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Abstract—Federated learning has emerged as a highly promis-
ing approach for training machine learning models across a
decentralized network of clients, with a key focus on maintaining
the privacy of data. Nevertheless, the management of system het-
erogeneity and the handling of time-varying interests continue to
pose hurdles for conventional federated learning methodologies.
This work presents temporal-based adaptive clustered federated
learning as a viable solution to the difficulties mentioned above.
The evaluation of clusterability is conducted by calculating the
Silhouette score following each iteration of federated train-
ing. The process of model aggregation is performed at the
cluster level, resulting in enhanced convergence efficiency and
improved accuracy of predictions. The inclusion of temporal-
based adaptiveness in clustered federated learning for time-
varying environments enables the system to dynamically modify
cluster configurations in response to clients joining or leaving
the network. The experimental results on a real-world dataset
of an electric vehicle charging station network illustrate the
efficacy of the suggested approach in terms of model correctness,
convergence, and adaptability. The temporal-based adaptive clus-
tered federated learning framework has demonstrated significant
advancements compared to the current state-of-the-art clustered
federated learning approaches.

Index Terms—Federated Learning, Energy Demand Predic-
tion, Clustered Federated Learning, Adaptive Clustered Feder-
ated Learning, Temporal based CFL

I. INTRODUCTION

Federated Learning (FL) [1], a cutting-edge approach in
machine learning (ML), redefines the way of model training
and processing. It uses the strength of distributed devices to
cooperatively improve their model performance while assuring
the locality of their data, in contrast to conventional centralized
methods where data is gathered in a single location. With the
help of this ground-breaking paradigm, a variety of devices,
including smartphones, edge devices, and IoT sensors, can
enhance their model’s capabilities without the need to provide
raw data. FL has become an essential mechanism to enable
privacy-preserving collaborative learning to improve a single
global model and deliver better-personalized models tailored
to the end-users’ local data and context [2; 3; 4]. However,
it poses some challenges, such as data heterogeneity, data
imbalances, time-varying data distribution, and diversified user
behaviors while training a global model. Hence, extensive
research works have been underway in many domains to
mitigate these challenges and find global solutions.

Clustered federated learning (CFL) is a significant advance-
ment in the domain of distributed machine learning since it
effectively combines the benefits of federated learning and
cluster analysis. This innovative approach, however, efficiently
addresses these difficulties within the framework of collabora-
tive model training. The utilization of CFL enhances the per-
formance of the client’s models by expediting the convergence
time, guaranteeing cost minimization, and clustering them
with similar data/model characteristics. The CFL technique
enhances the trade-off between accuracy and local adaptability
by facilitating the creation of tailored models for individual
clients within a cluster.

Clients participate in the training process individually in
classical FL, and it is assumed that their data distributions
would remain static over time. The distribution of client data,
however, may alter over time in real-world circumstances due
to a variety of variables, including user behavior, seasonal
patterns, or changing user preferences. Therefore, to increase
the effectiveness and performance of the federated learning
process, we propose a temporal-based adaptive clustered feder-
ated learning (TACFL), where clients are grouped into clusters
according to the temporal patterns in their data distributions.
TACFL focuses on identifying and utilizing these temporal
patterns in clients’ data distributions in the federated clustering
process. By utilizing adaptiveness in the clustering approach, it
overcomes the limitations of traditional clustering techniques.
By tackling the complexities of time series and streaming data
networks, the proposed algorithm can provide a detailed un-
derstanding of the clustering dynamics in these circumstances.
In sum, TACFL can help to overcome the challenges of time-
varying data distribution and improve the accuracy of model
training in such federated settings.

The rest of the paper is organized as follows. Section II
discusses some related works in the field. The system model
with the energy demand learning and proposed clustering
model is highlighted in Section III. Section IV describes the
experimental setup and performance of the proposed approach.
The paper is summarized with the conclusion in Section V.

II. LITERATURE REVIEW

Federated learning enables distributed clients to jointly train
machine learning models in a privacy-preserving way without
sharing their local data. In federated settings, it is common
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to have several clients and a central server. The primary
role of the server is to aggregate the local models from all
clients in order to generate a global model. On the other
hand, clients are responsible for managing the collection and
storage of local data, as well as training their respective local
models. However, it still poses numerous challenges due to
clients’ data heterogeneity, user preferences, streaming data,
and communication cost [5].

CFL is one of the potential solutions recently proposed in
numerous works [2; 3], where clients with jointly trainable
data distribution are grouped and trained accordingly and the
cluster-specific models are distributed back. In this way, the
communication cost is reduced, with a fast convergence rate
and more accurate results. Most of the existing CFL techniques
utilize three common approaches: local model updates, local
model weights, and losses-based collaborative training to find
the similarity among clients [6]. However, there is still scope
for improvement in the existing heuristic approaches in finding
optimal numbers of clusters in CFL. Adaptive CFL, without
specifying the number of clusters, groups clients into appropri-
ate clusters based on learning from the model features. Wang et
al. [7] have successfully introduced the adaptive clustered FL
to clients with time-varying interests and for streaming nature
of data. Saputra et al. [8] and Perry et al. [9] have applied
FL and CFL for the energy demand of electric vehicle CSs
network and successfully trained the clustered models for the
charging stations using the conventional clustering methods,
such as K-means clustering and hierarchical clustering with
Euclidean and DTW measures. Tun et al. [10] have applied
federated clustering for residential energy demand prediction
by leveraging the RNN model.

The temporal nature of data, like time series data generation,
is the core part of the modern world of IoTs. To deal with such
real-world problems, we propose TACFL, where we introduce
a dynamic clustering method with varying number of clusters
based on Silhouette threshold to adapt with time-variant clients
better.

TABLE I
LIST OF SYMBOLS USED

Symbols Description Symbols Description

Si Silhouette coefficient nk Number of samples of
each client

αi Learning rate Linit Initial cluster label

Lnew New cluster label E Number of epochs

m Number of clients n Number of neurons

ω Trained model Θ Cumulative adaptivity

D Client dataset gi Initial cluster number

δ Decay rate Ci Final cluster number

K Number of clusters ϵ Silhouette threshold

θi Adaptive feature T Number of rounds

III. SYSTEM MODEL

A. System Environment

This study examines an EV charging station (CS) network
in a typical urban region, Boulder City, USA, consisting of
a set of 39 CSs across 5 postal code regions in the city.
Each CS is equipped with computation and storing capabilities
over its transaction log that records EV charging sessions
occurring at the stations. This log file comprises information
such as the CS ID, EV ID, charging date, charging time,
energy consumption over time, etc. Each charging station
does the centralized and federated training on its local dataset
and establishes communication with servers and other CSs
within the network for sharing and learning the model. The
comprehensive mechanism of our technique from centralized
to cluster-specific training is elucidated in Figure 1, and the
list of symbols used in this work is shown in Table I.

B. Energy demand Prediction Model

Since the energy demand prediction for clients based on
a temporal series of past usage patterns is a time-series
regression task, the electric vehicle CSs have limited datasets
(transactions) and computational capabilities to execute it
locally. Therefore, in the centralized approach, all the clients
send their data to the central server, which then makes an
accumulated log file before training for the global model.
Then, leveraging the based model, the server calculates the
energy demand for the next period in a number of rounds and
calculates the prediction error till it converges to the satisfied
value. Then, the final global model is sent back to each client
for local learning.

Since, in the above approach, the charging stations are
sharing their raw data with the central server, there are privacy
concerns and huge data communication overhead. To deal with
these issues, an FL-based energy demand prediction model is
proposed in this work, where the server only needs the collect
the trained models from all the CSs. By leveraging the FL
approach, the server aggregates the local models and shares the
learned global model back to them. Each CS trains the global
model on their local data to learn the aggregated demand as

w
(t)
k = w

(t)
k − w(t), (1)

w(t) =

∑K
k=1 nkw

(t)
k∑K

k=1 nk

, (2)

with a learning rate of

αi =
α0

1 + δt
, (3)

where αi is the learning rate, α0 is the initial learning rate, δ
is the decay rate, and t is the current epoch or iteration.

Then, the server updates the global model after multiple
rounds till the error converges to a minimum. The prediction
error is calculated and based on it readjust the local model
weights for further clustering process.
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Fig. 1. Overview of TACFL system model: (1) centralized and federated training of clients dataset, (2) adaptive clustering based on Silhouette threshold, (3)
clustered specific model training

C. Temporal-based Adaptive Clustering Model

A complex data analysis technique known as temporal-
based adaptive clustering makes use of temporal information
to divide and organize data points dynamically into groups
throughout time. Temporal-based adaptive clustering recog-
nizes the changing nature of data. It adapts clusters to take into
account the changing patterns and trends, in contrast to typical
static clustering approaches, which presume that data remains
constant during the training. When dealing with time series
data, where observations are made across a range of periods,
this method is especially critical. Temporal-based adaptive
clustering provides more precise insights into complicated
datasets. It encourages the detection of dynamic links and
trends that could otherwise go undetected by continuously
updating clusters to reflect changing patterns.

1) Cluster Modeling: In a temporal-based adaptive clus-
tering scenario, the focus shifts to the implementation of the
K-means algorithm for dynamic cluster adaptation. Initially,
historical temporal data from the charging station network is
segmented into time intervals, creating subsets that capture
temporal dynamics. These subsets are individually processed
through the K-means algorithm, forming initial clusters. The
crucial aspect is where the centroids of these initial clusters
are leveraged as references for future adaptation. As new data
becomes available, it is evaluated against these centroids, and
clusters are updated accordingly. This iterative process ensures
that the clusters remain attuned to the evolving patterns in the
data. The re-evaluation of centroids and cluster assignments
occurs periodically, preventing clusters from stagnating. This
re-evaluation is carried out by computing stability analyses
like Jaccard and Silhouette coefficients after every round.

This dynamic adaptation over time enhances the clustering
accuracy, allowing the algorithm to capture nuanced changes
and trends. Ultimately, the adaptive clusters facilitate insight-
ful data interpretation, revealing temporal patterns that offer
deeper insights into the charging station network’s behavior
and usage dynamics. This adaptive K-means mechanism serves
as a robust solution for harnessing temporal information,
unveiling valuable knowledge embedded within the network.

In our proposed method, we suggest that the temporal usage
similarity of CSs is more critical than spatial locations of
CSs as in previous work [8] for FL training. It highlights the
problem that nearby CSs could have vastly different usage
patterns. For instance, a CS close to a transit hub or shopping
mall can see significantly more demand than other CSs in the
area. In the existing literature, different distance measuring
techniques are used for similarity calculation for clustering,
such as Euclidean distance, dynamic time warping (DTW), and
cosine similarity. Since our approach is adaptive clustering,
we have introduced the Silhouette coefficient measurement in
every round of FL to adjust the similarity between the clients
in the cluster. We have compared the existing methods with
our approach in Section IV.

2) Adaptive Clustering Model: Cluster stability analysis is
greatly influenced by the data set, particularly by how clearly
distinct and homogeneous the clusters are. The majority of
clustering techniques rely on a particular cluster model or
prototype, which may work for some types of data but not
for others. Analyzing the stability and consistency of cluster
assignments becomes crucial in time-variant environments
where data distributions across clients change over time. In this
work, we propose the Silhouette coefficient that measures the
stability and adjusts the cluster memberships of the charging
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stations when the data distributions change significantly in
rounds.

The term Silhouette coefficient, which incorporates the terms
individual silhouette coefficient and cluster silhouette coeffi-
cient, was proposed by Kaufman et al. [11]. The individual
silhouette coefficient is expressed as

a(i) =
1

nc − 1

∑
i̸=j,j∈Cc

d(i, j), (4)

b(i) = argmin
i,j

1

nc

∑
i∈Cj

d(i, j), (5)

Si =
b(i)− a(i)

max[a(i), b(i)]
, (6)

where a(i) is the average distance between data point i and all
other points in the same cluster, whereas b(i) is the minimal
average distance between point i and every other point in
any cluster that does not contain the data point i. Finally, the
silhouette coefficient for clusters is calculated as

Sc =
1

n

n∑
i=1

Si, (7)

where n is the number of data points in the dataset. The
Silhouette coefficient for the cluster efficiency is calculated
after every round of federated clustering, and if the Silhouette
score is less than 0.5, then relocation of the charging stations
is processed for the next round. This makes the stability of
clusters according to the varying data distribution across the
stations.

Since the data distribution of clients changes after each
training cycle, it might affect the cluster membership to which
those clients belong to. In addition to increasing the cluster sta-
bility throughout federated learning rounds, it makes sure that
the changing patterns of energy consumption in the charging
stations are consistently and precisely recorded, enabling the
best possible resource allocation and decision-making. Based
on the temporal behavior change, the algorithm learns the
model parameters by calculating the Sc to perform the cluster
assignment adaptively. This approach delves into the varying
hidden parameters of the model and, instead of the obvious
model information, recomputes the centroids and assigns new
cluster labels to the clients. The approach is, to the best of
our knowledge, unexplored in the existing literature, where
the cluster memberships of the clients are fixed throughout
the training. The whole flow of our Approach is described in
Algorithm 1.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Dataset

We evaluated our temporal-based Adaptive clustering ap-
proach on a real-world dataset of EV charging stations network
datasets [12], Boulder City, USA. EV charging stations Net-
work, which comprises 39 charging stations across 4 different
postal codes of the city. Setting up a federated learning exper-
iment for the EV charging stations network in Boulder City

Algorithm 1 Temporal-based Adaptive CFL
1: Input: D = {D1,D2, . . . ,DN}, K, T, ϵ.
2: Output: Updated global model ωt.
3: Server:
4: Initialization: Set K Clusters to the clients Linit

ωk models and hyper parameters
5: Adaptivity Θ = {θ1, θ2, . . . , θn}
6: for t = 1 to T do:

Client Update:
7: for Di in D do:
8: Compute αi =

α0

1+δt , ; δ is a decay constant.
9: Update ω using equation 2 and update the model:

ωt+1 ← ωt − αi∇F (ω;Di)

Adaptive Clustering:
10: Compute

Si =
bi − ai

argmax(ai, bi)

11: if Si < ϵ then
12: Update Θ and assign Lnew
13: Update Linit with Lnew
14: Update ω

involves creating a distributed machine learning system that al-
lows multiple charging stations to train a model collaboratively
without sharing their raw data. The data include information
about charging patterns, energy consumption, charging station
ID, charging start and end times, transaction history, and other
relevant features.

B. Data Preprocessing

The dataset comprises a variety of features, which include
station ID, Charging start and end times, location information,
and the transaction ID of each charging station, aiming to
predict the energy consumption in each session better. Then,
we calculated the daily, weekly, and monthly energy con-
sumption of every individual charging station for the trend
and seasonality analysis. The dataset lacks samples for all
the stations; thus, only 10 clients have been chosen based on
the two years (2019-2020) available data for our setup. Data
preprocessing has been done, including data normalization
and feature engineering, and for time series clustering, the
lookback approach involved dependency of the next prediction
on historical trends.

C. Experiment Setup

The PyTorch framework is used to simulate the LSTM
model in a federated learning approach. The LSTM model has
one LSTM input layer and a fully connected linear layer with
10 neurons (n = 10) in each layer. The hyper-parameters are
set as follows: T = 500, E = 2, lookback equal to 5, ϵ = 0.5,
m = 10, and Adam optimizer have been used in evaluating
the LSTM model. The model is evaluated in each round, and
the loss of each cluster is also calculated based on the client’s
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TABLE II
RMSE COMPARISON OF TACFL AND CONVENTIONAL METHODS

Clusters Saputra et al. [8] Perry et al. [9] TACFL (Pro-
posed)

C1 1.108 1.093 0.954

C2 1.147 1.082 0.935

C3 1.28 1.119 0.926

Average 1.1783 1.09 0.938

model in that cluster. We utilize the root mean squared error
(RMSE) to demonstrate prediction accuracy, i.e., prediction
error, because we are dealing with energy demand prediction,
which is classified as a regression prediction model, i.e., when
the mapping function gives continuous prediction outputs. In
each round, the epsilon value of clients is calculated based
on the given above equation 6. The client remains in the
same cluster when the epsilon value is within the threshold
constraints, otherwise, it will be ready to be reclustered in the
preceding round. Such an approach is effective as the client
adapts to the cluster based on variance within the cluster and
across the cluster.

D. Results

Adaptive approach is effective in the federated clustering
approach, as the clients adapt to the cluster with an increasing
number of rounds. In each round, the client is evaluated to
the relevant cluster membership based on the epsilon values.
Figure 2 better illustrates the adaptive cluster membership of
clients involved in federated training. From the figure, we
can observe that clients change their cluster membership in
rounds and try to find their optimal cluster centroid while
likely optimizing the global cost function.

Comparative analysis has also been carried out with the
state-of-the-art clustering approaches in EV charging sta-
tion energy demand prediction. The TACFL approach was
compared with Euclidean distance-based K-means and DTW
method-based K-means clustering approaches adopted in [8]
and [9] on the same LSTM predictive model and parameters.
Results show that the TACFL approach gives better results
than those methods, as shown in Table II. The aggregated
RMSE of TACFL is 0.938, while Euclidean-based and DTW-
based approaches are 1.1783 and 1.09, respectively. The third
cluster in TAFCL has shown better performance, while for
DTW, 2nd cluster shows less loss, i.e., 1.082. The cluster-
based approaches are also better for personalization, thus our
approach is well-defined for adaptive federated personalized
learning.

Similarly, to evaluate the communication efficiency of the
TACFL model with baseline federated learning (FedAvg),
different combinations of clusters have been analyzed in
Figure 3. It can be seen that the TACFL with three clusters
is giving the best results both on accuracy and communica-
tion rounds, outclassing other scenarios and vanilla FL. It
is observed that the TACFL clustering approach converges

faster during the initial rounds, but an increasing number of
clusters have poor performance after adequate global rounds.
FedAvg gives similar trends to TACFL, having 2 clusters
after some communication rounds, and adapting becomes easy
as there are only two clusters. Still, the performance is not
better than the optimal cluster number. The optimal cluster
has been evaluated by manually cluster number parameter; an
approach to determine the optimal number of clusters will be
considered as future work. Overall, the TACFL is effective
for CFL approaches as it reduces the global rounds, making
it suitable for FL having communication cost bottlenecks.

In Table II, the RMSE values with different conventional
model distance criteria are compared with the TACFL ap-
proach for clustering accuracy measurements. TACFL out-
performs all in the case of individual cluster losses and the
overall average loss. When the number of clusters is increased,
the RMSE loss decreases in TACFL, while in conventional
methods, the trend is not well followed, which shows in-
efficient cluster stability. The average RMSE is calculated
for the TACFL and previous works and plotted in Figure 4,
which shows that the TACFL has a loss of 0.938 which is
comparatively better than the previous works, whose average
RMSE values are 1.178 and 1.09.

V. CONCLUSION

Time series regression is a task that requires a limited
dataset (transactions) and computer resources to predict energy
consumption for customers based on a temporal series of prior
usage patterns. Recognizing the patterns and clustering them
needs keen observation and accurate model design. In this
work, we have introduced a temporal-based adaptive clustering
mechanism to cluster the heterogeneous clients based on
learning the time-varying data distribution and assigning them
the most accurate clustering labels. Compared to conven-
tional clustering algorithms, where the client’s positions in
the clusters are fixed across the whole training and learning
process, TACFL introduces the cluster stability calculations
by leveraging the Silhouette coefficient and introduces adap-
tivity in the conventional CFL methods. Regarding prediction
accuracy and adapting client memberships in clusters, TACFL
has shown great power with fast convergence. Cluster stability
analysis like the Jaccard coefficient and rand statistics for the
conventional and TACFL are expected to be carried out in
future work with more real-world applications.
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