
Simplifying Network Orchestration using
Conversational AI

1st Deven Panchal
AT&T

Middletown, NJ, USA
devenrpanchal@gmail.com

2nd Prafulla Verma
AT&T

Middletown, NJ, USA
pv2985@att.com

3rd Isilay Baran
AT&T

Middletown, NJ, USA
ib6391@att.com

4th Dan Musgrove
AT&T

Middletown, NJ, USA
dm4812@att.com

5th David Lu
AT&T

Dallas, TX, USA
dl1971@att.com

Abstract—ONAP is a comprehensive platform for orchestra-
tion, management and automation of network and edge comput-
ing services for 5G, 6G and Next Generation Networks. Unlike
traditional OSSs, it is an open-source project where companies all
over the world are collaborating to build different functionalities
of an end-to-end Network operating system. For this reason, the
ONAP platform has several different sub projects and APIs each
performing a specific function to achieve Network Management.
There is some complexity associated with using these APIs and
knowing and understanding the many parameters associated with
them, which impedes adoption. This not only prevents an end-
to-end cloud service orchestration like experience for network
services, but also increases the time and money spent on network
orchestration. This paper proposes and discusses the design of a
conversational AI solution that can interface with some significant
APIs in ONAP to solve these problems. The conversational
AI solution has the potential to significantly simplify network
orchestration tasks. This work is being further extended to using
Large Language Models (LLMs) to achieve simplified Intent-
Based management and orchestration paradigms within ONAP.

Index Terms—Open Network Automation Platform (ONAP),
Operations support systems (OSS), Machine Learning, Natu-
ral Language Processing, Network Orchestration, Intent-Based
Networking, Intent Driven Networking, Software Defined Net-
working, Network Function Virtualization, Open Source, Large
Language Models (LLMs), Next Generation Networks, 5G, 6G

I. INTRODUCTION

Open Network Automation Platform (ONAP) [1] is a
comprehensive platform to do real-time policy-driven orches-
tration, management and automation of network and edge
computing services. In other words, it is a network operating
system that can help the management of different end-to-end
lifecycle processes for network functions and services. ONAP
massively leverages Software Defined Networking (SDN),
Network Function Virtualization (NFV) to operate a vendor-
agnostic unified operating framework for management of all
types of physical, virtual and cloud-native network entities for
5G, 6G and Next Generation networks, decrease CapEx and
OpEx to operate these networks and improve service velocity
[2].

ONAP makes a distinction between the activities of service
design, service deployment, and service operations. The ser-
vice design and creation (SDC) component in ONAP allows
specification and creation of services by modeling the re-
sources and relationships that make up the services, specifying
the policy rules that guide the service behavior and specifying

the applications as well as the AI/ML/analytics etc. needed
to effect service elasticity. SDC also offers a visual modeling
and design interface to design, validate, certify and distribute
services. These services and workflows are distributed from
the SDC to the runtime framework or service deployment and
operations components like the Master Service Orchestrator
(MSO), various controllers (APPC, SDNC), active and avail-
able inventory (A&AI), Data Collection, Analytics and Events
(DCAE) and the security framework to execute the designs and
effect the deployment and orchestration of network services.

II. MASTER SERVICE ORCHESTRATOR

The MSO is the main component of the ONAP runtime.
It provides the highest level of service orchestration and
has an end-to-end view of the infrastructure, network, and
applications. It can execute a specified process by automating
sequences of activities, tools, rules, and even policies needed
for on-demand creation, modification, removal of network,
application or infrastructure services and resources including
virtual network functions (VNF’s), cloud native functions
(CNF’s) and physical network functions (PNF’s). The MSO
for example, would be the component that would handle (and
delegate southbound to various other controllers like APPC,
SDNC, and other components) a request to create a new
broadband service (BBS), or say a cross domain, cross layer
VPN (CCVPN).

The MSO is designed to have an API handler component
that receives orchestration requests on behalf of the MSO. The
MSO then looks up its catalog to map the request to BPMN
flows based on the service-model and action. The data from
the request is also forwarded to these BPMN flows which
are supported by the Camunda Platform. The MSO uses the
SO Request DB to track open and completed requests. MSO
has an SDC distribution client that can receive service models
from the SDC and populate them into the MSO catalog. As
explained before, the MSO has many resource adapters to
accomplish lower level tasks on the southbound, for example,
SDNC, APPC, VFC Controllers, Multi-Cloud adapter and
Platform orchestrator(PO). The SDN controller (SDNC) or
the network controller manages, assigns, and provisions net-
work resources. The application controller (APP-C) performs
functions to manage the lifecycle of virtual network functions
(VNF’s) and their components by providing model driven

84979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

configuration, abstracting cloud/VNF interfaces for repeatable
actions and automation. The Platform orchestrator manages
cloud resources via OpenStack and other technologies. To
monitor BPMN workflow executions, MSO has a monitoring
component. The MSO can also update the A&AI with the
status of various entities [3].

Since the MSO is the main engine for Network orchestra-
tion, talking to various Northbound and Southbound clients
and adapters, we want to power the MSO APIs with conver-
sational AI to drive their learning, adoption and in the future
enable an LLM-powered simplified intent based orchestration
mechanism within ONAP.

III. MSO USECASE - CREATE SERVICE INSTANCE

There are different ways to perform service orchestration
using the MSO. The e2eServiceInstance mode runs hardcoded
service BPMN workflows.The Á La Carte mode allows you to
run generic flows but requires the user to somehow collect all
parameter values and send individual orchestration requests
at each step to perform the desired process. The Macro
mode uses CDS Blueprint templates and requires the user to
construct and send only one request and then ONAP collects
and assigns all required parameters and values by itself. These
modes can be used with the ONAP SO Rest API or the ONAP
Virtual Infrastructure Deployment (VID) Portal [4].

The VID Portal [5] provides a visual form-based interface
to execute orchestration processes. The MSO receives many
complex multi-parameter orchestration requests from the VID.
This interaction is shown in the figure 1. For example, at
a high-level, when using the VID in Á La Carte mode,
to instantiate a service model composed of 2 VNFs and a
network, the user of VID will need to send a request to
the MSO to create the service instance object, followed by
a request to the SO to create the VNF 1 instance object, then
a request to SDNC to declare VNF 1 instance parameters and
values, then a request to the MSO to create the Vf-module 1
instance object, then request to the MSO to create the VNF
2 instance object, then a request to SDNC to declare VNF 2
instance parameters and values, then a request to the MSO to
create the Vf-module 2 instance object and finally a request
to the MSO to create the network instance object [6].

So, as an example, let us choose the first ‘Create Service
Instance’ request. Service instances are sort of shell objects
in A&AI which can be used to help create other entities like
for eg. VM’s which would require further interactions with
platform orchestrators like Openstack via southbound adapters
of the MSO. But we will only look closely at the ‘Create
Service Instance’ request.

Figure 2 shows a sample request to create a service instance
sent to the MSO using the VID. We will look at the shortcom-
ings of VID later, which will further reinforce the need for a
simpler solution to interface with the MSO APIs. The MSO
then responds back to upstream UI with the instance id and
the request id if the request is accepted and being processed.
Else it returns a requestError. When the MSO accepts the
request, the MSO kicks off a Camunda flow which can trigger

appropriate downstream requests. The VID Portal polls the
status of the request.

We propose a conversational AI based solution within this
architecture so that-

• It converses with the user to understand the user’s intent
and craft the request for the MSO

• It then sends the request to the MSO and accepts syn-
chronous responses from the MSO

• It then checks on the status of the request
• It communicates the status back to the user in a natural

language style.

IV. BENEFITS

The advantages of this over the existing systems are the
following –

• Currently systems like VID and other systems that help
craft orchestration requests have many forms with multi-
ple parameters that a user has to fill out. This currently
requires the user to reach out to the subsystem owners or
subject matter experts of all the subsystems that would be
used as part of the request. This is inefficient considering
the number of very distinct multiparameter requests that
could be made to accomplish a single orchestration task,
and hence is a barrier to adoption of these APIs. The
intelligent conversation AI solution would be a single
point of contact to do all these different tasks, and notify
the user of missing parameters and values. This would be
much more efficient and save user’s time. Its ease of use
would help lower the barrier to adoption for these APIs.

• The conversation AI solution would have a natural con-
versation style. Like talking to someone who would guide
the user in real time, and handhold the user to accomplish
whatever he wishes to using ONAP. For example, when
creating a service instance, it could ask you about the
missing parameters. This is much more user friendly and
helps keep the user engaged. This increased engagement
would ultimately drive better learning and adoption of
these APIs.

• Recall a barrier to API usage was that a user needed
to reach out to specific sub-system SMEs to ask about
missing values pertaining to the particular sub-system.
When ONAP is deployed, it has been seen that the SMEs
and other resources working on these sub-systems change
frequently due to organizational and partnership changes.
Not only that, the users of these APIs also change
frequently. So, a lot of time and money is spent to restaff
these roles and for knowledge transfer. The conversational
AI solution can easily incorporate question-answering
capabilities based on the documentation corpus, to answer
the user’s questions about subsystems, parameters etc.
and even point the user to additional information.

• This conversational AI solution will not only help in-
crease learning and adoption, but it will also help ex-
pand the audience/user base of these MSO API’s which
currently includes technical domain experts to include

85

Fig. 1: Present mode of operations with VID and MSO

Fig. 2: VID request to Create a Service Instance

non-technical users. For non-technical users, the solution
offers a powerful abstraction of software complexities on
top of which they can interact with the ONAP deployment
functions in a friendlier way.

• It will help provide an AWS, Azure or GCP like cloud
orchestration experience when creating and orchestrating
network services using ONAP. We anticipate that the user
experience can in fact be made much better than the
experience offered by the current cloud providers.

• The conversational AI solution is a step in the direction
towards enabling a simplified Intent-Based Networking
paradigm using LLMs in ONAP. We will talk about this
ongoing work in the ’Ongoing and Future Work’ section.

V. INTENT RECOGNITION AND NLP MODELING IN RASA

For our NLP and NLU tasks in this work, we use Rasa
[7], which is an open-source machine learning framework for
automated text, and voice-based conversations. It can be used
to understand messages, converse, and connect to messaging
channels and APIs. Let’s quickly understand some concepts
that are basic to Rasa or in general any Intent Processing
framework. ‘Intent’ captures what the user is intending to ask
about. What is it that the intent recognizer must register as the
intent when people say something to the conversational AI?

For it to recognize what a user is saying no matter how the user
phrases their message, we need to provide example messages
conversational AI can learn from. We group these example
utterances according to the idea or the goal the message
is expressing. This is the intent. ‘Entities’ are structured
pieces of information that can be extracted from a user’s
message. ‘Actions’ are the tasks the interface should trigger
upon encountering a specific intent. It is possible to trigger
default actions or highly complex custom actions. Rasa also
helps define ‘stories’ which are example conversation flows
that train conversational AI to respond correctly depending
on what the user has said previously in the conversation.
You also have ‘Forms’ in Rasa which may be needed when
conversational AI needs to collect specific information like
Name, Email, etc. from the user. ‘Rules’ describe parts of
the conversation that always follow the same path irrespective
of the previous context [7]. Thus, with the help of stories,
rules and forms it is possible to configure a custom level
of deterministic behaviour in the conversational AI interface
for all intents to achieve what we have been talking about
in the earlier sections. We programmed a Rasa NLU/NLP
pipeline to include components to do preprocessing, intent
recognition, entity extraction, response selection and initiating
custom actions. These components work sequentially to pro-
cess user input into structured output. We experimented with
many different tokenizers, featurizers, intent classifiers and
entity extractors. Constructing more diverse training examples
for the training set helped us improve the intent recognition
accuracy. We finally settled on using the Dual Intent and
Entity transformer (DIET) classifier which is a multitask
(intent plus entity) transformer architecture. In literature, it
has been tested to outperform fine tuned BERT and is 6 times
faster to train [8] in comparison. There are also many open-
source and closed source alternatives to frameworks like Rasa.
The Rasa powered conversational AI can itself be interacted
with using a shell or a browser, or easily integrated into
a website or Facebook messenger, Slack, Telegram, Twilio,
Google hangouts, Microsoft Bot Framework, Cisco Webex
Teams, etc. You can also connect to other platforms using your
own custom connectors. We use Rasa X, which is a browser
based interface that we will use to converse with the Rasa
conversational AI. Rasa X wraps itself on top of Rasa and
can be used to do many things - view and filter conversations,
share the conversational AI solution with test users, manage
models and training data, and convert conversations collected
from test conversations and real user interactions, into training

86

Fig. 3: Request flow with the proposed NLP solution

Fig. 4: Conversational AI Interface for ONAP

data that can used to re-train and improve the NLU model.

VI. RESULTS

In the conversational AI interface, we see that the user asks
it to create a service instance in a free-form natural language
style. Conversation AI recognizes this intent of the user and
asks the user the instance name, subscriber name, service type,
owning entity name and various other parameters needed to
create and fire a ’Create Service Instance’ request. With access
to the A&AI it can also list possible parameter options based
on what is available and permitted for the current user. With
access to the extensive doucmentation ONAP provides, it can
help answer any questions for more information about the
process, parameters etc.

It then creates and fires the request to the MSO and comes
back with a response from the MSO that it prints in a style that
the requester can understand.The figure 5 shows the completed
flow in Camunda which created a service instance. In this
paper, we have treated ’Create Service Instance’ task to show
how the architecture works, but we can perform much more
complex network orchestration tasks using this architecture.

VII. CONCLUSION

MSO is at the core of ONAP which can handle the orches-
tration and management of a Service Provider’s entire network.
MSO connects to many southbound resource adapters like the
Network controller, Application controller, VFC Controllers,
Multi-Cloud adapter and Platform orchestrator(PO), and can
directly or indirectly interface with other components like
Policy, CLAMP, and even external platforms like ORAN. This
is the reason we chose MSO APIs. We saw how an intent
recognition and conversation solution can benefit ONAP, and
can help simplify network orchestration and save time, money
and efforts spent on it by helping drive learning and adoption
and usage. We anticipate that with easier interfaces like these,
the user experience for users of large platforms like ONAP,
other Network Management Platforms, OSS’s/BSS’s when can
be made much better.

87

Fig. 5: Completed flow in the Camunda Cockpit

VIII. ONGOING AND FUTURE WORK

This architecture also lends itself very well to the Intent-
Based Networking (IBN) paradigm. A conversational AI in-
terface like the one we saw would become an important
part of the IBN system. So it is worth noting that it can
also be architected using custom Named Entity Recognition
(NER) trained to recognize domain specific entities, and using
semantic similarity powered by sentence transformers [9] or
even vector databases like Chroma [10] and Milvus [11] that
employ multiple algorithms like Approximate Nearest Neigh-
bors (ANN), Hierarchical Navigable Small World (HNSW),
Locality-Sensitive Hashing (LSH), Inverted Multi-Index (IMI),
Product Quantization (PQ), etc. for indexing and searching
high-dimensional vectors. In the past year, however, LLMs
have emerged to be the technology of choice and can take
over most of the responsibilities of the individual NLP/NLU
components we mentioned. Retrieval Augmented Generation
[12] or Fine Tuning [13] of Foundational models are both
approaches that can offer better accuracy than most NLP/NLU
components we discussed earlier. For ONAP however, 2
concerns are primary - one, because ONAP is open-source, the
foundational model should also be open source and secondly,
because ONAP is a complex scalable system with multiple
components that can orchestrate an entire service provider’s
network, sometimes serving very low latency requests of the
order of milliseconds, we would need a scalable, near real-
time solution. To this end, the accuracy of the underlying
model or models for various specific tasks can be increased for
e.g. using fine-tuning and designing better training examples.
Quantization [14] and Parameter Efficient Fine Tuning (PEFT)
techniques like QLoRA [15] can help achieve better scalability
and lower latency. Coming back to our discussion on the
IBN system, it could be used for e.g. to perform Network
Slicing, Service Provisioning, other LCM actions on the var-
ious network entities or Network troubleshooting etc. in an
auto-pilot mode or Human-in-the-loop (HITL) mode. High-
level intents expressed in free-form natural language can be

translated to policies (network, security, etc.) which can then
be used to call the ONAP MSO and via its various controllers,
effect various configuration changes in the physical or virtual
infrastructure. Since ONAP employs a cross cutting logging
framework for all its components, ONAP deployment logs
contain audit, security, performance data for all components.
Besides this, math agents and various other (Large Language
Models) LLM agents, both freely available and customized
can be used to look at fault, performance, events, counters
and KPI data that the ONAP Data Collection, Analytics and
Events (DCAE) [16] collects from the live network. We are
working to design the IBN system, so that it could contain all
these and other elements to define and manage the intent of a
schema if required, trigger appropriate ONAP APIs and also
store the results of Intent-based executions.

REFERENCES

[1] ONAP a Series of LF Projects, “Open Network Automation Platform,”
https://www.onap.org/.

[2] ONAP, “ONAP Architecture Index,” https://docs.onap.org/en/latest/
platform/architecture/index.html.

[3] ——, “SO - Architecture,” https://docs.onap.org/projects/onap-so/en/
latest/architecture/architecture.html.

[4] ——, “Instantiate with MSO,” https://docs.onap.org/projects/onap-so/
en/latest/developer info/instantiate/index.html.

[5] ——, “VID Documentation,” https://docs.onap.org/projects/onap-vid/
en/latest/.

[6] ——, “A La Carte mode Service Instantiation via ONAP SO
API,” https://docs.onap.org/projects/onap-so/en/latest/developer info/
instantiate/instantiation/so1/index.html.

[7] Rasa Technologies GmbH, “Introduction to Rasa Open Source,” https:
//rasa.com/docs/rasa/.

[8] Rasa Technologies Inc, “Introducing DIET,” https://rasa.com/blog/
introducing-dual-intent-and-entity-transformer-diet-state-of-the-art-
performance-on-a-lightweight-architecture/.

[9] Hugging Face, “Sentence Transformer all-MiniLM-L6-v2,” https://
huggingface.co/sentence-transformers/all-MiniLM-L6-v2.

[10] Chroma, “Chroma,” https://www.trychroma.com/.
[11] Milvus, “Milvus,” https://milvus.io/.
[12] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,

H. Küttler, M. Lewis, W. tau Yih, T. Rocktäschel, S. Riedel, and
D. Kiela, “Retrieval-augmented generation for knowledge-intensive nlp
tasks,” 2021.

88

[13] K. Lv, Y. Yang, T. Liu, Q. Gao, Q. Guo, and X. Qiu, “Full parameter
fine-tuning for large language models with limited resources,” 2023.

[14] X. Wu, H. Xia, S. Youn, Z. Zheng, S. Chen, A. Bakhtiari, M. Wyatt, R. Y.
Aminabadi, Y. He, O. Ruwase, L. Song, and Z. Yao, “Zeroquant(4+2):
Redefining llms quantization with a new fp6-centric strategy for diverse
generative tasks,” 2023.

[15] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” 2023.

[16] The Linux Foundation, “Data Collection, Analytics and Events
(DCAE),” https://wiki.onap.org/pages/viewpage.action?pageId=
1015831.

89

