in a
balanced connection since it considers network transmission,
traffic, and load quality.

C. Evaluation on testbed environment

We also test the proposed method AC-RPL with standard
method MRHOF on 25 nodes over a real testbed on Lille, FIT
IoT-LAB [22] that implemented using OpenWSN firmware
[23]. The deployment site is shown in Figure 6. The parame-
ters in the real testbed test were set as the same as the result
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Fig. 4: Benchmark evaluation on different network size.

(a) MRHOF (b) AC-RPL

(c) BEEX (d) TA-RPL

Fig. 5: Benchmark network topology on 50 nodes.

of the previous experiment in the simulation. The evaluation
result is shown in Figure 7. We discover that the real test
validates our finding in simulation experiments that AC-RPL
is better than MRHOF in terms of higher PDR, lower latency,
and energy usage. Although it has more parent changes that
also indicate more control packet exchange, those changes are
necessary to prevent network traffic congestion from staying
on bad parent quality and to improve network performance.

Fig. 6: FIT IoT-Lab testbed deployment in Lille site.
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V. CONCLUSION

The challenge accompanied by existing RPL over a
6TiSCH network is not incorporating TSCH MAC layer in-
formation in the objective function to improve network rout-
ing. Furthermore, static parent change hysteresis or threshold
restricts the node from seeking better parent conditions and
also leading excessive changes, which can optimize over-
all network performance. Hence, the AC-RPL algorithm is
proposed, which observes cell usage on TSCH, representing
MAC traffic information along with packet transmission
quality, queue load processing, and TSCH cell utilization.
These metrics will give nodes a better decision policy in
selecting parents. AC-RPL also formulates an adaptive parent
change hysteresis function by considering the rank changes
and step of rank that represents parent and node connection
quality, which can reinforce the node to proactively change
to a better parent. We evaluated AC-RPL using the 6TiSCH
simulator and FIT IoT-Lab testbed on OpenWSN firmware
with existing RPL routing algorithms. The results showed
that AC-RPL could increase the packet delivery ratio and
number of received packets while reducing latency and
energy usage. In future work, we will optimize QL learning
by using weight sharing to help newly joined nodes adapt
faster and improve network performance.
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