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Abstract—Precipitation is one of the most unpredictable events
in meteorology. While long-term forecasting remains in the
domain of conventional NWP (Numerical Weather Prediction),
recent advances in deep learning-based forecasting techniques
provide competitive performances in nowcasting, forecasting over
zero to two hours into the future. This paper introduces a
novel nowcasting method that combines Graph Convolutional
Network and Gated Recurrent Unit techniques. The proposed
method utilizes optimized edge weights that capture the non-
linear relations between the end nodes via an MLP. The proposed
model first applies a GCN (Graph Convolutional Network) to
uncover latent features of weather stations. Then node fea-
ture vector is input to a Gated Recurrent Unit that captures
temporal relations and predicts precipitation in the future. We
performed extensive experiments to evaluate the performance of
the proposed method using a real-world dataset obtained from
KMA (Korea Meteorological Administration). The experiments
show that the proposed method predicts precipitation nowcasting
comparable to the NWP system.

Index Terms—Graph Neural Network, Deep Neural Network,
Graph Convolutional Network, Gated Recurrent Unit, Nowcast-
ing.

I. INTRODUCTION

GLobal warming causes climate change, which eventually
poses frequent threats to human life through drought,

flooding, and extreme temperature fluctuations[1]. Especially,
localized heavy rainfall can be an important factor in emer-
gency control and land/air/water transportation. Precipitation
forecasting is driven by the comprehensive influence of inter-
nal dynamics, heat, and moisture, along with the interaction
of external environmental conditions and large-scale weather
systems[2]. It is characterized by obvious nonlinearity and is
difficult to forecast, necessitating the development of a new
precipitation forecasting methodology.

Machine learning-based weather forecasting has attracted
tremendous research attention during the last several
years[3][4]. Many prior methods utilize conventional machine
learning techniques such as decision trees, random forests, and
SVM (Support Vector Machine) [5][6]. Even though these
methods can make predictions without radar-based weather
images, their prediction accuracy usually is not better than
that of NWP. More recently, several techniques that adopt
advanced machine learning methods such as ANN, LSTM, and
autoencoder have been proposed, and they show significant
performance enhancements.

We propose a novel precipitation nowcasting technique that
utilizes Graph Convolutional Networks(GCN)[7][8] and Gated
Recurrent Units(GRU)[9][10]. A GCN, which aggregates fea-
tures of homogeneous neighbors, has the capability to extract
latent features from meteorological attributes by interacting
with neighbors. Contrary to the conventional GCN where
all edge weights are set to be equal, we optimize the edge
weights by applying MLP (Muiti-Layer Perceptron) which
uses various meteorological attributes of two nodes as input.
Optimized edge weights control the degree of interaction in
graph aggregation phases. Finally, a GRU extracts temporal
features from time-series input and makes predictions of
several hours in the future.

We carried out extensive experiments with a meteorological
dataset obtained from the real world to evaluate the perfor-
mance of the proposed method. The dataset used in this study
is provided by the KMA (Korea Meteorological Adminis-
tration). The dataset contains a plethora of meteorological
information observed every hour from March 1 to May 31
in the year 2020 at about 100 weather stations spread in
South Korea. Our experimental results show that the proposed
method accurately predicts precipitation in one or two hours
in the future; in terms of RMSE, the one hour and two hour
prediction errors are 0.3350 and 0.4215, respectively.

II. RELATED WORK

This section describes ML techniques and prior weather
forecasting proposals based on ML techniques.

A. Modeling Description

While conventional ML techniques such as decision trees
and SVM, DL based precipitation forecasting models primarily
use recurrent neural networks (RNNs). However, RNN suffers
from two problems; one is oscillation or instability of weights
and the other is gradient Vanishing and Exploding[11], [12]
problem. Long Short-Term Memory(LSTM) greatly improves
RNN performances by overcoming the error backpropaga-
tion issues. In particular, it compensates for the long-term
dependence of RNNs by processing data with the concept
of gates[13]. GRU[10] is another technique that efficiently
preserves the important dependencies in past time series data.
GRU is simpler than LSTM and reduces the number of
learnable parameters.
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Graph convolutional networks (GCNs) have been recently
proposed and successfully applied in irregular data representa-
tion and analysis[14]. CNNs (Convolutional Neural Networks),
effective in computer vision, fail to properly address problems
with non-Euclidean data. To overcome this challenge, Graph
Convolutional Networks (GCNs) represent non-Euclidean data
as graphs, and borrowing concepts from CNNs, GCNs con-
sider neigh nodes as adjacent pixels[15][16][17].

Fig. 1: LSTM Schematic

B. ML Based Forecasting Techniques

Accurate weather forecasting affects huge impacts on soci-
ety and economy, and meteorologists have developed sophis-
ticated mathematical models called NWP (Numerical Weather
Prediction) from 20th century. NWP builds fluid and ther-
modynamic models based on past and current atmospheric
observations and solves large and complex mathematical equa-
tions. The performance of NWP models have improved along
with the advancements in computation. Advanced weather
forecasting agencies are equipped with high performance com-
puters that can solve large and detailed NWP models within
forecasting periods. As a result, only large agencies such as
national institutions can make accurate weather forecasting.

To get over the limitation of NWP, many researchers
have attempted to devise new weather forecasting systems
that can eliminate massive computational requirements during
the last decade. Many notable proposals utilize various ML
techniques that exploit the inference capability of ML. Early
approaches[5][6] adopted conventional ML techniques includ-
ing decision tree, random forest, regression and SVM. How-
ever, these methods fail to provide adequate performances.

Successes of DL (Deep Learning) techniques in com-
puter vision and NLP (Natural Language Processing) fields
attracted attentions from the ML based weather forecast-
ing research community. In energy system, [18] utilized
LSTM model to identify the correlation of output power
from input characteristics[19][20][21]. A data decomposi-
tion method, applied in the pre-processing stage in order
to enhance the forecasting accuracy of nonlinear and non-
stationary time series, has been successfully adopted in several
proposals[22][23][24].

More sophisticated ML based models accommodate recent
advances in ML such as GNN and generative methods. A prior
model[25] pioneers the adoption of GCN for weather fore-
casting. Even though it utilizes GCN and RNN techniques, it
simply applies a plain GCN with equal edge weights. For day-
ahead short-term forecasting, both historical data and future
meteorological data can be used as input to further improve
the prediction accuracy[26]. Noting that neighbor nodes have
different effects depending on meteorological attributes, we
propose to assign different edge weights.

III. METHODOLOGY

First, we explain a method to construct a graph from
meteorological information. Then, we detail the proposed
method that incorporates GCN with tunable edge weights and
GRU.

A. Graph Construction

Weathers of a certain geographical region is affected by
atmosphere of surrounding regions. Therefore, it is natural to
allocate a node corresponding to a weather station. A weather
station collects meteorological data which become the at-
tributes of the corresponding node. The node attributes include
average temperature, daily precipitation, average wind speed,
prevailing wind direction, average dew point temperature, av-
erage relative humidity, average vapor pressure, average local
air pressure, average sea surface pressure, altitude, latitude,
longitude, and 15 other elements. After nodes are created, we
then construct edges. Because the meteorological states of near
regions have stronger effect than those of further regions, we
construct edges based on the geographical distance between
two nodes. In this study, we use the 2-Dimensional Euclidean
distance ignoring the effect of altitude.

TABLE I: Meteorological attributes

Variable Name Unit

Average Temperature (°C)

Daily precipitation (mm)

Average wind speed (m/s)

Prevailing wind direction (16 directions)

Average dew point temperature (°C)

Average relative humidity (%)

Average vapor pressure (hPa)

Average local pressure (hPa)

Average sea level pressure (hPa)

The Graph Convolutional Network(GCN) has good perfor-
mance in complex nonlinear data structures. The constructed
graph represents the relationship of node and edge in non-
euclidean space. For example, V and E denote the vertex
and edge sets in an undirected graph G = (V,E)[27]. The
adjacent matrix A can show the relationship in the graph, and
it is computed by Equation(1):
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Ai,j = exp

(
− (xi − xj)

2

σ2

)
(1)

In addition, the feature selection is used in this graph
that manages feature dimensions[7]. The reduced dimension
improves the pattern recognition in the graph. These selections
retain the most influential information in the original feature
set and reduce its redundancy to improve the performance and
accuracy of the model[8].

Fig. 2: Layer

Fig. 3: Model Schematic

The model consists of five main layers; Three GCN layers,
a GRU, and an output layer. The meteorological attributes are
given as an input to each node and the three GCN layers
transform the attributes to model the interactions between the
nodes. The parameters between these layers are tuned through
training. Each layer adjusts parameters to more accurately
model the relationships between nodes[28]. This multi-layered
structure allows graph attachment models to be good for
learning important patterns and relationships in graph data.
Therefore, model achievement is better results than other
neural networks.

B. Modeling

This model consists of a Graph Convolutional Net-
work(GCN) and a Gated Recurrent Unit(GRU).

1) Graph Convolutional Network(GCN): GCN is spe-
cialized to express graph topological structure with inter-
dependencies features. For this reason, each node is set
by region embeddings. This directly mapping node labeling
represents a set of interdependent datasets in GCN[29]. The
previous machine-learning methods ignored topological infor-
mation in the graph because there was no way to efficient
graph modeling. These convolutional neural networks only
process data in Euclidean space. However, the realistic data
exist in non-Euclidean structured data. To resolve this problem,
the emergence of graph convolution fills the gap of neural
networks to obtain topological graph-type features[30].

2) Gated Recurrent Unit(GRU): GRU is a variant of re-
current neural networks[9]. In recurrent neural networks, the
previous input dataset can affect other datasets. This character-
istic of recurrent neural networks, the exploding and vanishing
gradient problems frequently occur in RNN modeling. The
GRU modeling solves the previous layer gradient information
learning problems to jointly participate[31]. In GRU, all layers
participate in the next output calculation. This improvement
modeling is specialized to manage time series datasets[10]
because it predicts time series data and makes deep spatio-
temporal features[32]. In addition, GRU determines the dataset
remembered or forgotten by the gates. Moreover, the back-
propagation updates the weight of gates[31].

IV. EXPERIMENTS

We performed extensive experiments with the dataset ob-
tained from the real world to assess the performance of the
proposed method. Beginning with the description of the dataset
and testing environment, this section explains the experimental
results.

A. Dataset

The data was collected from the Korea Meteorological
Administration Weather Data Service Open Meteorological
Data Portal. The Open Meteorological Data Portal is a site
under the Korea Meteorological Administration. We collected
12 parameters from this site. A total of three years of data
were collected from the year 2020 to the year 2022.

Fig. 4: Collected Data Points
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TABLE II: Train, validation, and test data

Train Validation Test
May 1, 2000
- September 30, 2012

May 1, 2013
- September 30, 2016

May 1, 2020
- September 30, 2017

The collected points (nodes) are all in Region 103, which
includes Ulleung Island and Jeju Island (Fig. 4). Since terrain
is also important for weather forecasting, we also collected
geographic data; The latitude, longitude, and altitude of every
point were collected and added to the attributes. We rely on
Google Earth to obtain the latitude, longitude, and altitude
information, and they may contain small errors due to the lo-
cation of the Korea Meteorological Administration or weather
stations.

B. Training

We experiment with four different training conditions de-
pending on the adoption of Multi-Layer Perceptron (MLP)
for edge weight optimization and backpropagation methods.
MLPs receive meteorological information of two adjacent
nodes as input and determine the optimal weight for the
edge between the nodes. It consists of an input layer, one
or more hidden layers, and an output layer. Backpropagation
finds the difference between the actual target value and the
output calculated by the model and then propagates the error
backward.

Note that this paper focuses on nowcasting, forecasting
of zero to two hours after. For nowcasting, we use hourly
meteorological information for both training and testing. We
use 48 hour long data for training and make rainfall predictions
one and two hours after. Table II describes the data used for
the train, validation, and test of this experiment.

C. Performance Results

We use two performance metrics; RMSE (Rooted Mean
Square Error) and MAE (Mean Absolute Error) as shown in
(2) and (3). Because the most accurate results were obtained
when MLPs are adopted for edge weight optimization, we
show only the experimental results with MLP. Table III shows
one hour and two hour prediction accuracy in terms of the two
performance metrics. It indicates that MAE is 0.40 and 0.43
for one and two hour predictions, respectively. Generally, it
is more difficult to make long-term forecasting and two hour
prediction is about 7.5% worse than one hour forecasting.

MAE =
1

τ

τ∑
t=1

1

n

n∑
i=1

|ym − yp| (2)

RMSE =
1

τ

τ∑
t=1

√√√√ 1

n

n∑
i=1

(ym − yp)2 (3)

The image in Fig. 5 visualizes the result on June 6, 2020.
Comparing the actual and experimental values shown in Fig. 5,
we can observe that there are notable differences in prediction
accuracy depending on regions. Generally, no rainfall regions
experience small errors and heavy rainfall regions suffer
from large errors. This phenomenon was observed in several

TABLE III: Experimental results

Type 1 hour prediction 2 hour prediction

Train loss 0.8281 0.8750
Test loss 0.7344 0.8381

MAE 0.3976 0.4312
RMSE 0.3350 0.4215

Fig. 5: The picture of (a) prediction, (b) real value, (c)
difference between them

prior studies and it seems the problem remains as a further
investigation in the future. In addition, we can observe that
mountainous areas suffer from large errors; The mountainous
areas receive more rain than predicted.

V. CONCLUSIONS
In this paper, GCN and GRU were used to forecast precipi-

tation. The accuracy is overall good, and the overall error was
about 20 millimeters. The slight error is due to localized heavy
rainfall. The localized heavy rain is made by the updraft of
water vapor and mountain ranges help it go up. This is why
the reason for the mountainous terrain of Korea, altitude is
a significant variable. This error is expected to be resolved
by collecting additional altitude data. In this paper, data is

TABLE IV: Experimental results

Type 1 hour prediction 2 hour prediction

Train loss 0.8281 0.8750
Test loss 0.7344 0.8381

MAE 0.3976 0.4312
RMSE 0.3350 0.4215
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collected and predicted at a daily interval, but if the data is
increased to an hourly interval, good results can be obtained
for localized heavy rain forecasting.
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