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Abstract—Serverless computing is a promising next-gen de-
ployment paradigm that is resource-efficient and energy-usage
friendly. However, due to its current confinement to cloud-based
environments, a comprehensive exploration of its applicability
within heterogeneous paradigms, such as Multi-Access Edge
Computing (MEC), becomes imperative. To address this gap,
this paper evaluates the suitability of MEC to host serverless
functions. We thoroughly assess the performance, resource uti-
lization, and energy consumption of serverless computing through
a realistic implementation. Our findings reveal that, although
the current serverless design possesses certain limitations, the
serverless model holds the promise of enhancing resource and
energy efficiency in the context of a MEC environment.

Index Terms—Serverless computing, Multi Access Edge Com-
puting, Internet of Things

I. INTRODUCTION

The increasing demand for automation and data-driven use
cases fosters the development of the Internet of Things (IoT).
The number of connected devices is increasing drastically,
and the IoT finds applicability in various domains, including
healthcare, security, sustainability, and digital twins [1]. As
a result, IoT applications generate substantial data traffic [2],
which contributes to congestion, increasing resource and en-
ergy demands, and leads to an impaired Quality of Service
(QoS) within conventional cloud computing environments.

To tackle this problem, innovative concepts like distributed
cloud, edge, and fog computing, with containerized or vir-
tual machine-based approaches, are bridging the gap be-
tween computing resources and end users. In this context,
containerization in Multi-Access Edge Computing (MEC) is
a promising solution to optimize and deliver customized
computing resources closer to end users. MEC integrates
computing pools near base stations to minimize latency for
mobile and IoT services. Containerization is a lightweight and
adaptable virtualization technique to deploy applications on
power-constrained devices at the network edge.

To further improve resource efficiency while maintaining
a high QoS within the context of extensive IoT applica-
tions, MEC can adopt a next-generation deployment paradigm
known as serverless computing. In serverless computing, a
serverless function is only ’active’ when triggered by an event.
Otherwise, it can seamlessly transition through various ’non-
active’ states, each with distinct resource requirements. In
theory, this approach has the potential to achieve resource
and energy efficiency by strategically managing the lifecycle

of serverless functions. Nonetheless, the predominant use of
serverless computing in cloud environments, combined with
the volatile nature of networks and the distributed characteris-
tics of MEC, might impede serverless adoption from meeting
its full potential. Additionally, the extent to which serverless
capabilities can effectively secure relevant parameters within
an MEC environment remains largely unexplored in existing
literature. Consequently, a comprehensive investigation into
the performance implications of implementing serverless com-
puting in this context is essential.

For that reason, the contribution of this paper is twofold.
Firstly, we undertake a quantitative analysis of the resource
and energy consumption, alongside other key performance
parameters, encompassing every phase in the lifecycle of
serverless functions within a MEC environment. These metrics
are important to refine serverless performance within the
edge-cloud landscape. Second, our examination reveals that
while MEC can integrate serverless computing, the existing
architecture is vulnerable to latency due to its lack of support
for volatile networks. This is valuable to service providers,
who need to decide whether and how to incorporate serverless
computing into their systems.

Based on our investigation into the serverless behavior in
the MEC context, we address the following research questions.

RQ1: Is it feasible to deploy serverless functions on MEC’s
edge devices with limited computing resources to support
complex IoT services, such as Machine Learning (ML) tasks?

RQ2: How does the presence of various networks within
the MEC environment impact serverless performance, resource
requirements, and the expected QoS?

RQ3: What are the trade-offs between resource usage,
energy consumption, and performance when serverless with
dynamic lifecycles is implemented in a MEC environment?

To answer these questions, we establish a real-world testbed
that emulates a MEC environment. Through this setup, we per-
form comprehensive measurements of resource consumption
metrics, including CPU, GPU, RAM, and power consumption
for each component within a smart IoT deployment.

The remainder of this paper is structured as follows. Next,
in Section II, background and related work is summarized.
Afterwards, Section III presents our testbed and introduces use
case. Then, Section IV evaluates the use cases and Section V
concludes the work.
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Fig. 1: Lifecycle of a serverless function [6].

II. BACKGROUND AND RELATED WORKS

This section provides fundamental background information
regarding MEC, serverless computing, and the ongoing efforts
to integrate serverless computing into the MEC environment.

A. Multi-Access Edge Computing

Standardized by ETSI [3], MEC establishes a novel ser-
vice environment to incorporate cloud-computing capabilities
seamlessly into the Radio Access Network (RAN), situated
in the proximity to mobile subscribers [4]. This integration
enables MEC servers to reduce response times for data pro-
cessing and, consequently, relieve the stress of backbone links.
On the other hand, MEC introduces an additional layer of
complexity due to device mobility within intricate and variable
mobile networks. This complexity poses challenges to adopt
advanced platforms like serverless computing [5].

B. Serverless Computing

Serverless computing emerged first in the cloud computing
context as a service provided by AWS [7]. This innovation
streamlines the deployment process for developers by reliev-
ing them of tasks such as cluster management and network
orchestration. While serverless environments support native
functions, container-based approaches have gained prominence
across both commercial platforms like AWS lambda [7] and
open-source solutions like Knative [8] or IBM OpenWhisk [9].
Within this context, serverless functions are encapsulated
and deployed on demand using ephemeral containers. Con-
sequently, container orchestration frameworks like Kuber-
netes [10] usually serve as underlying systems for such plat-
forms. The lifecycle of serverless functions consists of several
states and processes. For instance, a model with six distinct
states has been introduced in our previous study [6]. The
transitions between the states are called processes, as shown in
Figure 1. In brief, the Cold state stands for the pure existence
of an abstraction, while Warm Disk denotes the presence of
the function’s image on the device. Warm CPU and Warm
Memory indicate that a function has been instantiated but is
not actively processing data. These states differ based on CPU
and memory activation. The Active state, on the other hand,
is only invoked when a data processing request is triggered.
As highlighted in [6], both remaining in, and transitioning
between these states incur costs, including resource utilization,
energy consumption, and latency. Understanding these costs
helps operators to manage resource consumption effectively
and ensure the QoS in serverless deployments.

C. Related Work

While predominantly utilized as cloud services in the com-
mercial domain, serverless computing has gaining attention
within distributed environments like the edge–cloud and by
MEC. This interest arises from its ability to enhance resource
efficiency for unpredictable, event-triggered workloads by au-
tomatically deallocating idle resources [11].

Wang et al. [12] demonstrate the effectiveness of serverless
computing in the IoT context via a smart-home testbed. The
results reveal that the serverless deployment utilizes between
30% to 60% less CPU time compared to standard setups.
As resource-intensive ML tasks gain interest at the edge,
researchers are developing more resource-efficient and well-
provisioned models using serverless computing. Furthermore,
serverless-based edge-cloud architectures are proposed to en-
hance resource allocation and workflow management [13]
and extend ML capabilities to the edge using serverless
frameworks [14]. Despite advances, studies continue to show
difficulties with cold-start latency and uncertain cost implica-
tions of serverless edge computing, even when provisioning
functions are kept locally. In our previous work [6], we
investigate ML workload consumption and latency on em-
bedded computers, analyzing each component of the function
lifecycle. We show that intermediate states consume minimal
resources, but transitioning between states incurred significant
energy costs and impact QoS. However, the study is limited to
local edge networks and interactions and trade-offs between
performance and consumption in heterogeneous networks and
more realistic models such as MEC are not considered.

In the context of the MEC environment, Chaudry et al. [15]
assess serverless performance regarding resource consumption
and QoS. Cicconetti et al. [16] propose a theoretical model for
distributed serverless computing in MEC but simplify crucial
constraints such as latency due to different network types and
lifecycle state transitions. A comprehensive set of open ques-
tions regarding the integration of serverless computing into
MEC is outlined in [5], highlighting various challenges like
the benefit of serverless flexibility or resource-heterogeneous
MEC deployments. To this end, this paper applies an empirical
approach to address and resolve these challenges, thereby
bridging the gap between theory and practical implementation.

III. TESTBED AND USE CASE

To address our defined research questions, we adopt an
empirical methodology. Therefore, a MEC-emulated testbed is
established in this section to thoroughly investigate serverless
functions and define use cases.

A. Testbed Setup

An overview of our testbed is shown in Figure 2. In general,
it contains four parts. First, the serverless cluster contains two
computing nodes and one Master node tasked with manage-
ment responsibilities. The computing nodes, referred to as
Workers, contain both edge devices and MEC servers, each
equipped with GPU resources. The MEC servers have more
computational capabilities compared to the edge devices.
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TABLE I: Network parameters for emulation. Jitter follows a
normal distribution for all cases.

Criteria Network

3G [17] 4G [18] Wifi [19]

Bandwidth 11 ∼5536 Kbps 1.543 ∼108.693 Mbps 150 Mbps
Latency 25 ms 10 ∼15 ms 5 ∼10 ms
Jitter 10 ms 4 ms 1 ms

Monitor and control 
Power 
meter

Resource 
meter

QoS 
meter

Control
program

NETem

MEC
server

Edge
device

Traffic

Physical network link
Logical information link Master

InternetGBps

Fig. 2: Implementation of the testbed.

For the serverless framework, we use Knative [8], an open-
source solution for serverless applications. Notably, Knative
operates based on Kubernetes, the widely adopted container
orchestration system developed by Google. Consequently,
serverless functions are deployed as Kubernetes instances.

The emulation of the MEC network is achieved through the
utilization of a network emulator (NETem), which operates on
a Raspberry Pi equipped with the Linux traffic control (TC)
tool [20]. The TC tool emulates three distinct network types:
3G, 4G, and WiFi. The outdated 3G network is established
to emulate realistic but bad network condition. The emulated
network conditions correspond to data traces from literature
summarized in Table I. Only the network associated with
devices located to the left of NETem is constrained. Other
components, such as the Master node and the MEC server,
can communicate with each other and access the Internet at
the full link speed of 1Gbps within our setup.

The third component is the traffic generator, which functions
as the end device, producing data and issuing requests for
processing. Typically, the edge device also serves as the traffic
source. However, we consciously separate these roles to isolate
the impact of non-targeted processes on the computing device
in our testbed. The final component is the monitoring and
control device, responsible for supervising the measurement
procedures and to collect measurement data. Additional details
about the testbed instruments are summarized in Table II.

B. Use Cases and Measurement Criteria

In our setup, we deploy the YOLO-v4 [21] object detection
function as the smart IoT service. This application takes
streaming video as the input and analyzes each frame to pro-
vide the object count detected within. Notably, this application
exhibits versatility and widespread applicability across various
practical scenarios, as surveyed in [22]. Within our study, this

TABLE II: Testbed instruments.

Role Hardware Software

Edge device Jetson Nano: 1.43GHz Cortex-A57,
2GB RAM, GPU NVIDIA Maxwell Ubuntu 20.04

Kubernetes 1.23.5
Knative 1.8MEC server

Linux PC: 3.6GHz Ryzen 7 3700X,
32GB RAM, GPU NVIDIA GeForce
RTX 2060 6GB VRAM

Network
emulator

Raspberry Pi 4B
TP-LINK USB-to-Gigabit adapter

Ubuntu 20.04
Linux TC

Traffic
generator Regular Linux PC Ubuntu 20.04

Measurement Tinkerforge Voltage/Current
and Energy Bricklets

Prometheus 2.34
Curl 7.68

service is instantiated as a serverless function. Its instance
can be created either at an edge device or an MEC server.
When the traffic generator triggers a request to the function’s
address, the system requests the creation of a serverless
instance to process the streaming data. Following the task’s
completion, the instance is automatically removed. Throughout
this sequence of events, the monitoring mechanism identifies
and quantifies the lifecycle of the serverless instance.

The metrics we measure include the resource consumption
covering CPU, GPU, RAM, and power for each component
within the function’s lifecycle, involving states and processes
as depicted in Figure 2. However, we exclude Warm Memory
out of the scope since this state has no valuable use [23],
and it has been removed from the newest version of the
platform [24]. Additionally, we examine performance metrics
including latency of each process and the frame per sec-
ond (FPS) of the function’s output in relation to its power
consumption. The former determines the major contributing
component to the function’s total latency, while the latter offers
insights into function efficiency across diverse network types
and computing resources available within the MEC.

IV. USE CASE EVALUATION

In this section, we provide the measurement outcomes for
each state and process throughout the lifecycle of a serverless
deployment within the MEC environment.

A. Resource Consumption in Multi-Access Edge Computing

This section investigates serverless resource consumption by
analyzing each state and process in the 4G-enabled MEC en-
vironment. Firstly, we investigate the different states’ resource
requirements in the following.

1) State’s Resource Consumption: Figure 3a illustrates the
CPU usage in different states of a serverless function placed at
the edge device and the MEC server. In both cases, we record
the maximum number of instances the device can manage,
having a single function at the edge and five functions at
the MEC server. The limiting factor that hinders the system
from hosting additional instances stems from the GPU vRAM
capacity. Under this maximum load, only the Active state con-
sumes significant CPU resources to process arriving requests.

The RAM consumption shown in Fig. 3b follows a similar
pattern as the CPU usage, except for the Warm CPU state,
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Fig. 3: Lifecycle’s resource usage under maximum load. Error bars are 90 % confidence intervals.

which consumes a notable amount of RAM. This allocation
is used to reserve variables and libraries for the active in-
stance, even before the arrival of requests. Additionally, we
have measured the power consumption across states, closely
mirroring the CPU trend. When comparing the two devices, it
becomes apparent that the edge device struggles to indepen-
dently manage the serverless framework. This is evident from
the fact that close to a quarter of the CPU capacity is utilized
during the Null state. Additionally, the ML workload utilizes
80 % to 90 % of the device’s RAM in Warm CPU and Active,
respectively. In addition, WiFi and 3G power consumption
vary only marginally, with the most noticeable difference in
the Active state for 3G due to its lower data rate leading to
lower load. Consequently, we omit a detailed analysis of these
minor variations in the following.

2) Resource Consumption of Processes: Transiting between
different states involves resource allocation and deallocation
aligned with the intended state [6]. Given this alignment, we
will omit those details and focus on the energy consumption
and latency associated with these transitions.

For energy consumption, we highlight only processes that
consume considerable amounts. Figure 3c describes the four
most energy-consuming processes. As depicted by the left to
right arrows in Figure 1, forward means the sequence {Null
→ Cold → Warm Disk → Warm CPU → Active}, repre-
senting the resource allocation to create a serverless function.
Reversely, Backward refers to the resource deallocation.

Overall, the forward processes consume considerably more
energy compared to the backward processes. In detail, the
Cold to Warm Disk, involving the download and the extraction
of a container’s image accounts for the majority of energy
consumption. The instance creation, denoted as Warm Disk to
Warm CPU, also contributes significantly during the forward
processes. However, the energy consumption is also not neg-
ligible during the backward processes. Comparing the energy
consumption between the two computing tiers, edge and MEC,
it is evident that the MEC server consumes more energy
during the same processes due to its more powerful hardware.
Conversely, processing on the MEC is generally faster than on
an edge device. Much like the consumption trends of states, the
energy consumption of processes remains relatively consistent
using WiFi or 3G.

B. Serverless Latency in Multi-Access Edge Computing

This section analyzes the serverless performance with a
focus on the latency of processes that have a direct impact
on the QoS (forward processes). We explore various instance
placements, network configurations, and input loads within the
MEC environment.

1) Latency at Different Locations: We illustrate each pro-
cess in each separated subfigure in Figure 4. In the following,
we first focus on the impact of function placement. The
influence of the networks is discussed later in the paper.

For the Null to Cold process in Figure 4a, only the service
abstraction is generated at the Master node. Thus, it is not
affected by the workers’ capability. In Figure 4b and in
Figure 4c, the Cold to Warm Disk and Warm Disk to Warm
CPU processes at MEC outperform their counterparts at the
edge. This is because the MEC server is not constrained by
network types like the edge device, so image downloading
takes much less time. Second, MEC is more powerful and
enables faster task processing, such as image extraction and
resource allocation. The latency when a request triggers a
transition from Warm CPU to Active is shown in Figure 4d.
Although this process is influenced only by the latency and not
by any device capabilities, MEC outperforms the edge again.
This contrasts with the consensus that proximity to the user
leads to lower latency. We identified that existing serverless
open-source solutions, such as Knative, do not adequately
consider distributed environments like MEC. Consequently,
networking services like gateways and load balancers are
optimally positioned on the more powerful device, which
is the MEC server in our testbed. This architectural choice
leads to end-user requests always being directed to the MEC
server first, regardless of the function’s actual location. This
challenge persists across our various results.

Combined with the analysis derived in Section IV-A, we can
answer our first research question RQ1 as follows. The MEC
environment demonstrates the potential for intelligent deploy-
ments such as serverless functions. However, the limitations of
less powerful edge devices in general complicate the hosting
of serverless frameworks and complex ML tasks. Furthermore,
it suffers from high latency caused by the non-edge-oriented
design of the existing platform.
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Fig. 4: Latency of each process in the serverless lifecycle placed at different locations. The x-axes indicate the function’s
location.
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Fig. 5: Latency of lifecycle processes at the MEC server. The
x-axes indicate the number of concurrent functions.

2) Latency using Different Networks at Edge Device:
Focusing on the network influence illustrated by the different
groups of bars in Fig. 4, we can see two groups of processes.
The first group is not or only slightly affected by the network.
This includes the Null to Cold process, as shown in Figure 4a,
which is simply the creation of an abstraction at the Master
node. Furthermore, it includes the Warm Disk to Warm CPU
process, visualized by Figure 4b, which is slightly affected
due to the system communication between the Master and the
Worker where the process takes place. The other processes
heavily rely on network quality, including Cold to Warm Disk
and Warm CPU to Active. In particular, the image download
failed during the Cold to Warm Disk process in a 3G network,
as shown in Figure 4b, due to exceeding the system timeout.
As a result, we could not record the value and mark it as
α. Overall, enhanced network quality, characterized by low
latency, minimal jitter, and higher bandwidth, consistently
leads to lower latency across processes.

3) Latency at the Multi-Access Edge Computing Server:
As shown previously, most of the function’s processes at the
MEC server are not significantly affected by the network type.
Therefore, we focus on examining the relationship between
load and latency, with load regards to the concurrently spawn-
ing number of instances. Figure 5a illustrates the latency of the
two network-independent processes, with a varying number of
instances that are spawned concurrently. Generally, the latency
increases proportional to the load. The latency behavior of
the Warm CPU to Active process is depicted in Figure 5b.
This case stands as an exception, being influenced by network
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Fig. 6: Average power usage per function versus the output
FPS at the edge device for different network types.

characteristics. We notice that the 3G and the 4G network
induce more than 100ms latency, while WiFi maintains sub-
100ms. However, increasing the load shows no significant
additional result. Given that all functions share the same
image, the system downloads it only once, regardless of the
number of instances deployed. Thus, the Cold to Warm Disk
phase remains unaffected by the load.

Based on these outcomes, the second research question,
RQ2 can be answered. Different network types within the MEC
have a noticeable impact on the function’s QoS. This impact
is notable in processes such as the bandwidth-intensive Cold
to Warm Disk and the latency-sensitive Warm CPU to Active.
Consequently, if resources are available, the best practice is
that the function immediately progresses through its lifecycle
after deployment to reduce avoidable latency. Moreover, a
careful consideration of the specific characteristics of an
application is essential prior to deploying it within a particular
MEC network. This approach ensures that the chosen network
environment aligns effectively with the application’s unique
requirements and performance expectations.

C. Comparison of Power and Performance

To determine the efficiency of deploying serverless func-
tions over MEC, we compare the power consumption per
function and the average output FPS as shown in Figure 6
and in Figure 7. In this context, ’load’ is the number of
instances that can effectively transition to the Active state to
handle incoming requests. As seen in Figure 6, edge device
can accommodate only one instance with very low FPS, of
around one, even under good network conditions (WiFi). On
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the other hand, MEC performance, presented in Figure 7,
significantly outperforms this, maintaining much higher FPS
even in challenging network scenarios such as 3G. Even at
peak load, MEC manages to deliver approximately six to eight
FPS. Hence, the limiting factor for the edge device is its
computational capability rather than network constraints.

In terms of the network type, both 4G and WiFi exhibit
comparable performance with the same load. In contrast, 3G
displays not only a consistent 40 % to 50 % decline in FPS,
but also fluctuations due to network instability. Considering the
power consumption, the edge device shows the advantage of
consuming minimal power, especially compared to the power-
intensive MEC server. Conversely, in the case of MEC, the
power per instance ratio inversely decreases as the number of
hosted instances rises. Consequently, scaling up the load leads
to a performance loss of up to 40 % in terms of FPS, and
the power consumption per function experiences a dramatic
reduction of nearly threefold.

To this end, we can answer our third and last research
question, RQ3, as follows: A trade-off between environmental
factors like computing power, network quality, and power con-
sumption is seen regarding the function’s output performance.
Better networks and more powerful machines yield higher
performance but consume more power. Since the power per
load decreases with increasing load, power-intense machines
like MEC servers should always be utilized with the maximal
possible load. Furthermore, a clear trade-off between RAM
and latency is seen, considering the function’s lifecycle. In
particular, the closer a state is to Active, the lower latency is
expected with negligible power and resource demands.

V. CONCLUSION AND FUTURE WORK

In this work, we comprehensively evaluated the deployment
of serverless functions in MEC via a testbed we developed.
Our results show that smart serverless deployments can be
integrated into MEC, leveraging serverless flexibility and
event-driven characteristics to reduce resource consumption
and capitalize on cloud capabilities at the edge. However, the
current serverless architecture requires significant resources

and induces high latency on limited-capability edge devices.
Additionally, energy costs and unstable performance due to
variable MEC networks are challenges, especially for con-
strained edge devices. Therefore, future work should consider
an edge-oriented serverless platform to eliminate latency issues
and manage the lifecycle to exploit serverless benefits.
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