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Abstract—Nowadays, Internet of Things (IoT) technologies are
very useful to transform traditional farming practices into smart
farming across the globe. Since most of the agricultural land is
located in remote places, there is a need for new technologies for
making them smart. For smart farming, low-cost, and resource-
constraint sensors are placed across the agricultural field. To pro-
vide continuous connectivity for data communication, there must
be a suitable and reliable transmission over long distances and,
at the same time, should consume less energy. In particular, Long
Range (LoRa), a relatively new communication technology, uses
long waves to work over long distances. This is extremely useful
in agriculture, where the communicating areas are broad fields
of crops and Internet connectivity is low and/or intermittent.
So, to reduce data transmission between layers (sensing, fog and
cloud), a machine learning based data forwarding architecture
is proposed for the three tier architecture, namely, Regressive
Prediction Data Forwarding Model (RPDM). A suitable and
lightweight machine learning model is deployed on each layer
which will predict the next coming sensing data. So, the upcoming
data will not be forwarded from the sensing layer to the fog
layer if they match with the predicted one. Also, in the case of
Internet failure, the sensing layer made capable of performing
the actuation based on current data value. We validated the
performance of RPDM on a real testbed in terms of the amount
of energy consumed and data transmitted.

Index Terms—Smart agriculture, LoRa, Data reduction, Ma-
chine learning, IoT, Fog/Edge computing

I. INTRODUCTION

Agriculture has always been one of the most critical sectors
across the globe. With the growing interest and demand for
intelligent agriculture, there is a need to convert traditional
agricultural land to smart agricultural land. For smart farming,
low-cost, and resource-constraint sensors are placed across the
agricultural field to collect various soil and crop parameters.
These sensors are not capable enough to process the data,
thus, need to communicate to large storage servers like cloud.
To provide continuous connectivity there must be a suitable
and reliable technology for data communication over long
distances and, at the same time, should consume less energy.

At present, cloud-based infrastructures [1] are being utilized
to support various smart agriculture applications, wherein the
data from smart sensors in the agricultural field is trans-
mitted to the cloud over the Internet. Though cloud-based
infrastructures certainly offer enormous processing power and
storage capacity, there are two key limitations that need to be
addressed when used in the context of smart agriculture: (i)
sensor data transmitted over the Internet requires continuous
Internet connectivity, (ii) IoT devices must transmit data

continuously to the cloud for storage, thus, the energy of
battery-powered IoT devices is quickly drained. These two
limitations of cloud-based infrastructure for smart agriculture
can be overcome with the help of fog computing and Machine
Learning. To address these limitations, we propose a LoRa-
enabled fog based smart agriculture infrastructure using and
Machine Learning (ML). This will reduce the quantity of
data transferred from sensors to fog and cloud. Our proposed
framework consists of three layers (i) sensing layer, (ii) fog
layer, and (iii) cloud [2]. Our aim is to reduce the number
of data transmissions from the sensing layer to the fog layer
within an accuracy threshold (called ε). This will help in
increasing the lifetime of deployed sensors in the field. To
achieve the objective, we deploy the same ML model at
the sensor nodes as well as the fog node. A sensor node
transmits the sensed data to the fog node only if the error
(difference between predicted and actual value) is beyond
the pre-defined threshold (ε). Since the agricultural fields are
slow changing dynamics therefore we won’t be getting very
deviated readings. Another major problem which we addressed
is that the size of the ML model is huge and deploying it at
the edge devices (sensor nodes) will consume more energy.
So, the trained ML model is converted into a lightweight
flat buffer file format to address the issue using TensorFlow
and then uploaded to the edge devices. The same machine
learning model runs on both edge and fog layers and the
model will continuously predict the sensor data. This removes
the frequency of data transmissions between the fog layer and
edge layer since there is no need to send the data if the data
being predicted on both layers is in the permissible error range
(x[n]±ε), where x[n] is the actual sensor value and ε is error
threshold.

As shown in Figure 1, this scheme also resolves the
issue of data breaches in the transmission process. Since
the machine learning model is a heavy model it is quite
difficult to deploy over sensor nodes with low flash memory;
which will increase their power consumption. So, a trained
model is converted to a lightweight flat buffer file and then
we deploy it onto the sensor node. The only few cases
when the data will be sent from field to fog are if there
is a variation of readings from the set threshold. In such
cases, the machine learning model running at the sensing
layer will adapt and change in the predictor’s variables
state, and the newly updated weights are transmitted to the
higher level that is fog level via LoRa Protocol. After that,
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the sensor node will send the updated predictor’s variable
state to the fog node so that the fog node can also adapt
to changes. This ensures that at both layers of sensing and
fog, the same ML model will be running. Also, in case of
intermittent Internet connectivity at the fog layer to the edge
layer, the same model is compressed in TensorFlow Lite file
which is compatible with performing actuations like turning
on the water sprinkle in case of low moisture level in the field.

The outline of this paper is as follows. Section II presents
the related works. Section III presents the proposed ML archi-
tecture. In Section IV, performance of the proposed scheme
is analysed. Finally, Section V concludes the paper.

II. RELATED WORKS

With the proliferation of certain research works, the use
of IoT and machine learning has been proven to be vital in
domains like system automation and reducing dependencies on
the Internet. Many research works have been published and are
under research to levitate the performance of the architecture
by taking the crust. In [3], [4], a Ubiquitous IoT framework has
been designed to obviate human intervention in a system along
with the IoT framework. A machine learning model has been
designed to provoke security into the framework. This archi-
tecture just focuses on security threats but in our model we not
only have reduced the security threats but also have taken into
consideration the bandwidth issue. As discussed in [5], [6],
some machine learning Model along with their application in
Wireless Sensor Networks (WSN’s) has been discussed and
analysed. Also an Idea of reinforcement Learning has been
highlighted in this research. In [7], the authors have discussed
about the advanced reinforcement learning application in smart
farming and also they have used Internet of things to curb
the dependency on Internet. The application works for four
layer architecture. They focused on improving the crop yield
by monitoring the water availability in the soil. In [8], the
authors have discussed about the data reduction architecture
from fog to cloud using ADE algorithm and also they had
suggested a FSP structure for placing the sensors on the field.
The article also cites that the reduction in delay is around 5.6%
with resource usage upto 13.2%.

III. PROPOSED MACHINE LEARNING ARCHITECTURE

In this section, we discuss the ML model used for predic-
tions. We use supervised machine learning as the data labels
like temperature, humidity, soil moisture, etc., are already
known. The prediction which is the output of the model is
being sampled on one of these labels. Supervised learning is
widely used for two purposes Classification and Regression.
In this paper, the Regression approach is used since the model
is to be trained to predict the data rather than classifying them.
The flowchat of the proposed model is shown in Figure 1.

The aim of this work is to minimize the data transmission
cost and to deploy a machine learning model to predict those
values that are more likely to be given by the sensors in the
sensing layer. The same ML model will run on the edge layer

Offload Trained ML Model
parameters on Sensing  Devices at

Sensing Layer

sleep and wake to
record next reading 

Measure new sensor
data x[n]

R=Relative Error of 
x'[n] and x[n]

R> ɛ
Update the predictor's

variable state using new
X[n] at sensing layer 

Fog node update the
predictor's state

variable

Yes

NO

* x'[n]: Predicted value of model
* x[n]: Sensed Value at edge node 

Sensor node sends the updated
weights at Fog node and

retrain the Model with new
weights 

Figure 1: Flowchart representation of proposed model

as well as the Fog layer and there’s no need to communicate
any data between these layers in usual cases. This nullify the
whole data communication and data bandwidth overhead.

A. Comparasion of ML Models

Regression is a predictive modeling technique that analyses
the relationship between targeted, and dependent and inde-
pendent variables of a data set. In this work, we experimented
with various regression models like Linear Regression, Ridge
Regression, Regressive Decision tree, Support Vector Ma-
chines (SVM) and Ensemble Trees. The selection of the
model is carried out based on criteria like Compression size
upon deploying on sensors, and model accuracy. From Table

Model Compressed Size (in KBs) Accuracy(in %)
Linear Regression 0.545 99.1344
Ridge regression 0.503 99.1344

SVM 778.24 98.8371
Desicion tree 311.296 99.9758
Ensemble tree 770.048 99.4773

Table I: Models Specs Comparison

I, Linear Regression and Ridge Regression show very low
compressed disk size after deploying on the sensors, while we
get the highest accuracy of 99.9758% in Decision Tree. Later
in Section III-D2, we discussed other parameters on which the
model’s performance was evaluated.

B. Dataset Selection and Preparation

The input data for the model from is collected from the year
2019 - 20201. This data has been used as an External dataset

1http://smartfasal.in/ftp-dataset-portal/
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to train and test our Model. The data range from 3 March to
16 April, of which the 80% of the whole dataset has been used
for training and the rest is used for testing. The dataset has the
following attributes: Time, sm1 (Soil Moisture 1), sm2 (Soil
Moisture 2), T (Temperature), H (Humidity), and P (Pressure).
A correlation matrix is formed to define the attributes that will
be provided for model training. The correlation depicts that
there is a high correlation of target variables with temperature
and humidity. After that, the model starts predicting the
targeted attributes. The model is then tested for the rest 20%,
for accuracy instances and performance evaluation. In the later
sections, we will discuss the performance of the models on
live data that has been recorded in the dynamic environment
to depict the practical compatibility of the proposed algorithm.

C. Deployment of Model

Another major challenge is to deploy the same model at
the fog and edge layer. At the fog level, the model can be
deployed with no ramifications since it has enough processing
abilities and storage. But, to do the same at the Sensor
layer it a challenging task. The devices don’t have enough
processing power to handle heavy Machine learning models.
To alter this problem the model is compressed to flat buffer
files using tensor flow and then those lightweight files are
deployed to the edge devices. After these two models are
deployed successfully both models are tested for synchronous
predictability and the same is shown in Figure 2.

Figure 2: Prediction accuracy

From Figure 2, we can infer that the model is running in
synchronisation at both the fog Layer and edge Layer. Also,
the actual readings are inclined with the predicted readings. As
the model, is deployed, therefore there is no need to physically
send the data from edge to fog. If some discrepancies like
crossing from the thresholds occur between the actual data and
predicted data at the edge layer, then weights and α (learning
rate) and other hyper-parameters will be tuned and the values
will be modified at both edge and fog levels to retrain the
model and retract the architecture.

Now, since the model is effectively predicting the sensor
data at both the layers, thus, if any anomaly occurs at the
sensing layer such that the mean absolute error and mean
relative error superseded the set threshold ε , then the model
needs to retrain itself. As the actual data is received only
at the edge layer, the model at the fog layer will not know

about the anomalous data. So, the model at the fog level also
needs to retrain itself. Therefore, we need to communicate a
weight matrix from the edge level to the fog level to retrain
the model. To perform this communication, we used Long
Range data transmission technique. The Sensors at the edge
level are equipped with LoRa Module Sx 1276 that will
transmit the matrix, and at the Fog layer a Receiver LoRa
Hat Module is placed on a Raspberry Pi which will collect
the data. Once the data matrix is received at the fog layer, the
model will retrain itself by adjusting the weights and tuning
the hyperparameters and values of α . In this manner, we have
also obviated the dependencies on the Internet upto bigger
extent in our architecture.

D. Algorithm Methodology (RPDM)

Algorithm 1 RPDM

Input: data frame as data (a1,b1,c1, . . . ), (a2,b2,c2, . . . ) . . .
(an,bn,cn, . . . )

Output: Set of clusters
1: imports pandas as pd
2: imports Ridge from sklearn as rr
3: Preprocess the data
4: nullpct = (data.apply(pd.isnull).sum()/data)∗100
5: validcolumns = [nullpct < 0.5]
6: data=data.ffill()
7: corr ← correlationmat(data)
8: Training and Testing
9: start ← wtrain

10: step ← wtest
11: threshold ← ε
12: for each i in [start, end, step] do
13: train ← data[:i,:]
14: test ← data[i:(i+step),:]
15: prediction ← rr.predict(test)
16: if errorrelative(test, prediction)> threshold then
17: f og ← weights ∈ (a1

∗,b1
∗,c1

∗, . . .)
18: end if
19: combined = pd.concat[test,prediction]
20: combined.columns= [“actual”, “prediction”]
21: end for
22: Return combined

Table II: Corelation Matrix

Soil Moisture Temperature( in °C) Humidity
Soil Moisture 1 -0.229238 0.401754

Temperatue( in °C) -0.229238 1 -0.840894
Humidity 0.401754 -0.840894 1

Targetattr Temp -0.230201 0.996164 -0.832561
Targetattr Humidity 0.402074 -0.843666 0.994157

The RPDM (Regressive Prediction Data Forwarding Model)
(Algorithm 1) consists of two phases, pre-processing of data
and training and testing of Model.
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Figure 3: (a) Linear Regression (b) Ridge Regression (c)
Decision tree (d) Support Vector Machine (e) Ensemble Tree

1) Pre-processing of data: The data is pre-processed using
pandas api. Firstly, the data is checked for NaN values.
The variable nullpct as mentioned in Algorithm 1 determines
the ratio of null values in each column, and the variable
validcolumns stores the columns whose nullpct value is less than
0.5. Then, columns whose nullpct is greater than 0.5 will be
discarded. The next step is to get rid of the leftover NaN
values in validcolumns and for that . f f ill() API of pandas is
used to fill the NaN values accordingly. In the Next Step,
a Correlation Matrix as shown in Table II is formed as
mentioned in variables corr, this matrix is imperative for
deciding the attributes to predict the target variable’s attributes.

2) Testing and Training of Model: At first, we decided on
a training and testing window. We decided to make a training
window of size wtrain data points and a testing window of wtest
data points. Here, a threshold in terms of relative error is set if
the relative error crossed this threshold then the weights will
be sent across the layers to retrain the model. The model is
not trained and tested for the whole data frame at once. It will
be trained in the size of N training and testing windows. For
example, first, a data frame window of wtrain will be trained,
and then, the model will be tested over for wtest data points
(testing window size). In this manner, the whole data frame
will be trained and tested in an iterative manner. The advantage
of this kind of training testing scheme is that the model will

periodically train itself. As discussed in section III-A, the same
iterative training was performed for all the five methods as
shown in Figure 3 and the observed trends and inferences are
as follows:

• The Figure 3(a) for Linear Regression and 3(b) for
Ridge Regression are identical and also don’t show the
monotonically increasing and decreasing nature which
depicts that the model’s performance will be less reliable
in the iterations range of 0-20 but when more data is
parsed onto the model they both show the improving
trend.

• The Figure 3(c) is of a Decision Tree. Initially, the
model’s performance was better with an accuracy of over
100%, but the model’s accuracy trend is monotonically
decreasing.

• The Figure 3(d) is of a Support Vector machine (SV M),
the accuracy characteristic shown by this model is mono-
tonically increasing which shows that upon feeding more
data into the model its performance improved.

• Figure 3(e) shows the plot of the Ensemble tree. All
the previously trained models were used to train this
ensemble tree and the same is evident from the accuracy
trend of the model. It encompasses all the Figure 3(a),
3(b), 3(c) and 3(e).

This can be observed in Figure 3, as the number of iterations
of model training increases, the model’s accuracy varies.

IV. PERFORMANCE EVALUATION

A. On existing Recorded data

In this section the model is tested on an external dataset as
mentioned in section III-A. The attributes on which the model
is being tested are Temperature, Humidity, SoilMoisture.

The model testing parameters as mentioned in previous
section are Accuracy, realtive error and Correlation matrix,
extending the parameters as follows.

Figure 4: Relative error on existing data

• The accuracy Measure The model’s Accuracy is being
represented in Figure 2. It is evident from the graph that
both actual and predicted data points are overlapping with
each other, which shows that the model is running in
synchronisation with the actual values.

• Relative Error The measure of relative error is crucial for
our model since, it has an upper limit ε and is calculated
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Figure 5: (a) Linear Regression (b) Ridge Regression (c)
Decision tree (d) Support Vector Machine (e) Ensemble Tree

using Equation 1, the main idea and motivation of this
research are to reduce the data transmission and save
bandwidth.

Relativeerror δ = |(Va −Ve)/Ve| (1)

B. On Smart Fasal Dataset

In case of machine learning predictions the maximum
percentage relative error should not be above 10% (i.e. below
0.1). For this dataset, from Figure 4, it can be observed that
the relative error of the model (in most of the cases) is below
0.1. It shows that the data transmission has been reduced to
the negligible range.

Upon varying the values of ε , how the trends of accuracy
vary for different models are shown in Figure 5. The plots
show that the accuracy of each model increased upon varying
the values of threshold. The models show nearly exponential.

C. On Live Data

RPDM algorithm is tested on the live recorded data [9] and
was tested on various parameters as discussed in the previous
section. While testing the model on a real test bed set up the
model needs to be trained with some data on ground truth
which is discussed in the next Subsection.

1) Test Bed SetUp and Gaussian Noise: Since the environ-
mental conditions do not vary much considering we are taking
for a shorter duration of time, so, a real Test Bed was set up
on the field as shown in Figure 6. It consists of Temperature,
Humidity and Soil Moisture Sensors being placed on Single
arduino boared with LoRa Sx1276 hat enabled on it. The
whole is considered to be a single Sensor node. Similarly,
two sensor nodes were developed and placed at two different
locations on field to collect data. After collecting data for
two-month, the same is passed on to the model for training.
Similarly, the next 15 days’ data was predicted by model on
which the testing evaluation of the model was carried out by
taking into consideration the next real data from the sensors.
Data readings for a day have been predicted by a sensor
node and the prediction accuracy for all regressive models
was tested. Figure 7, depicts the accuracy precision of all the
models.

Figure 6: Test Bed Set up
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Figure 7: Prediction accuracy for different models

2) Power consumption With and Without Model: As dis-
cussed in [10], [11], the authors have worked upon reducing
the power consumption between the three layered architecture,
on similar note we have also inculcated the power consumption
analysis, since it is very crucial for the commercialization of
any electronic product. For Calculating the power consumed
by the device three power has to be measured, a) Sensing
power, b) Transmission Power, and c) Receiving/Processing
power. Since the model is continuously running at the sensing
layer, so, the Sensing power is constant and the receiver (Fog
Node) is also receiving the predicted values continuously, so
the Receiving Power will also not play any major role in power
flow analysis. The major component will be of transmission
power that is from Sensing layer to fog layer. Transmission
Power is calculated as given in Equation 2. By taking the same
into consideration the model is being tested.
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T xpower =Pathloss+RequiredSNR−Antennaeloss−othergainlosses
(2)

Firstly, the power consumption by the architecture (if no model
was there) is tested, and then on increasing values of ε how the
power consumption of the model decreases was tested. Since
on increasing the values of ε less data need to be transmitted
between sensing layer and fog layer as shown in Figure 9.
Accordingly, a suitable value for ε was chosen to have the
relative error in the permissible range. Figure 8 shows how
the power transmission and power consumption was measured
by placing a multi-meter and upon increasing the values of
ε inside the algorithm how the transmission power changes,
which is plotted in Figure 9.

Figure 8: Set Up to Measure Power Consumption of Model
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Figure 9: Power Consumption Analysis of Model

D. Discussion

RPDM’s architecture was selected on the folowing param-
eters.

• From Table I it can be evidently noted that the decision
tree is performing well in terms of accuracy followed
by SVM, Ensemble trees, linear regression, and Ridge
Regression.

• From plots description discussed in Section III-D2, Sup-
port Vector Machine is performing well above all the
models.

• Section IV-C shows that upon increasing the values of ε ,
SVM shows practically realizable accuracy. This happens

as the accuracy is not constant after a certain value as in
the case of linear regression and ridge regression. Also,
it is not linear as in case of decision tree and in case
of Ensemble tree it is an exponential characteristic but
it also has a component of Linear and Ridge Regression
and Decision Tree since it is not reliable.

• Also we found that, when all the models were tested in
and agricultural field then SVM shows very low degree
of variability.

V. CONCLUSION

From the performance of the model while testing both on
the external dataset and live data it can be concluded that
the RPDM model can perform really well in case of data
logging in the absence of Internet connectivity, which is a
trivial problem in remote locations of the agriculture field.
Finally, we tested the proposed framework on a real setup
and validated the effectiveness in terms of the amount of data
transmitted, and energy consumption using different types of
sensors.
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