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Abstract—Multipath is a technique that utilizes multiple links
to establish an abstracted, unified connection for upper-level
applications. This type of connection offers distinct advantages
regarding overall bandwidth and reliability compared to regular
single-path connections. Nevertheless, as the throughput and
number of links increase, the associated overhead in path man-
agement and data processing increases to the extent that it may
surpass the processing capacity of the CPU. This paper delves
into enhancing multipath connections by leveraging Linux’s XDP
socket to process Tx and Rx traffic. By promptly separating
the multipath traffic from the kernel’s network stack with an
XDP socket — a technology known for its high performance
and efficiency, the connection will consume fewer resources and
experience reduced latency. Furthermore, we present an imple-
mentation of this concept that can deliver a substantial increase in
throughput, up to 146% when compared to connections created
by link aggregation in round-robin mode, with further potential
for improvement.

Index Terms—Multipath, Link-Aggregation, XDP, AF XDP,
Backhaul, 5G, 6G

I. INTRODUCTION

Enhancing network throughput for resource-intensive ap-
plications poses a formidable challenge. Currently, Ethernet
and InfiniBand are the predominant communication technolo-
gies in data centers and high-performance computing (HPC)
environments [1], offering line capacities ranging from 100-
200Gbps [2] [3]. While these bandwidth figures are impressive
in the network connection field, they fall short when compared
to the internal processing capability of a single computer
system. For instance, AMD’s ”Infinity Fabric” bridge delivers
in-package bandwidth of 256GB/s on the Zeppelin SoC family
[4] and up to 800GB/s in peer-to-peer tests between GPUs
using multiple bands [5]. This indicates that the connection
between computer instances can become a bottleneck for
distributed, data-intensive use cases, such as data centers
or telecommunication. In such usage scenarios, a multipath
connection could offer distinct advantages by providing an
abstracted connection that conceals the intricate details of
combining links from the application. Consequently, it facil-
itates horizontal scaling of network capacity and can serve

as an intermediate solution to overcome forthcoming physical
and economic limitations.

Numerous multipath (MP) solutions are available for se-
lection. One such option is Link Aggregation (LAG, often
referred to as bonding), which operates as a low-level mul-
tipath implementation. It manages the link’s flows at the
MAC (Media Access Control) level and presents the user with
a unified, virtual network interface. However, this solution
only offers limited and unordered enhancement in single-flow
throughput compared to the total link capacities [6].

Alternatively, some solutions rely on the kernel’s network
stack to exchange traffic, including GridFTP (TCP) and MP-
TCP (TCP subflows) [7] [8]. However, Linux networking,
designed as a general-purpose software stack, faces limitations
in handling multi-gigabit connections. The achievable through-
put — slightly exceeding 40Gbps per CPU core — depends
on factors such as the type of flows, software optimizations,
and hardware [9]. Packet processing is influenced by several
sources of overhead and delay within the network stack and the
system, including data copying, buffering, interrupt handling,
context switching, pre-emption [10] [11]. Consequently, mul-
tipath software that delegates the management of link connec-
tions to the Linux kernel inherits these limitations, along with
additional overhead to process traffic across multiple links.
This scenario poses a potential roadblock that could prevent
a multipath solution from surpassing a certain throughput
threshold.

There are several approaches to improving networking for
Linux. The dual-kernel approach, involving real-time operating
systems like RTAI or Xenomai, reduces significantly kernel
latency by segregating real-time and standard tasks into dif-
ferent runtimes [12]. Less invasive, kernel patching approach
enhances kernel’s interrupt handling by making modification
within the kernel code. However, the suitability of these
approaches in production environments remains a subject of
debate, considering factors such as compatibility, stability, and
support [13].

A more commonly applied approach is kernel bypass-
ing. Several mature projects employ this strategy, including
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netmap, PF RING, and DPDK. Kernel bypassing effectively
diverts network flows from the kernel into a user-space net-
work stack optimized for low latency and efficiency [14]. This
often comes at the cost of removing the kernel’s hardware NIC
management, high resource usage, and the need to manage a
sizable library and drivers [15].

AF XDP represents an alternative ”bypass” technique, al-
though it operates distinctly. Leveraging on eBPF technology,
the AF XDP socket (often referred to as XDP socket or XDP)
is a native Linux socket capable of swiftly moving a substantial
volume of packets to and from a userspace application. To
achieve this, low-level memory access is made available to the
socket. Sending packets can be done by writing raw Ethernet
packets to a ring buffer accessible by the network driver, and
incoming packets can be copied directly to user application,
essentially circumventing (or bypassing) the entire network
stack. Unlike other bypass methods, by using a eBPF program,
developers have complete control over all RX packets at
the interception point within the kernel space, which enables
early intervention before permitting specific packets to proceed
along their initial paths. AF XDP offers features that are
highly advantageous for an ideal multipath library [16] [17]:

• Seamlessly integrates with the network stack while pre-
serving the kernel’s management of hardware NICs.

• Delivers scalable, high performance without compromis-
ing efficiency.

• Has no monopoly over the NICs.
• Low-level tasks run in isolated eBPF environment.
This paper presents the idea of enhancing multipath connec-

tion by utilizing XDP sockets to address overhead caused by
large flow and multiple links. We have developed a prototype
stack, which comprised of a multipath library and a pair of
sender-comsumer application, to facilitate packet exchange
between two separate machines via the library’s multipath
connection. The multipath packets are encapsulated in UDP
datagrams. Preliminary findings reveal an utilization of over
88% of the total link’s throughput, surpassing the over 72%
achieved by Linux’s Link Aggregation in Round-Robin mode.

One use case and motivation for the solution presented in
this paper is multipath utilization in 5G networks’ backhauls,
especially in nomadic node scenarios. In some cases, the core
is situated beside the Radio Access Networks, and multipath
can enhance communication bandwidth between the RAN and
the Core network. With the anticipated increase in bandwidth
originating from User Equipment (UEs) in upcoming 6G
networks, the backhaul should be capable of meeting the
expected demand. On the other side 6G cores will require
to be scalable to cope with this high throughput coming from
the RAN, as demonstrated by innovative approaches like 6G
Organic Core [18].

The rest of this paper is structured as follows: Section
II presents the related work. Section III then outlines the
problems with current multipath solutions and explains our
motivation. Section IV describes the scope of this research,
and Section V presents the prototype and test setup, followed
by result and evaluation in Section VI. Section VII is dedicated

to discussion and outlining future work. Finally, Section VIII
concludes.

II. RELATED WORK

Many multipath solutions use Linux’s TCP and UDP stack
to handle packet exchange. This includes MP-TCP, GridFTP
(FTP extension), and MP-DCCP (extended-UDP). GridFTP
has showcased its ability to deliver 27.3 Gbps over 30 Gbps
links [19]. MP-TCP has demonstrated the capability to sustain
a single-flow connection of 51.8 Gbps, achieved through the
amalgamation of 6x10 Gbps links. However, sustaining this
level of performance depends on specific kernel configurations
and other optimization techniques, which may not be adequate
for handling multiple links, each with more than 40 Gbps
throughput [9] [20].

Modern network acceleration methods such as DPDK and
XDP socket can be used to improve Linux networking.
DPDK’s performance is commonly regarded as the perfor-
mance benchmark, often serving as the reference point for
comparison [16]. However, the demands placed by this li-
brary are substantial, including detaching the NIC from the
system and allocating dedicated resources. Additionally, the
library itself is a large software project that requires learning
and integration efforts, which we observed in the transition
from DPDK to XDP for the Fraunhofer FOKUS NGNI’s
Open5GCore project [21]. This positions the AF XDP socket
as an appealing alternative since the socket is deeply ingrained
within the kernel, where packets undergo isolated processing
in kernel space [17], which means fewer dependencies and
minimal re-implementation will be required.

We’ve also found that Hercules-SCION is a multipath
solution that utilizes XDP technology. The authors presented
Hercules as the primary transfer tool for the SCION network
architecture [22] to enhance SCION’s packet processing and
dispatching performance. The tool leverages SCION’s path
control to forward traffic across multiple paths and has been
demonstrated to surpass GridFTP in throughput tests [23] [24].
Although Hercules and our concept share many similarities,
we have observed some notable differences. Firstly, Hercules is
designed to work with SCION, a modern network architecture
primarily focused on global-scale routing and management
[25]. In contrast, our concept is designed purely to facilitate
multipath connections between two machines. Secondly, the
objectives of the concept encompass simplicity and portability,
preferably in the form of a software library or module, rather
than a complex software stack or a new architecture as the
one used by Hercules.

III. PROBLEM STATEMENT

This work is motivated by the following:
Performance: Relation between Throughput and Packet per

second. While throughput, which measures the amount of data
transferred per second, often takes the spotlight in discussions,
the ability to handle a high volume of packets per second is
frequently overlooked. TCP protocol performs optimally with
large data files to reach its full potential. Under unfavorable
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conditions, i.e., when the flow consists of small files, perfor-
mance can suffer considerably from a known issue called the
”lots of small files” (LOSF) [7]. This issue is explained that in
most cases, the per-byte costs is dominated by the per-packet
costs, which is caused by the high number and cost of sys-
tem calls, memory allocation procedures, interrupt handling,
and other factors necessary for processing each packet [26].
Efficient packet handling methods can significantly enhance
Linux’s processing capability, increasing it from 4.8Mpps to
24Mpps with XDP socket and approaching 100Mpps with
DPDK [17] [27].

Additional processing power can be released if such ac-
celeration methods, like XDP and DPDK, are employed in
multipath connection. This is particularly relevant when deal-
ing with high-capacity links, which will require substantial
processing power to handle the volume of data, manage the
interrupt events generated by millions of packets, and deliver
meaningful data to the destination application.

Maintainance and Stability. While many existing network
acceleration solutions have seen limited adoption, XDP and
eBPF are being employed by major organizations: firewall,
filter, load-balancer by Facebook [28]; monitoring and an-
alytics by Netflix [29]; security and observation in Cilium
Project [30]; to cite some. DPDK has been widely adopted in
various projects, including pfSense, Open vSwitch/OpenStack,
OpenFlow, and 5G UPF implementations [31] [32] [33]. This
widespread usage ensures the longevity of these frameworks,
along with ongoing fixes and updates. Compared to DPDK,
AF XDP has the advantage of being integrated directly into
the Linux kernel, eliminating the need for complex external
dependencies.

IV. SCOPE OF RESEARCH

This research is primarily concerned with exploring the
concept and development of a prototype for evaluating the
impact of applying XDP as a solution for multipath commu-
nication. In this phase, the initial focus is on the application
of enhancements in throughput, i.e., the scenario where the
packets of a single, large flow are distributed over different
paths. In a second phase, other multipath aspects such as load
balancing, multi-streams, latency, and heterogeneous links will
be addressed. The prototype stack will establish a multipath
connection between two machines, allowing traffic encapsu-
lated in UDP packets to flow from the producer application
to the consumer program in another machine. For the purpose
of comparison, we will assess the throughput of the multi-
path connection created by our prototype and Linux Link-
Aggregation. Additionally, to enable reliable measurement
of goodput, we implement a buffering-waiting mechanism
(referred as reorderer) to deliver partially resequenced traffic
to the consumer application.

V. EXPERIMENTAL METHODOLOGY

The prototype stack consists of an XDP-based MP library, a
sender and a receiver application (or user applications), all run
in userspace (Figure 1). The library is responsible for initiating

the XDP sockets, establishing the connection, exposing the
endpoints to the user application, and handling the data and
traffic.

Fig. 1. Block diagram for the prototype stack with outgoing (TX) and
incoming (RX) traffic

A transmission of a single packet commences at the sender
machine, where the library accesses data authored by the
sender application from a shared mmap memory region for
subsequent processing. The processing procedure includes in-
corporating data into a multipath protocol header (as suggested
by Krentz et al. [34]) and encapsulating the multipath packet
within a UDP packet. After that, the UDP packets are ready
for transmission over XDP sockets.

Upon reaching the receiver machine, a multipath raw Eth-
ernet frame is screened by the XDP interceptor (referred to as
XDP kernel program) and delivered to the library in userspace,
where it undergoes a similar data processing procedure but
in reverse order. Finally, the consumer application reads data
from the shared mmap memory area, which was written to by
the library.

Fig. 2. Test setup

We use several header fields within the multipath header pri-
marily for statistical purposes, although the multipath packet
sequence number plays an important role in the reordering
process. Since the prototype does not carry out any planning
or scheduling, the outgoing packets are gathered, distributed,
and received in batches across various links, resulting in an
unpredictable reception order. An in-place Quick-sort strategy
packet reorder implementation is therefore developed and
integrated into the library to gather and rearrange received
packages within a specified time frame. This procedure com-
prised of a buffer with 128 packet slots and a pre-defined
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time interval, resembling, although less complex than, the one
proposed by Amend et al. [35].

The sender and receiver machines are identical industrial-
grade mini PCs with multiple NICs. These two machines
are interlinked using Cat6 Ethernet cables (Figure 2). Each
machine is equipped with Intel Atom Processor E3940 CPU
and 4x Intel I210 1Gbps NIC, with one interface being dedi-
cated to monitoring and control. For performance evaluation,
we compare the goodput of our prototype with LAG’s result
operating in balance-rr (round-robin) mode since LAG works
at roughly the same layer (Layer 2 Data Link layer). We
configure two test scenarios, one using 2xNICs and the other
using 3xNICs. In each scenario, we measure the goodput of
the multipath connection established by either LAG or our
prototype as follows:

• Single UDP flow over LAG connection.
• Single TCP flow over LAG connection.
• Multiple UDP flows over LAG connection.
• Multiple TCP flows over LAG connection.
• Single UDP-based flow over prototype’s connection, re-

orderer deactivated.
• Single UDP-based flow over prototype’s connection, re-

orderer activated.
Each scenario is executed five times. UDP payload length is

set to 1024 bytes for the prototype. In iperf3 tests conducted
over LAG connections, we used the default parameters for
UDP and TCP connections provided by iperf3. In case of
multiple flows test, the number of flows is equal to the number
of NICs under test in the current test scenario. All throughput
values exclusively represent the payload size, excluding the
headers.

VI. EXPERIMENTAL RESULT AND EVALUATION

Fig. 3. Prototype’s goodput with reorderer on and off compared to baseline

The library demonstrates the capability to deliver throughput
that closely aligns with the total line rates to the consumer
application. This is evident in Figure 3, where the green

line represents the goodput measurements of the prototype
stack. However, it is important to note that the consumer, by
examining the packet sequence numbers, detects that more
than 30% of the packets are not in the correct order. While
enabling the packet reorderer effectively reduces such loss rate,
it does introduce an additional processing load. We set a target
for the packet out-of-order rate to be below 0.5% and then
measure the average goodput of the connection, which yields
slightly over 2Gbps, as depicted by the red line.

Moving forward, we compare prototype and LAG results.
Figure 4 illustrates the goodput of the prototype through the
red and green bars, while the values for single and multiple
streams over LAG connection are represented respectively by
the group of blue and brown bars. We note the following
observations:

• Even with reordering activated, the prototype surpasses
LAG’s goodput using either UDP-TCP connections or
single-multiple streams. In case of LAG’s single UDP
goodput, we record an increasement of 146% unordered
goodput with our prototype (1081Mbps compared to
2665Mbps).

• Higher goodput can be attained using TCP rather than
UDP connections. This could be explained by TCP’s ef-
ficient bandwidth usage and congestion avoidance mecha-
nism. UDP connections send packets with the best-effort
style, while the TCP receiver informs the sender when
and how much data should be transferred.

Fig. 4. Goodput comparison of link aggregation (balance-rr mode) and the
XDP-based MP prototype

The LAG’s balance-rr mode doesn’t guarantee packet order.
The tests reveal that when flows belonging to a UDP stream
are distributed across multiple links, the iperf3 server on
the receiver side detects a significant number of out-of-order
packets, ranging from 30% to 50% of the total packets.
These values align closely with the library’s out-of-order
rate when the reorderer is disabled. Additionally, the LAG
test results highlight the commendable performance of the
Linux TCP stack in handling out-of-order packets and even
surpassing UDP streams in terms of throughput. It’s notewor-
thy that adding more streams doesn’t consistently result in
increased throughput. In most instances, optimal performance
is achieved by using the same number of streams as the
number of links.
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Fig. 5. Low traffic: Distribution of sort time, number of sorted items, and
swap operations

Fig. 6. High traffic: Distribution of sort time, number of sorted items, and
swap operations

When the packet reorderer is active, we monitor the neces-
sary swap operations and the time required to completely sort
the buffer in low and high-traffic environment. In a session
with a data transfer rate of 20MB/s (Figure 5), the reordering
process frequently performs approximately 40 swap operations
in less than 20 microseconds. During high-traffic sessions with
a throughput of 150MB/s (∼1.2Gbps), the reorderer experi-
ences significant stress (Figure 6). This leads to a substantial
increase in both the number of required swap operations and
the time it takes to perform them, resulting in elevated pro-
cessing load and prolonged delays. This experiment indicates
that, in order to maintain packet ordering, the prototype must
consider one of two approaches: 1. Offloading the task to upper
layer, similar to running TCP on top of LAG, which would
contradict our goal of streamlining the packet processing path
or 2. Employing common MP techniques such as scheduling,
acknowledgments, queue management, flow partitioning, and
burst (flowlets), as suggested in [36] [37] [38].

VII. DISCUSSION AND FUTURE WORK

Through the experiment, we notice that the reorderer is a
significant performance bottleneck in our stack. Packet out-
of-order in a multipath connection can be attributed to several
factors: 1. Packets becoming scrambled across links at egress

due to the absence of sender-receiver scheduling and cooper-
ation, 2. Complications arising from heterogeneous links, and
3. Constraints imposed by buffer size and delay. Although a
intelligent reorderer at the reception end can mitigate these
issues to some extent, the complexity increases with the
heterogeneity of individual links and higher throughput.

While still under evaluation, the prototype aims for simplic-
ity and portability. The library can be packaged as a standalone
library or a module with control and data planes to facilitate
connection and management. The connection should be trans-
parent to the user application and be able to exchange data with
the applications through buffers or a virtual interface, such as
TUN/TAP. Moreover, we are investigating the deployment of
XDP’s kernel program for critical multipath functionalities, as
processing in kernel space introduces less overhead compared
to our current implementation, which primarily resides in user
space.

VIII. CONCLUSION

This paper introduced the concept of establishing a high-
throughput multipath connection by employing XDP sockets
to address system overhead. The evaluation revealed that our
prototype, while built as a proof-of-concept, achieves a UDP
throughput increase of up to 146% when compared to LAG
on the same system. It’s worth noting that this prototype has
not been optimized and lacks specific XDP practices, leaving
room for further enhancements. In the future, we aim to
address practical challenges that have a significant impact on
performance, such as reordering upon reception and sender-
receiver scheduling.

While the results may not be directly comparable to more
mature projects like GridFTP or MP-TCP, we argue that the
concept holds substantial potential, especially considering the
active development of XDP and its capability to scale effec-
tively with additional CPU cores. XDP technology also offers
attractive features for long-term projects, as it operates within
the kernel, is inherently efficient, and avoids monopolistic
restrictions on system resources. With further development,
the concept could develop into a compelling multipath solution
with ample room for future expansion.
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