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Abstract—Network slicing is a promising technology in next-
generation wireless networks that enables the division of a
physical network infrastructure into multiple virtual networks,
each of which is tailored for specific service requirements. This
approach enables a more flexible allocation of network resources
such as beamforming vector, bandwidth and transmit power;
thereby effectively supporting services that require high data
transmission rates. However, in dynamic network environments
where multiple users dynamically move around; hence the
interference relationships are dynamically varying, traditional
static network slicing solution has critical drawbacks. To this end,
for the effective implementation and performance improvement
in practical and dynamic network environments, we first propose
a dynamic network slicing control framework in AI-native
hierarchical Open-RAN (Radio Access Network) architecture
where mobility prediction and network controls are designed by
multiple timescale decomposition. The proposed framework can
facilitate effective network controls, enabling the generation of
finely tuned QoS management decisions (power/ bandwidth allo-
cation, user scheduling, beam activation) in different timescales.
On top of this framework, we compare the performance of a
simple dynamic network slicing algorithm and an existing static
network slicing scheme via simulations.

Index Terms—Open-RAN, network slicing, resource allocation,
GoB beamforming, interference management

I. INTRODUCTION

In recent years, the widespread adoption of smartphones,
tablets, and IoT devices, along with the growing popularity
of applications requiring substantial data transmission such as
Ultra-High Definition (UHD) video streaming, Virtual Reality
(VR), and Augmented Reality (AR), has not only lead to a
significant increase in mobile data traffic but also increase
the demand for higher data transmission rates among user
equipments (UEs) [1]. These surges present a significant
challenge for current network infrastructures to support.

To cope with these challenges, network slicing has emerged
as a promising technology capable of fulfilling the Quality
of Service (QoS) requirements of users that demand high
data transmission rates. Fully supported by the 5G Open-
Radio Access Network (O-RAN) architecture, network slicing
enables the virtual segmentation of physical network into mul-
tiple, distinct “slices”. Each slice can be individually tailored
to meet the diverse needs of different users, ensuring more
flexible resource allocation and enhanced overall network
performance [2].

However, in dynamic network environments where multiple
users keep moving, thereby leading to dynamically varying in-

terference relationships, traditional network slicing approaches
have critical drawbacks. Therefore, to achieve efficient alloca-
tion of network resources and to effectively improve overall
performance in such environments, it is crucial to dynamically
control the network variables such as bandwidth, transmit
power or user scheduling in response to potentially time-
varying inter-cell and intra-cell interferences.

Massive MIMO (M-MIMO) has emerged as a promising ap-
proach to mitigate interference, employing directional beams
to concentrate signals on specific targets, which in turn reduces
signal spread loss and minimizes interference [3]. There are
generally two types of beamforming methods in M-MIMO
systems: Adaptive beamforming and Grid of Beams (GoB)
beamforming [4]. Adaptive beamforming utilizes precise chan-
nel estimations from Sounding Reference Signals (SRS) sent
by users, enabling the achievement of higher data transmis-
sion rates. However, (i) its implementation is complex and
challenging, and (ii) it is not well-suited for high-speed users,
as the channel estimations become quickly outdated due to the
rapid changes in the channel conditions associated with user
mobility. On the other hand, the GoB beamforming utilizes a
predefined grid pattern of beams for signal transmission, which
simplifies the implementation and management of beamform-
ing. Moreover, the GoB beamforming can efficiently transmit
signals without the need for complex channel estimations
by leveraging the Reference Signal Received Power (RSRP)
report from users. This method is especially effective for users
moving with high-speed, as it maintains signal consistency
regardless of user mobility. Therefore, the GoB beamforming
is highlighted as a viable solution for the implementation of
M-MIMO beamforming.

However, the joint optimization of GoB beamforming and
dynamic network slicing—which involves a dynamic deter-
mination of the resource allocation, i.e., transmit power and
bandwidth, along with beam activation and user schedul-
ing—require considerable computational complexity [5] [6]
[7]. Therefore, to effectively integrate network slicing into
GoB beamforming, it is crucial to efficiently determine these
network control decisions through low-complex algorithms,
and to be supported by an intelligent system that can effec-
tively improve the performance of these algorithms.

In this paper, we propose a dynamic network slicing con-
trol framework in AI-native hierarchical O-RAN architec-
ture where mobility prediction and network controls are co-
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Fig. 1. Proposed dynamic network slicing framework

designed by multiple timescale decomposition. The proposed
framework can facilitate efficient decision-making for GoB
beamforming and bandwidth, user scheduling and transmit
power in divided time slots. Finally, we evaluate a simple
dynamic network slicing algorithm on top of the proposed
framework compared to the existing static network slicing
scheme via simulations. The contributions of this paper are
summarized as follows.

• We propose a dynamic network slicing control framework
that facilitates efficient decision-making tailored to the
given AI-native hierarchical Open-RAN architecture with
multiple timescales.

• We evaluate a simple and dynamic network slicing algo-
rithm on top of the proposed framework compared with
the existing static network slicing scheme via simulations.

In the rest of this paper, we begin with the description
of a dynamic network slicing control framework in Section
II. Then, we provide performance evaluation of the proposed
framework in conjunction with dynamic network slicing algo-
rithm in Section III. Finally, we conclude this paper in Section
IV.

II. DYNAMIC NETWORK SLICING CONTROL FRAMEWORK

A. Background Knowledge of O-RAN

O-RAN is an architecture that disaggregates the traditional
next-generation NodeB (gNB) into various functional com-
ponents and connects them using open interfaces [8]. In O-
RAN, the conventional RAN is divided into the Radio Unit

(RU), Distributed Unit (DU), and Central Unit (CU). The
RU primarily handles tasks related to the lower Physical
(PHY) layer, such as precoding and beamforming, while the
DU manages tasks associated with the upper PHY, Medium
Access Control (MAC), and Radio Link Control (RLC) layers,
including scrambling and modulation. The CU is responsible
for tasks related to the higher layers, such as Radio Resource
Control (RRC), Packet Data Convergence Protocol (PDCP),
and Service Data Adaptation Protocol (SDAP) layers.

In O-RAN, RAN components are controlled in a software-
defined manner using RAN Intelligent Controllers (RICs).
RICs are programmable components capable of executing
closed-loop control and coordinating the RAN. There are two
types of RICs: Near-Real-Time RIC (Near-RT RIC) and Non-
Real-Time RIC (Non-RT RIC). Non-RT RIC handles tasks
that are relatively more time-consuming, orchestrating the
training of AI/ML models for policy management and resource
optimization planning. This is essential for facilitating long-
term network optimization and strategic decision-making. In
contrast, Near-RT RIC supports RAN functions that demand
quick responses, using AI/ML algorithms to make immedi-
ate decisions of dynamic resource management, interference
management, and QoS control.

B. Dynamic Network Slicing Framework

Fig. 1 illustrates a proposed dynamic network slicing frame-
work, which is designed to effectively reduce the high com-
putational complexity involved in dynamically determining
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resource allocation of transmit power and bandwidth, along
with beam activation, and user scheduling. The proposed
framework leverages the hierarchical structure of O-RAN,
where each layer operates according to its specific timescale
and exchanges information with other layers through the
O-RAN interfaces, thereby enabling more efficient network
control. The operations at each layer are as follows.

1) Non-RT-RIC: Non-RT RIC is tasked with the training of
Deep Reinforcement Learning (DRL) model in Non-real-time.
This model is trained to predict the locations of users based
on their current locations, and to determine the correspond-
ing set of beams to be activated accordingly. Non-RT RIC
collects user mobility information—including location, speed,
and direction-from an external localization server [9]. This
mobility information, along with the RSRP values for each
beam obtained from every users, is used to update the Radio
Environment Map (REM). REM is a specialized database that
provides two distinct map representations: one for Reference
Signal Received Power (RSRP) and another for user mobility
patterns [4]. The user mobility map probabilistically represents
the movement trends of the users, while the RSRP map
displays the RSRP values for each beam across all regions,
derived from channel estimation techniques based on user-
reported RSRP values. Then, the updated REM is utilized to
train a DRL model in order to determine the set of beams to
be activated according to the objectives of network operators.
For example, it selects beams with the highest RSRP values
or chooses beams that balance RSRP values with potential
interference. Once training is complete, the trained model is
stored in the database of Non-RT-RIC and it is transmitted to
the candidate GoB beam selection module in Near-RT RIC
via A1 interface every non-real-time period.

2) Near-RT-RIC: In the candidate GoB beam selection
module within Near-RT-RIC, an output of the trained DRL
model selects candidate beams by analyzing the current loca-
tions of users, as provided by an external localization server.
The term “candidate beams” refers to the beams chosen as
eligible for activation, with activation decision confined to
these beams exclusively. The information of the candidate
beams determined for each network slice are transmitted to
the O-CU via E2 interface every near-real-time period.

3) O-CU: O-CU deployed at the Multi-access Edge Com-
puting (MEC) server assigns activation probabilities to each
candidate beam received from Near-RT RIC. These probabili-
ties are determined according to the dynamic network slicing
algorithm that is integrated within the proposed framework,
and are periodically updated for performance improvement.

Bandwidth allocation is also determined by the O-CU. It
is fine-tuned for each network slice by leveraging multiple
network control decisions determined in O-DU. By placing
the decision-making for bandwidth allocation at a higher layer
with longer update periods than other management decisions,
i.e., beam activation, user scheduling and power allocation,
this architecture can significantly reduce the computational
complexity while providing more macroscopic perspective in
decision-making of the bandwidth allocation. Then, the deter-

Fig. 2. AET and GAT for each network slice.

mined beam activation probabilities and bandwidth allocation
are transmitted to the O-DU in every quasi-real-time period.

4) O-DU: In the proposed framework, each gNB has a
dedicated edge computing server [10]. In O-DU deployed
in this server, beam activation, user scheduling, and power
allocation are made sequentially for each network slice in
real-time. The beam activation is determined probabilistically
from among the candidate beams, based on their probabili-
ties assigned by the O-CU. For given activated beams, user
scheduling and power allocation are determined to meet the
requirements of each network slice. We should be noted
that all decision variables can be obtained according to the
corresponding algorithms in the proposed framework. These
algorithms can be developed using optimization and/or learn-
ing theory or heuristic methods. In this paper, proposal of a
specific algorithm is out of scope, but we provide a novel
dynamic network slicing framework. Nevertheless, we exploit
a simple dynamic network control algorithm in simulations to
show the superiority of the proposed framework. Then, a tuple
of the determined control variables is delivered to O-RU via
open fronthaul link.

5) O-RU: O-RU is deployed at the cell site and utilizes
network control decisions received from O-DU to transmit
signal to users. Additionally, each O-RU transmits RSRP
reports of users corresponding to reference signal of each beam
to Non-real-time RIC via O1 interface.

III. PERFORMANCE EVALUATION

We evaluate the performance of the proposed framework in
conjunction with simple dynamic/static network slicing algo-
rithms. We provide the simulation setup and brief description
of two network slicing algorithms. As performance metrics, we
consider AET and GAT where AET is the average throughput
of users whose throughputs are bottom 5% of all users and
GAT is the geometric average throughput which captures both
throughput and fairness among users [11].

A. Simulation Setup

In our simulations, the network topology includes 19 gNBs,
and each gNB is partitioned into 5 distinct network slices
according to QoS requirement levels. The network slices are
categorized into various priority levels: ‘Basic’, ‘Standard’,
‘Enhanced’, ‘Premium’, and ‘Ultra’, each of which corre-
sponds to [2, 5, 8, 11, 14] Mbps of average data rate, and
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each network slice randomly serves 4 to 8 users. Users are
initially placed randomly and subsequently choose to either
remain stationary (0 m/s), walk (1.3 m/s), or run (2.5 m/s)
in a random direction. All gNBs are configured with a total
bandwidth of 100MHz, and the maximum power is set to
2W. The simulation is executed for 5000 time slots where
time intervals of near-real-time, quasi-real-time, real-time are
set to 1000, 100 and 1 time slots. We assume a scenario in
which the DRL model has already been trained by the Non-
RT-RIC; therefore, operations performed during the non-real-
time period (i.e., REM updates, offline model training) are not
considered in this simulation.

B. Applied algorithms

In our simulations, we compare the performance of the
dynamic network slicing algorithm on top of a proposed
framework with static network slicing algorithm. For the
static network slicing algorithm, power and bandwidth are
proportionally allocated to the minimum QoS requirement in
each network slice. Moreover, beam activation is randomly
determined, and then users are randomly scheduled on top
of signal strength map from activated beams. For the dynamic
network slicing algorithm, we assume that the candidate beam
is obtained from Near-RT-RIC in the proposed framework. The
activation probability of each candidate beam is determined
based on the number of users receiving a certain level of signal
strength when the corresponding candidate beam is activated.
Once beam activation is decided according to this probability,
user scheduling, power allocation, and bandwidth allocation
are determined by adopting Lyapunov optimization [12] to
satisfy the QoS levels of users while maximizing the sum of
utility functions, i.e., U(Rk) = logRk.1

C. Simulation Results

Fig. 2 illustrates AET and GAT for each network slice. Both
results demonstrate that the dynamic network slicing algorithm
on top of the proposed framework outperform static one.
Moreover, the most of user throughputs in dynamic network
slicing algorithm meet the QoS requirements of each network
slice whereas user throughputs in static network slicing algo-
rithm fail to meet these requirements except Ultra network
slice. In addition, the dynamic network slicing algorithm
shows an improvement of GAT performance with a range from
27.56% to 135.29%.

IV. CONCLUSION

This paper proposed a dynamic network slicing frame-
work in conjunction with GoB beamforming. The proposed
framework leverages a hierarchical structure of Open-RAN
to efficiently generate dynamic network control decisions
with multiple timescales in response to dynamic network
environments. Then, we evaluated the proposed framework to
show the superiority of the dynamic network slicing algorithm

1We do not provide a detailed algorithm description here since the focus
of our work lies on the proposal of dynamic network slicing framework.

compared to the static one. As a future work, we plan to inte-
grate deep reinforcement learning (DRL) to train deep neural
network for mobility-aware beamforming and optimization to
develop dynamic network slicing algorithm in a single network
slicing framework.
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