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Abstract—As the Internet becomes larger scaled and more
diversified, the traditional end-to-end (E2E) congestion control
faces various problems. In this paper, we propose a novel con-
gestion control architecture, called in-network congestion control
(NCC). Specifically, by introducing one or more nodes (NCC
nodes) on an E2E network path, we divide the network path into
multiple sub-paths and maintain a congestion-control feedback
loop on each sub-path. In each sub-path, a specialized congestion
control algorithm can be applied according to its network
characteristics. This architecture can provide various advantages
compared with the traditional E2E congestion control, such as
higher data transmission throughput, better per-flow fairness,
and incremental deployment nature. In this paper, we describe
NCC’s advantages and challenges, and clarify its potential
performance by numerical evaluation results.

Index Terms—Congestion Control, Transmission Control Pro-
tocol (TCP), in-Network Processing, End-To-End Principle

I. INTRODUCTION

Congestion control mechanisms used on the current Internet
have been unchanged for over thirty years and they are
based on an end-to-end (E2E) principle. The E2E congestion
control mechanisms assume the network between a sender
and a receiver as a black box, and no explicit information
on the network congestion is obtained. Instead, as shown
in Figure 1, they construct a feedback loop between the
sender and receiver by sending data packets and receiving
corresponding acknowledgment (ACK) packets. Specifically,
based on the observations such as packet loss events, round trip
times (RTTs), and sending/receiving intervals of packets, the
sender finds some relationships between the observed results
and network congestion and controls the data transmission
rate.

The relationships between the observation of the network
congestion and the ideal control become complex in a highly
diverse network environment, and it is difficult to find an
ideal transmission rate. Congestion control mechanisms that
are currently used (CUBIC [1], BBR [2], etc.) are based on
heuristic algorithms using one or a few index values. Due to
research and development activities over thirty years, they have
excellent properties that their performance does not deteriorate
significantly in a variety of network environments. However,
they sometimes fail to optimize their performance in a specific
network environment especially when a network path between
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Fig. 1: End-to-end (E2E) congestion control

a sender and a receiver traverses multiple networks with
various characteristics [3].

Based on the above discussion, the authors of this paper
believe that it is hard to realize an ideal congestion control
using only information obtained from the E2E observation.
Therefore, in this paper, we propose a novel congestion con-
trol architecture, called in-network congestion control (NCC).
Specifically, by introducing one or more nodes (called NCC
nodes) on the E2E network path, we divide the network path
into multiple sub-paths and use a series of congestion-control
feedback loops between the sender and receiver. In each sub-
path, a specialized congestion control algorithm can be applied
according to the network characteristics of the sub-path. We
can expect high performance of congestion control algorithms
because the sub-path would have a shorter propagation delay
and simplified network characteristics. In other words, using
the proposed congestion control architecture, we can maximize
the advantages of congestion control algorithms developed
over the years.

The main objective of this paper is to explain the fundamen-
tal architecture of NCC and describe strong points and issues
to be solved for the realization of the proposed architecture.
We also show some evaluation results to reveal the potential
performance of the proposed architecture.

The rest of this paper is organized as follows. Section II
describes the related work. In Section III, we describe the
overview of NCC and discuss its advantages and challenges.
In Section IV, we present performance evaluation results and
clarify the potential performance of the architecture. Finally,
in Section V, we present the summary of this paper and future
work.
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II. RELATED WORK

There are some existing methods to obtain explicit in-
formation on network congestion from network nodes. For
example, in Explicit Congestion Notification (ECN) [4] and
eXplicit Control Protocol (XCP) [5], a router writes congestion
information to packets passing through and provides network
congestion feedback to a sender. However, these methods
employ the conventional E2E congestion control mechanisms
based on the obtained information. Also, these mechanisms
only convey the congestion information at the bandwidth-
bottlenecked router, which is not enough for efficient conges-
tion control in a diversified Internet environment.

With the advance of virtualization technologies for network
and computing resources, it has become common to perform
various and flexible control functions on network nodes by
software. Also, in both core networks and edge networks,
Software Defined Networking (SDN) technologies are now
in operation [6]. The trend of the softwarization of network
operations is an important factor for the realization of the
proposed architecture in this paper. However, to the best
of our knowledge, there is no existing work on in-network
softwarization of congestion control functions.

On the other hand, methods to divide and relay communi-
cation protocols between senders and receivers are already in
use, including Web proxies and firewalls. Most of them are
used for security and policy enforcement, not for congestion
control or utilizing network resources effectively. Performance
Enhancing Proxy (PEP) [7] is a proxy mechanism for network
nodes to improve the performance of E2E communication pro-
tocols such as TCP. A typical example is a WAN acceleration
device [8]. PEP at the transport layer to improve the efficiency
of congestion control has also been studied [9]. The proposed
congestion control architecture in this paper can be considered
as an evolution of the PEP concept.

III. IN-NETWORK CONGESTION CONTROL (NCC)
A. Overview

Figures 1 and 2 shows the traditional E2E congestion
control and the in-network congestion control proposed in
this paper. Figure 1 depicts the traditional E2E congestion
control, where a single connection between a sender and a
receiver is established. The connection passes through three
networks which have different characteristics. On the other
hand, in Figure 2, by introducing two NCC nodes on the
network path, the network path is divided into multiple sub-
paths, and three sub-connections are established for relaying
data from the sender to the receiver. Each sub-connection
conducts congestion control individually. In other words, we
use a series of congestion-control feedback loops between the
sender and receiver.

B. Advantages

1) Shortened congestion-control feedback loop: One of
the reasons for the poor performance of congestion control
mechanisms on the current Internet is a large propagation
delay between a sender and a receiver. This is because the
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Fig. 2: In-network congestion control

congestion control algorithms are based on E2E, which can be
mathematically explained [10], [11]. The following equations
for NewReno and CUBIC are mathematically derived in [10],
[11], respectively. Here, ρr and ρc are TCP throughput for
NewReno and CUBIC respectively, RTT is a RTT of a TCP
connection, T0 is the initial value of retransmission timeout, p
is the packet loss rate, and b is a parameter related to delayed
ACK.
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As shown in Equations (1) and (2), the TCP throughput
depends mainly on the RTT and packet loss ratio of the
TCP connection. If the RTT or packet loss ratio increases,
the throughput becomes small. However, with the proposed
architecture, the RTT and packet loss ratio of sub-connections
divided by NCC nodes would be smaller. When the processing
speed of NCC nodes is large enough, the E2E data transfer
efficiency can be improved by just introducing NCC nodes.

2) Dedicated congestion control on each sub-connection:
Figure 3 shows the data transmission with the proposed
architecture over the network consisting of a satellite commu-
nication network, a cellular network, a high-speed backbone
network, and a datacenter network. Three NCC nodes are in-
troduced at the borders of the networks. When we use a single
E2E connection between the sender and the receiver, it passes
through multiple networks which have various characteristics,
which makes the optimization of the data transmission to be
difficult. On the other hand, with NCC nodes, the network
path is divided into sub-paths that have simpler network
characteristics. Therefore, we can deploy congestion control
algorithms specialized for the network characteristics of each
sub-path, for example, for satellite networks [12] and data
centers [13].

3) Contribution to per-flow fairness: Most current conges-
tion control algorithms, including those using machine learn-
ing, are focused primarily on maximizing the performance
of their own flows, while fairness among competing flows
is not directly considered. In general, with E2E congestion
control, per-flow fairness in a diversified Internet cannot be
achieved especially when the flows pass through different
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Fig. 3: Applying dedicated congestion control algorithms to
sub-paths

network paths. On the other hand, in NCC architecture, sub-
connections on a certain sub-path divided by two NCC nodes
experience an identical network environment. Thus, we can
expect enhanced fairness among sub-connections, bringing the
improved fairness on E2E data transmission. Note that this
fairness improvement can be obtained only by introducing
NCC nodes to the network and it does not require a specialized
congestion control algorithm for the fairness improvement.

4) Incremental deployment: Even when there is only one
NCC node on an E2E network path, a sender can benefit from
the proposed architecture. Furthermore, the more NCC nodes
are introduced in the network, the greater the benefit becomes.
Also, due to the per-flow nature of the proposed architecture,
we can easily apply the proposed architecture to a part of flows
that pass through NCC nodes. Also, we can easily parallelize
the NCC operations with multiple NCC nodes. Therefore, we
can control the number of flows that NCC nodes deal with,
according to the performance and load of NCC nodes, by
which we can avoid an urgent overload and underutilization of
NCC nodes. From a different viewpoint, applying the proposed
architecture to a part of flows may be one of the network
operator’s service differentiation to its customers.

C. Challenges

1) Processing overhead on NCC nodes: As NCC nodes
process packets at the higher layer than the traditional IP net-
works, processing overhead becomes larger than the traditional
layer-3 routers. However, we believe that this can be solved
with the recent progress in computing performance and its
lower cost. The parallelizing characteristics of the proposed
architecture described above can also solve the problem by
just increasing the number of NCC nodes to be deployed.

For relaying the data packets with multiple congestion-
control feedback loops, NCC nodes must store a larger number
of packets for a longer time than the traditional layer-3 routers.
Especially when a NCC node is located at the border of
two networks that have different speeds, many packets are
accumulated at the NCC node, which increases the memory
utilization. One of the solutions for this problem is to exploit
the backward feedback using the advertised window size

included in TCP ACK packets. Although similar approaches
have been proposed for E2E congestion control [14], we need
to evaluate the performance when they are applied to NCC
nodes.

2) Fault tolerance and security issues: Unlike the con-
ventional congestion control architecture, NCC nodes must
maintain connections’ information at internal network nodes.
Therefore, complex functions are required to make NCC nodes
redundant and deal with NCC node failures. We believe that
the existing fault tolerant mechanisms for upper-layer protocol
processing such as firewalls [15] can be applied to NCC nodes.
Also, introducing upper-layer protocol processing functions
inside the network increases the risk of vulnerability attacks.
The effect of such attacks and protection mechanisms inside
the network should be investigated.

3) Flow’s requirement for specialized congestion control:
Some existing congestion control algorithms are designed
not only to maximize throughput but also to achieve low
latency [16] or to transmit with a lower priority than competing
traffic [17]. Some applications need to choose such congestion
control algorithms. Therefore, a mechanism is required that al-
lows senders to select congestion control algorithms deployed
between NCC nodes.

4) NCC protocols: The authors in this paper consider that
the proposed architecture should be realized as a general
mechanism used in the whole Internet. Since most applications
on the current Internet use TCP as a transport-layer protocol,
the proposed architecture must be transparently integrated
with TCP-based applications, at least as a short-term solution.
One of the possible candidates is a tunneling protocol such
as Internet VPN protocols. In this case, the duplication of
congestion controls on a network path (TCP’s one and NCC’s
one) [18] is one of the performance problems to be solved. The
authors consider that exploiting UDP-based protocols such as
QUIC [19] instead of TCP is one of the possible long-term
solutions.

In general, there are two ways to divide E2E network paths:
transparently and explicitly. In transparent methods, senders
cannot use NCC nodes when the network path between senders
and receivers varies over time. The combination of source
routing and NCC is one of the possible solutions. On the other
hand, in explicit ways, senders must be informed where NCC
nodes are located before starting data transfer. For example,
we can solve this by adding information on the location of
NCC nodes as a part of the routing information in Border
Gateway Protocol or by using a mechanism such as Domain
Name System.

IV. PERFORMANCE EVALUATION

The performance of NCC architecture was evaluated numer-
ically by using the analytical models in Equations (1) and (2).
We show its evaluation results to confirm the advantages
described in Subsection III-B.

A. Evaluation settings
Figure 4 shows the network topologies used for performance

evaluation. Figure 4 (a) shows the dumbbell topology used to
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evaluate the fundamental performance of NCC. The parking
lot topology in Figure 4 (b) is used to assess the effect of
the number of NCC nodes in the network. As shown in
Figure 4 (c), the nation-wide network topology that models
the Japanese optical network [20] is used to evaluate the
performance in a realistic network.

The node labeled “Node” in Figures 4 (a) and 4 (b) and the
node labeled with a number in Figure 4 (c) correspond to the
network nodes. In the dumbbell topology, one hundred senders
connect with Node 1 and one hundred receivers connect with
Node 2. In the parking lot topology and the nation-wide
topology, one hundred senders and one hundred receivers
connect to each network node.

The packet loss rate and propagation delay of the access
links from senders/receivers to network nodes are set randomly
between 10−5 and 10−1 and between 10−1 and 102 [ms],
respectively. In the dumbbell and parking lot topologies, the
packet loss rate and the propagation delay of the links between
network nodes are set to 0.001 and 20 [ms], respectively. For
the links between network nodes in the nation-wide topology,
the packet loss rate is set to 0.001 and the propagation delay
is defined as the geographical distance between each of two
network nodes divided by 105 [km/s].

The packet size is set to 1500 [B]. The link bandwidth of the
network is not considered, meaning that we do not consider
the bandwidth-bottlenecked situation, and packet losses occur
randomly regardless of the amount of traffic on each link.

In all three topologies, a data transmission flow is estab-
lished for all combinations of senders and receivers, except
for senders and receivers connected to the same node. We
assume that it is a long-lived TCP connection. There are
ten thousand flows in the dumbbell topology, three hundred
thousand flows in the parking lot topology, and twenty-two
million five hundred sixty thousand flows in the nation-wide
topology. Network paths between senders and receivers are
determined based on Dijkstra’s shortest-path algorithm. When
a network path of a flow passes through NCC nodes, the
connection is divided and data transfer is relayed by multiple
sub-connections.

We assume to use NewReno or CUBIC for congestion
control algorithms on (sub-)connections. The throughput of
the (sub-)connections is calculated by Equations (1) and (2)
for NewReno and CUBIC, where RTT is assumed to be twice
the one-way propagation delay, T0 is set to 5 ·RTT , and b is
set to one in this evaluation.

The throughput between a sender and a receiver is calculated
by the following equation, where N is the number of sub-
connections used for the data transmission and ρi (1 ≤ i ≤ N)
is the throughput of each sub-connection.

ρE2E = min
1≤i≤N

ρi (3)

For the performance evaluation metric to reveal the potential
performance of NCC, we use the average throughput of
all flows in the network. Jain’s Fairness Index [21] is also
used as the fairness among flows. For each configuration,

the evaluation is repeated one hundred times changing the
propagation delays and packet loss ratio of the access links.

B. Evaluation in dumbbell topology

Figure 5 plots the relationship between the average through-
put and the fairness among flows of the evaluation results with
the dumbbell topology in Figure 4 (a). In the graph, we plot
the combination of the average throughput and the fairness
among flows for all evaluation trials. We change the number
of NCC nodes introduced in the network from 0 to 2. For one
NCC node, we locate an NCC node to Node 1. We also change
the congestion control algorithm used for (sub-)connections.
The label “NewReno + CUBIC”, NewReno is used on sub-
connections on the access links and CUBIC is used on sub-
connections between NCC nodes. For other cases, we use the
same algorithm for all (sub-)connections in the network.

Comparing the result of “0 NCC node, NewReno” and
that of “0 NCC node, CUBIC”, we find that changing the con-
gestion control algorithm from NewReno to CUBIC slightly
improves the average throughput and fairness among flows.
On the other hand, the result of “1 NCC node, NewReno”
shows that deploying one NCC node is more effective on both
throughput and fairness than changing the congestion control
algorithm without introducing NCC nodes. The result of “2
NCC nodes, NewReno” shows that deploying two NCC
nodes can improve the performance significantly compared
with one NCC node case. Furthermore, according to the
result of “2 NCC nodes, NewReno + CUBIC”, changing the
congestion control algorithm between NCC nodes further im-
proves the performance. Overall, comparing “2 NCC nodes,
NewReno + CUBIC” and “0 NCC node, NewReno”, the
average throughput is increased by 2.8 times and the fairness
among flows is improved by 1.6 times.

C. Evaluation in parking lot topology

In the parking lot topology of Figure 4 (b), we assess
the effect of the number of NCC nodes. Figure 6 shows the
relationship between the average throughput and the fairness
among flows when CUBIC is used for all (sub-)connections.
Multiple plots for the same number of NCC nodes correspond
to the results for all possible locations of NCC nodes. Table I
shows the locations of NCC nodes to maximize the average
throughput or fairness among flows for each number of NCC
nodes.

From Figure 6, we can see that the average throughput and
the fairness among flows improve as the number of NCC nodes
increases. According to Table I, when we increase the number
of NCC nodes to improve the average throughput rather than
the fairness, NCC nodes should be deployed in order of the
number of E2E paths passing through the network nodes,
corresponding to the order of the degree of network centrality.
On the other hand, to improve the fairness among flows in
priority, it is effective to deploy NCC nodes so that as many
E2E paths as have at least one NCC node.

Figure 7 shows the relationship between average throughput
and fairness among flows when NewReno is used on all
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Fig. 4: Network topologies for performance evaluation
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TABLE I: Optimal locations of NCC nodes
in parking lot topology

number of to maximize to maximize
NCC nodes average throughput fairness among flows

1 (Node 3), (Node 3),
(Node 4) (Node 4)

2 (Node 3, Node 4) (Node 2, Node 4),
(Node 3, Node 5)

3 (Node 2, Node 3, Node 4), (Node 1, Node 3, Node 5),
(Node 3, Node 4, Node 5) (Node 2, Node 4, Node 6)

4 (Node 2, Node 3, Node 4, (Node 2, Node 3, Node 4,
Node 5) Node 5)

5 (Node 1, Node 2, Node 3, (Node 1, Node 2, Node 3,
Node 4, Node 5), Node 4, Node 5),

(Node 2, Node 3, Node 4, (Node 2, Node 3, Node 4,
Node 5, Node 6) Node 5, Node 6)
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(sub-)connections and that when NewReno is used on (sub-
)connections on the access link and CUBIC is used on
sub-connections between NCC nodes. This graph plots the
averaged results by the number of NCC nodes. Figure 7
indicates that to improve both the average throughput and
fairness among flows, it is more effective to increase the
number of NCC nodes than to change the congestion control
algorithm between NCC nodes to a better one (from NewReno
to CUBIC).

D. Evaluation in nation-wide topology

We finally evaluate the performance on a realistic large
network in Figure 4 (c). We consider the following two
methods of selecting network nodes as NCC nodes.

• Centrality-based: Deploys NCC nodes in order of the
number of E2E paths passing through the network nodes.

• Hill-climbing: When adding an NCC node, the network
node with the maximum average throughput is selected.

Figure 8 shows the relationship between the number of
NCC nodes and the average throughput when CUBIC is used
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as the congestion control algorithm for all (sub-)connections.
Figure 8 indicates that as the number of NCC nodes increases,
the average throughput improves almost constantly for both
methods. This clearly shows the great characteristics of the
incremental deployment, meaning that increasing the number
of NCC nodes has almost the same effect regardless of the
ratio of deployed NCC nodes. This is because as the number
of NCC nodes increases, the number of connections that
benefit from the addition of NCC nodes decreases, while the
throughput of such connections largely increases. On the other
hand, comparing the two methods, we can see from Figure 8
that when the number of NCC nodes is small, the average
throughput of hill-climbing is up to around 10 % higher than
that of centrality-based. Although centrality-based was the
optimal way in Section IV-C, it can be seen that there are
better selection methods of NCC nodes in the larger-scale and
complex networks as in Figure 4 (c).

Figure 9 shows the relationship between the number of NCC
nodes and the average throughput when we use NewReno
for all (sub-)connections and that when we use CUBIC for
sub-connections between NCC nodes and NewReno for (sub-
)connections on the access links. While we show only the
results with hill-climbing, the results with centrality-based
have similar tendencies. Figure 9 indicates that when the ratio
of NCC nodes is less than around 50 %, increasing the number
of NCC nodes contributes more to improving the average
throughput than changing the congestion control algorithm
between NCC nodes. On the other hand, when the ratio of
NCC nodes is larger than 50 %, changing the congestion
control algorithm among NCC nodes is more effective than
increasing the number of NCC nodes. This is because the
effect of reducing propagation delays by adding NCC nodes
can be different depending on the ratio of NCC nodes. In
detail, when the ratio of NCC nodes is small, the effect
of decreasing propagation delays caused by increasing the
number of NCC nodes is large. Thus, increasing the number
of NCC nodes is more effective. However, as the ratio of NCC
nodes increases, the effect of reducing propagation delays
becomes smaller and the effect of changing the congestion
control algorithm becomes relatively larger.

V. SUMMARY AND FUTURE WORK

In this paper, we proposed NCC and explained its advan-
tages and challenges. We then evaluated its potential perfor-
mance in various network topologies. The evaluation results
showed that whether increasing the number of NCC nodes or
changing the congestion control algorithm to a better one is
more effective depended on the ratio of NCC nodes introduced
to the network. Furthermore, we found that how to deploy
NCC nodes could make a difference of up to about 10 % in
data transfer performance in a realistic network topology.

As a future work, we would like to conduct a detailed per-
formance evaluation of the proposed architecture for technical
issues described in Subsection III-C.
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