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Abstract—The growing popularity of Internet of Things (IoT)
devices has led to an escalating demand for efficient data
processing and transmission solutions. The concept of Mobile
Edge Computing (MEC) has emerged as a potential solution
to tackle these challenges by bringing computation closer to
IoT devices. Nevertheless, the establishment of reliable com-
munication connections between IoT devices and MEC servers
continues to be a significant issue, especially in situations where
achieving line-of-sight (LOS) conditions is troublesome. This
paper studies simultaneously transmitting and reflecting recon-
figurable intelligent surfaces” (STAR-RIS) to enhance commu-
nication links in MEC environments. STAR-RIS leverages the
capabilities of conventional RIS to simultaneously transmit and
reflect signals, thereby providing 360 ◦coverage. We formulate
the energy minimization for all IoT devices in the STAR-RIS-
assisted MEC system by jointly optimizing the energy-efficient
offloading, amplitude, and phase shift coefficients of reflection
and transmission of STAR-RIS elements and power control.
Due to the non-convexity and coupling variables, the proximal
policy optimization (PPO) technique has been adopted as a
viable solution. The experimental findings presented in this study
provide evidence of the efficacy of our suggested algorithm in
comparison to the benchmark schemes.

Index Terms—Reconfigurable intelligent surface (RIS), simul-
taneously transmitting and reflecting RIS (STAR-RIS), mobile
edge computing (MEC), proximal policy optimization (PPO),
deep reinforcement learning (DRL)

I. INTRODUCTION

A. Background and Motivations

The rapid increment of data-intensive applications and the
growing demand for real-time, low-latency services have led
to the emergence of mobile edge computing (MEC) as a
promising solution. MEC brings computing resources closer
to the network edge, enabling faster data processing, reduced
network congestion, and an improved user experience. These
advantages make MEC essential for delivering fast, responsive,
and efficient services in various industries. To further enhance
the capabilities of MEC, the integration of reconfigurable
intelligent surface (RIS) technology has gained significant

This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No.2019-0-01287-005, Evolvable Deep Learning Model
Generation Platform for Edge Computing), in part by the National Re-
search Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. RS-2023-00207816), and in party by the MSIT (Ministry of
Science and ICT), Korea, under the ITRC (Information Technology Research
Center) support program (IITP-2023-RS-2023-00258649) supervised by the
IITP (Institute for Information & Communications Technology Planning &
Evaluation). *Dr. CS Hong is the corresponding author.

attention. An RIS is a planar surface composed of a large
number of passive reflecting elements, such as meta-material
elements. These elements are capable of manipulating and
controlling the propagation of wireless signals by dynam-
ically adjusting their reflection properties, including phase,
amplitude, and direction. The primary function of an RIS is
to modify the wireless propagation environment to improve
signal quality, coverage, and energy efficiency. By intelligently
manipulating the reflected signals, an RIS can overcome signal
attenuation, mitigate interference, and enhance the overall
wireless communication performance. The RIS elements can
be controlled and coordinated either by a centralized controller
or by distributed algorithms that optimize signal propagation
based on real-time channel conditions, user locations, and
network requirements. However, there still exist limitations for
conventional RIS. Since RIS focuses primarily on signal reflec-
tion, it does not have the capability to transmit signals when
the transmitter and receiver are on opposite sides. Therefore,
it restricts its potential for enhancing communication capacity
and coverage. In order to address this, current research has
focused on simultaneously transmitting and reflecting RIS
(STAR-RIS), where each element is capable of both trans-
mission and reflection of the signals concurrently, improving
the quality of signals coming from both directions. Thereby, it
offers 360◦coverage in addition to all the advantages of RIS.

The use of machine learning techniques to solve challeng-
ing wireless communication issues has grown in popularity.
Since these issues require making choices for long-term profit
maximization with somewhat unpredictable outcomes, the bulk
of the challenges in these sectors may be categorized as
Markov Decision Process (MDP) issues. One of the promi-
nent approaches to addressing these MDP issues is the deep
reinforcement learning (DRL) approach. DRL may provide
low-complexity suboptimal solutions for MDP issues in time-
varying and stochastic contexts with minimal previous knowl-
edge. As a result, we use the DRL approach in our STAR-RIS-
assisted network to handle the problematic issues associated
with a complicated wireless environment.

B. Research Contribution

In this paper, we investigate the DRL-based energy con-
sumption minimization in STAR-RIS-assisted MEC systems.
Since IoT devices are energy-constrained and computationally
limited, certain tasks must be offloaded to the MEC server.
On the other hand, since it is difficult to achieve line-of-
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sight (LOS) communication between the IoT devices and the
MEC server, STAR-RIS can be implemented to assist the
communication links between them. The contributions of this
paper fall into the following categories:

• First, we present the MEC system in which IoT devices
offload computation tasks via STAR-RIS-assisted com-
munication links.

• We formulate the energy consumption minimization prob-
lem of all IoT devices in our system by joint optimization
of energy-efficient offloading, amplitude and phase shift
coefficient of reflection and transmission of STAR-RIS
elements, and power control.

• Since the formulated problem is non-convex and chal-
lenging to solve in polynomial time, we employ proximal
policy optimization (PPO) to solve the problem.

• The effectiveness of our proposed system is validated
through performance evaluation, and simulation results
indicate that our proposed approach outperforms the
benchmark schemes.

The remaining sections are categorized as follows. Section
II lists the related works. We illustrate our system model
and formulate the problem in III. Consequently, the proposed
solution is given in Section IV presented. In Section V,
performance evaluation is carried out to prove our proposed
system’s validation. Finally, Section VI brings our work to its
conclusion.

II. RELATED WORKS

There have been several works on the MEC system. In [1],
the authors consider computation offloading and resource allo-
cation in wireless cellular networks with MEC. Nevertheless,
these works do not consider the challenging issues of achieving
LOS communication links. In [2], to provide better LOS links,
the authors propose an unmanned aerial vehicle (UAV) aided
MEC system where the UAV functions as both the aerial
base station and MEC server. Additionally, the authors in [3]
and [4] explore scenarios involving multiple UAVs for MEC
applications, emphasizing energy-efficient resource allocation.
It’s worth noting that while the utilization of UAVs resolves
the LOS issue, it also introduces supplementary energy con-
sumption due to the inherently energy-intensive nature of UAV
devices.

There are also various works on RIS-assisted communi-
cations in order to enhance communication links. In [5],
the authors study energy-efficient networks with the aid of
multiple RISs. The authors in [6] propose the energy-efficient
system model where multiple aerial-RISs are employed to
accomplish improved communication between the BS and
users. In [7], the authors proposed the RIS-assisted MEC
system, where RIS is implemented on UAV to support the
communication links for the users to offload to the MEC
server. These aforementioned works do not consider STAR-
RIS, which provides a greater degree of freedom. To solve
this, in [8], the authors consider the STAR-RIS-assisted MEC
system. However, they do not consider DRL as a solution
approach that offers advantages in solving complex problems,
especially in dynamic and uncertain environments.

Fig. 1: System Model.

III. SYSTEM MODEL

As illustrated in Fig. 1, we consider STAR-RIS-assisted
MEC system to assist the IoT devices for the reduction of
latency and energy consumption in computation tasks. In our
system model, we have a BS with MEC server, a set I of I IoT
devices, and a STAR-RIS to assist the communication due to
the difficulty of achieving LOS communication links between
IoT devices and BS. Given the robust computational capacity
of the MEC server and the relatively modest size of the output,
it is reasonable to disregard the computational time at the
MEC server as well as the time required for downloading the
result. The STAR-RIS consists of a set of N = {1, 2, . . . , N}
of N elements, and each element is responsible for either
transmission or reflection of the incident signal towards the
desired direction based on the location of the receiver. The
IoT devices located in the reflection region are denoted as a
set R of R, and the IoT devices located in the transmission
region are denoted as a set T of T , and thereby we have total
I = R+ T IoT devices.
A. Local Computation Model

For each IoT device, the task computed can be specified
as a tuple {Ci, Si, T

max
i }, where Ci is the number of com-

putation resources in CPU cycles required to calculate 1-
bit of input data, Si is the size of input data in bits, and
Tmax
i is the maximum tolerable delay for task completion.

Since IoT devices are energy-constrained devices with limited
computation capacity, it is not feasible for IoT devices to
conduct the entire computation tasks locally [9]. Therefore,
some of the computation tasks need to be offloaded to the
MEC server. In this context, the assumption is made that the
input task data bits possess bit-wise independence, enabling
the breaking down into subsets of varying sizes. Consequently,
these subsets may be performed in parallel by both IoT devices
and the MEC server, thereby facilitating partial offloading.
The variable αi ∈ [0, 1] is used to represent the proportion
of tasks to be offloaded to the MEC server, which means
(1 − αi) represents the proportion of tasks that are to be
computed locally. The computing time required to compute
the task locally can be written as

tloci =
(1− αi)CiSi

fi
, ∀i ∈ I, (1)

240



where fi is the computation frequency of IoT device i.
Afterward, as in [10], the power consumption of CPU in IoT
device i can be modeled as P loc

i = κfi
3, where κ is the

coefficient that depends on the chip design of IoT device.
Therefore, the energy consumed for IoT device i to compute
the task locally can be obtained as

Eloc
i = P loc

i tloci = (1− αi)CiSiκ(fi)
2. (2)

B. Communication Model

For the communication, we assume there is no direct link
between IoT devices and BS. Therefore, the communication
is assisted by the use of STAR-RIS. The indirect link consists
of two parts: the IoT device to STAR-RIS link and STAR-RIS
to BS link, respectively. The channel gain between IoT device
r located in the reflected side and STAR-RIS can be obtained
as

hr = HN,BΘ
rHr,N , ∀r ∈ R, (3)

where HN,B is the channel response between STAR-RIS and
BS, and Hr,N is the channel response between IoT device r
located in the reflected region and STAR-RIS. Similarly, the
channel gain between IoT device t located in the transmitted
region and STAR-RIS can be obtained as

ht = HN,BΘ
tHt,N , ∀t ∈ T , (4)

where Ht,N is the channel response between IoT device t
located in the transmitted region and STAR-RIS. The symbol
Θξ, ξ ∈ {r, t} is the diagonal matrix of coefficients of
reflection and transmission, and can be written by

Θξ = diag(βξ
1e

jϕξ
1 , βξ

2e
jϕξ

2 , . . . , βξ
Nejϕ

ξ
N ), ξ ∈ {r, t},

∀n ∈ N ,
(5)

where (βξ
n, ξ ∈ {r, t}) is the amplitude coefficient of STAR-

RIS element n, and (ϕξ
n, ξ ∈ {r, t}) is the phase shift values

of reflection and transmission. In this study, we employ the
energy splitting model, as described in [11], to analyze the
functioning of each STAR-RIS element. Therefore, following
the principle of energy conservation, the total energy of the
incident signal does not surpass the combined energies of the
transmitted and reflected signals. Hence, we have

(βt
n)

2 + (βr
n)

2 = 1, ∀n ∈ N . (6)

We implement Rician fading model for all links: HN,B , Hr,N

and Ht,N , and as an example, HN,B can be represented as

HN,B =

√
K

1 +K
HLOS

N,B +

√
1

1 +K
HNLOS

N,B , (7)

where K is the Rician factor, which is the ratio of the power
between the LOS path and the non-LOS (NLOS) path. The
received signal at the BS can be written as

y =

I∑
i=1

hixi + n0, ∀i ∈ I, (8)

where xi = pisi is the transmitted signal from IoT device
i, which is expressed as the product of transmit power pi

and unit-power information symbol si. The symbol n0 is
the additive white Gaussian noise (AWGN) with zero mean
and variance σ2. Afterward, the signal-to-noise (SNR) of IoT
device r located in the reflected region can be represented as

γr =
|hrpr|2

σ2
, ∀r ∈ R. (9)

Likewise, the SNR of IoT device t located in the transmitted
region can be represented as

γt =
|htpt|2

σ2
, ∀t ∈ T . (10)

We assume that the BS’s wireless frequency is divided into
orthogonal sub-carriers with bandwidth W . Even if the STAR-
RIS reflects/transmits all incident signals, the user may decode
the received signal on the designated sub-carrier as we assume
each BS-user pair is on a distinct sub-carrier. This means BS-
user pairings cannot interfere [12]. Correspondingly, the uplink
data rate of IoT device i can be obtained as

ri = W log2(1 + γξ), ξ ∈ {r, t}, ∀i ∈ I. (11)

Given that IoT devices have limited computational capabilities
and cannot execute all tasks locally, they are required to
upload a certain amount of tasks to the MEC server. Therefore,
the transmission delay for IoT device i to send αi tasks for
offloading may be computed as follows:

toffi =
αiSi

ri
, ∀i ∈ I. (12)

Then, the energy consumption of IoT device i for the task
offloading can be expressed as

Eoff
i = P off

i toffi =
αiSipi
ri

=
αiSipi

W log2(1 + γξ)
, ξ ∈ {r, t}, ∀i ∈ I.

(13)

Hereby, the total energy consumption of IoT device i can be
calculated as follows:

Ei = Eloc
i + Eoff

i = (1− αi)CiSiκ(fi)
2

+
αiSipi

W log2(1 + γξ)
, ξ ∈ {r, t}, ∀i ∈ I.

(14)

C. Problem Formulation

Considering the constrained transmission time and limited
data rate, our goal is to minimize the energy consumption of all
IoT devices. Therefore, we formulate the joint energy-efficient
offloading, amplitude, and phase shift coefficient of reflection
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and transmission of STAR-RIS elements and power control
problem of STAR-RIS-assisted MEC system as follows:

min
α,β,ϕ,p

I
i=1

Ei (15a)

s.t. ri ≥ rmin
i , ∀i ∈ I, ∀n ∈ N , (15b)

tloci + toffi ≤ Tmax
i , ∀i ∈ I, (15c)

0 ≤ ϕt
n, ϕ

r
n < 2π, ∀n ∈ N , (15d)

(βt
n)

2 + (βr
n)

2 = 1, ∀n ∈ N , (15e)
0 ≤ αi ≤ 1, ∀i ∈ I, , (15f)
0 ≤ pi ≤ pmax

i , ∀i ∈ I (15g)

where constraint (15b) is to guarantee minimum data rate for
each IoT device, constraint (15c) is the maximum tolerable
latency for task completion, (15d) and (15e) are the accessible
phase shift values and amplitude values for the coefficient of
reflection and transmission, constraint (15f) is the offloading
portion variable ranging between 0 to 1, and finally, constraint
(15g) is the power budget constraint. The formulated problem
is non-convex due to the coupling variables in both objective
function and constraints. As a result, it is quite challenging to
solve in polynomial time. Therefore, we propose one of the
deep reinforcement learning approaches called proximal policy
optimization (PPO) to solve our optimization problem. PPO
is favored over other DRL methods for non-convex problems
due to its stability, sample efficiency, and versatility. Its clipped
surrogate objective ensures stable learning even in complex,
high-dimensional environments while efficiently utilizing col-
lected data. PPO’s versatility and proven performance across
diverse tasks make it a robust choice for tackling non-convex
optimization challenges in reinforcement learning.

IV. SOLUTION APPROACH

Firstly, it is essential to establish the MDP since it serves
as a comprehensive framework for describing almost all DRL
problems. The components included in this framework consist
of the state space, action space, state transition function,
reward function, and discount factor. The time horizon is
divided into discrete steps as {1, 2, . . . , T̄}.

1) Agent and environment: Within our system paradigm,
the BS functions as an agent responsible for making decisions.
These decisions are influenced by the agent’s current state
and result in rewards that are provided by the system’s
environment, which encompasses elements such as the BS,
MEC server, STAR-RIS, and channel models. Importantly, the
environment undergoes dynamic changes in response to the
agent’s chosen actions.

2) State space: Each state st̄ in the state
space at time t can be defined as a tuple of
{HN,B ,Hr,N ,Ht,N ,Θξ, Ci, Si, T

max
i , fi, ξ ∈ {r, t}, ∀i ∈

I, ∀n ∈ N} which contains the channel responses, coefficient
matrix of reflection/transmission, information about the tasks
to be computed.

3) Action space: Each action at̄ in the action space at time
t consists of decision variables of our optimization problem
and can also be defined as a tuple of {αi, β

ξ
n, ϕ

ξ
n, pi, ξ ∈

{r, t}, ∀i ∈ I, ∀n ∈ N} which contains the offload-
ing portion, amplitude and phase shift coefficient of reflec-
tion/transmission, and transmit power. Additionally, as in [13],
the amplitude and phase shift can be defined as the incremental
values of the current ones and are expressed as follows:

β(t̄+ 1) = β(t̄)⊙∆β(t̄), (16)

ϕ(t̄+ 1) = ϕ(t̄)⊙∆ϕ(t̄), (17)

where ⊙ is the element-wise product, ∆β(t̄) and ∆ϕ(t̄)
represent the incremental amplitude and phase shift values,
respectively.

4) Transition Function: The transition function, denoted as
P (s(t̄+1)|st̄, at̄), describes how the environment changes from
one state st̄ to another s(t̄+1) in response to the agent’s action
at̄.

5) Reward Function: The immediate reward function
R(st̄|at̄) for our problem can be defined as

R(st̄|at̄) =
I

i=1

c1Ei +

I
i=1

c2J(ri − rmin
i )

+
I

i=1

c3J(T
max
i − tloci − toffi ),

(18)

where c1, c2, c3 are weight coefficients, and J(x) is the piece-
wise function that can be defined as follows:

J(x) =


P+ when x ≥ 0,
x, otherwise, (19)

where P+ is the positive constant to indicate revenue.
6) Discount Factor: The discount factor η measures how

much an agent prefers future benefits above immediate re-
wards. A large discount factor implies that the agent values
long-term gains, prompting it to maximize cumulative earnings
over time. However, a low discount factor helps the agent
prioritize quick gains.

The functioning of our PPO method involves employing
an agent, which comprises two components, namely an actor
and a critic. This agent resides at the BS alongside the
MEC server. The actor, as represented by the policy network
πθ(at|st), makes decisions on actions by considering the
present observable states, with the objective of maximizing
the expected cumulative rewards. The critic, represented by
the value network, evaluates the quality of the states observed
by the actor, providing feedback on the expected long-term
rewards associated with those states. These components work
together to enable the agent to adapt and update its policy
in order to enhance decision-making over time and maximize
cumulative discounted reward, which is defined as

Q(st̄, at̄) = E




T̄
t̄=1

ηtR(st̄|at̄)


 . (20)

242



Algorithm 1 PPO-based STAR-RIS-assisted MEC system

1: for iteration=1, 2, . . . do
2: for actor=1, 2, . . . do
3: Collect states, actions, transition probabilities, im-

mediate rewards from a collection of trajectories and
execute old policy πθold for time T̄ in the environment

4: Calculate generalized advantage estimators
A1, . . . , AT̄

5: end for
6: Calculate LV (φ)
7: Train the actor and get optimal surrogate function L(θ)
8: Apply stochastic gradient descent to update φ
9: Substitute θold with θ and achieve new policy πθ

10: end for

The critic consists of the advantage function as follows:

At̄ = Q(st̄, at̄)− Vφ(st̄), (21)

which provides an estimate of the advantages or disadvantages
of taking a specific action in a particular state, which is
essential for guiding the agent’s policy updates. Here, Vφ(st̄)
is the baseline estimate value function. Here, as in [14], we
apply a generalized advantage estimator (GAE) to calculate
the advantage function as

At̄ = εt̄ + (ηµ)εt̄+1 + · · ·+ (ηµ)T̄−t̄+1εT̄−1, (22)

where
εt̄ = R(st̄|at̄) + ηVφ(st̄+1)− Vφ(st̄), (23)

and µ is the parameter for GAE. Afterward, the loss function
derived from the temporal-difference error generated by the
critic network can be expressed as

LV (φ) = E[|V target
φ − Vφ(st̄)|], (24)

where V target
φ = R(st̄+1|at̄+1) + ηVφ(st̄+1) [15]. PPO aims

to learn an optimal policy that maximizes cumulative environ-
ment rewards. With clipping parameter c, and probability ratio
pt̄ =

πθ(at̄|st̄)
πθold(at̄|st̄)

, the surrogate objective function of PPO can
be obtained as follows:

L(θ) = E[min(pt̄(θ)At̄, clip(pt̄(θ), 1− c, 1 + c)At̄)]. (25)

The purpose of the clipping parameter c is to prevent too large
policy updates, which might cause instability or divergence
in the learning process. In order to balance exploration and
exploitation, the probability ratio pt̄(θ) is crucial. It helps
control the size of policy updates by ensuring that they are
neither too aggressive nor overly cautious. Algorithm 1 depicts
the comprehensive algorithm describing the way PPO operates
in our proposed system.

V. PERFORMANCE EVALUATION

To demonstrate the efficacy of our proposed algorithm for
the STAR-RIS-assisted MEC system, we conduct numerical
analysis. We employ 20 IoT devices, 10 in the reflection region
and 10 in the transmission region, with STAR-RIS at the

TABLE I: Simulation parameters

Parameter Value
σ2 -174 dBm
W 1 MHz
K 3
c 0.2
Si [10, 50] Mbits
Ci 500 cycles
fi [0.5, 3] MHz
η 0.9

Learning rate 0.001
Mini batch size 16
No. of iterations 2,000

T̄ 100,000

center. We performed the simulation utilizing the Unity ML-
Agents toolbox in the Unity Engine [16]. The configurations
for simulation are displayed in Table I. For the benchmark
schemes, we compare our proposed algorithm with 1) Con-
ventional RIS, where conventional RIS is implemented in the
center instead of STAR-RIS, and 2) Random, where the ampli-
tudes and phase shift coefficients of reflection and transmission
of STAR-RIS elements are set to random values. Initially,
Fig. 2 illustrates the convergence of the PPO algorithm we
have proposed. Even though there is some instability in the
early steps due to exploration, our algorithm converges at
approximately 60,000-time steps.

Fig. 3 demonstrates how total energy consumption increases
with the increase in input data size. As depicted in the figure,
the scenario with random amplitude and phase shift values
grows exponentially with the increase in input data size,
whereas our proposed algorithm and conventional RIS scheme
grow progressively. Our proposed method demonstrates supe-
rior performance compared to other algorithms owing to its
ability to adaptively adjust the values of amplitudes and phase
shift coefficients of reflection and transmission for STAR-RIS
elements from IoT devices in respective regions.

Next, Fig. 4 illustrates how total energy consumption de-
creases with the increase in the number of elements. In all
instances, a reduction in the number of elements results in
a corresponding drop in overall energy usage. Nevertheless,
when considering a range of 20 to 25 elements, the reduction
in energy consumption is not notably substantial. Hence, it
is important to choose the optimal quantity of elements that
are relevant to our system model. Our method demonstrates
superior performance compared to other benchmark systems.

VI. CONCLUSION

In summary, this paper presents an investigation of the
PPO-based STAR-RIS-assisted MEC system. To minimize the
energy consumption of all IoT devices while jointly opti-
mizing the energy-efficient offloading, amplitude, and phase
shift coefficients of reflection and transmission of STAR-RIS
elements and power control, we formulate our optimization
problem. Given the inherent non-convexity and computational
complexity of the given issue, we have chosen to use the
PPO algorithm. This decision is motivated by the algorithm’s
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Fig. 2: Convergence of our proposed PPO-based STAR-RIS-
assisted MEC system.
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Fig. 3: Performance comparison of total energy consumption
under different input data size.

demonstrated stability, sample efficiency, and adaptability in
addressing such challenging optimization problems. To prove
the efficacy of our proposed algorithm, we have conducted a
comprehensive numerical analysis. Based on the performance
findings, it can be observed that our proposed method has
greater effectiveness compared to several benchmark schemes.
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