
 

Abstract — This paper proposes an interactive multi-agent 
Reinforcement Learning (RL) framework for joint transmit-sleep 
scheduling in energy-harvesting wireless sensor networks. The 
scheduling problem is modeled as a Markov Decision Process 
(MDP) and solved using temporal difference Reinforcement 
Learning approach.  The online learning abilities of RL make the 
nodes learn a scheduling policy for transmission and sleep so as to 
minimize the MAC layer packet loss, while maintaining a stable 
packet queue, in the presence of limited energy budget and 
heterogeneous traffic patterns. This is accomplished by the joint 
coordination of two interactive RL agents launched per node to 
make scheduling decisions. Each node learns the scheduling policy 
independently and without explicit information sharing. The 
decentralized nature of the proposed architecture makes the model 
computationally efficient, scalable with network size, and suitable 
for resource constrained Sensor and IoT networks. With 
simulation experiments, the proposed approach is validated for 
different traffic and network conditions and compared against an 
existing hybrid sleep-scheduling mechanism. 
 

Index Terms — Medium Access Control, Energy Harvesting, 
Reinforcement Learning, Sleep Scheduling  

I. INTRODUCTION 
This paper presents a Reinforcement Learning-framework 

for joint transmit-sleep scheduling in energy-harvesting 
wireless networks with ultra-thin energy budgets. Efficient 
decisions on transmit-sleep scheduling in energy-constrained 
wireless networks is important from two perspectives. First, to 
reduce the network service disruption duration because of 
energy shortage and second, to maintain a reliable network 
performance in terms of throughput and delay. Traditionally, 
such schedules are often pre-programmed in the wireless nodes 
and as such they often fail to deliver desired performance in a 
situation-specific manner. For example, these sleep scheduling 
policies are oblivious to network traffic patterns and 
heterogeneities which lead to wastage of precious networking 
resources, including energy. In addition, for networks with 
energy harvesting capabilities, where the energy availability 
depends on temporal and geographical characteristics, these 
policies do not allow nodes to react according to the 
spatiotemporal energy profile. Shortcomings are usually 
manifested in the form of not being able to maintain the desired 
balance between network performance and network lifetime. 
Hence, in this work, an online learning-based paradigm is 
proposed that allows the nodes to learn a scheduling policy so 
as to overcome the above limitations. 

 There are works [1-4] that deal with sleep scheduling in 
networks with energy constraints. The authors of [1] use a 
game-theoretic approach to find the sleep-scheduling policy for 
solar powered sensor networks. In addition to the fact that these 
policies are static with respect to network traffic and topologies, 
they also do not consider transmission scheduling decisions. As 
will be shown in this work, transmission scheduling plays a 
significant role in maintaining network performance in energy-

harvested networks. There are RL-based approaches [3-8] for 
sleep scheduling in energy harvested networks. Besides the 
above limitations arising from not considering policies for 
transmission strategies, these often rely on a centralized 
arbitrator for learning the scheduling policies. Centralized 
learning, apart from being computationally inefficient and 
creating burden on the central server, it also comes with an 
additional cost of requirement of extra bandwidth and energy 
consumption for downloading the learnt policies from the 
server. Moreover, performance of the learnt policies heavily 
depend on the reliability of information collected from the 
sensor nodes over a possibly error-prone channel. 

In this work, we provide a decentralized RL-based approach 
for joint sleep-transmission scheduling in wireless networks. 
The scheduling problem is modeled as a Markov Decision 
Process (MDP) and then solved using temporal difference 
learning. Each energy-harvesting node learns on-the-fly to take 
judicious transmit-sleep decisions so that the available 
resources can be efficiently utilized to improve network 
performance. This is accomplished by the joint coordination of 
two interactive RL agents launched per node to make 
scheduling decisions. The interactive cooperative behavior of 
the learning agents helps the network achieve throughput higher 
than the existing sleep schedulers. To be noted that the proposed 
framework is distributed in that each node learns its scheduling 
policy independently and without explicit communication with 
other nodes. In addition to the benefits of decentralized learning 
mentioned above, this makes the model scalable with network 
size. From an application standpoint, the framework is suited to 
resource-constrained embedded networks of IoTs and sensors 
that are powered from ambient harvested energy and have ultra-
low energy budgets. 

The paper has the following scopes and contributions. First, 
an RL-based framework is developed with two interactive 
agents for making joint transmit-sleep scheduling decisions in 
energy-harvested wireless networks. The two agents 
cooperatively learn policies for judicious energy management 
for sustainable communication in wireless networks. Second, 
the proposed approach is decentralized such that each node 
learns its scheduling policy independently. Third, the proposed 
framework is shown to be scalable with network size. Fourth, 
with extensive simulations, a detailed characterization of the 
proposed architecture is done for different traffic patterns and 
compared against known scheduling policies. 

II. RELATED WORK 
There are works that develops sleep scheduling and resource 

allocation policies for establishing efficient communication in 
power-constrained energy harvesting wireless networks. In [1], 
the authors develop scheduling policies for solar powered 
wireless networks. The proposed approach considers node 
battery status, harvested energy, queue status, and channel 
characteristics for sleep-awake decisions. However, it does not 
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consider transmission-scheduling decisions into account. This 
would require the network designer to adjust policy parameters 
depending on network traffic conditions. 

The paper [2] focuses on helping sensor nodes and a network 
coordinator to save energy using transmission power control,  
learnt using Q-learning. Learning here is solely executed by the 
centralized coordinator and is validated for single-hop 
networks, thus limiting its applicability. The works in [3-6] 
develop learning-driven approaches for sleep scheduling in 
sensor networks. These mechanisms mainly deal with finding a 
suitable sleep schedule for sensor nodes using centralized 
learning techniques. These mechanisms are mainly suitable for 
star topology networks where the coordinator evaluates the 
strategy for the nodes. Also, there is a significant control packet 
overhead associated with these techniques for periodically 
transmitting node information to the coordinator. Similar 
limitations of centralized computation exist in the RL-based 
energy management solutions in [7, 8] for rechargeable and 
energy-harvested networks.  

In [9], the authors propose a resource scheduling approach to 
improve transmission reliability of emergency-critical sensor 
networks. Here, to reduce complexity, the authors employed 
deep RL to solve an optimization problem at the node level. 
However, this mechanism too appears to be restricted only to 
single-hop networks. The authors in [10] propose an RL-based 
solution that helps resource-constrained nodes to enhance their 
performance by saving battery power and maintaining the 
quality of transmitted data. Similar to the previous scheduling-
based methods, this paper does not consider optimizing the 
transmission scheduling decisions, which play a significant role 
in efficient energy management. 

In the work presented in this paper, a decentralized RL-based 
solution is proposed for energy management in resource-
constrained wireless networks without the need for a central 
server. This solution uses an interactive two-agent system that 
jointly takes decisions on transmission and sleep scheduling for 
reliable communication in energy-harvesting networks.  

III. SYSTEM MODEL  
A. Network and Traffic Model 
In this work, we consider multi point-to-point energy-

harvesting networks. As shown in the network in Fig. 1, the 
wireless sensor nodes send data to a wirelessly connected base 
station using fixed size packets. Time is slotted and the MAC 
frames are of fixed size, which is dimensioned a priori based in 
the degree of the network topology. MAC slot allocation is done 
based on TDMA, since the network is time synchronized. 

Application layer packet generation at source node follows a 
Poisson distribution with packet generation rate 𝜆𝜆 packet per 
frame (ppf). Each node maintains an M/G/1/K queue, where 
the Poisson distributed queue arrival rate is governed by 𝜆𝜆, and 
the queue service rate is determined by the actuated 
transmission-sleep policy. The latter will be learnt using the 
learning mechanism presented in Section IV. 

B. Energy Harvesting and Consumption Model 
With a long-term goal of making the framework generalized 

by considering different kinds of energy harvesting sources, in 
this work, we start with solar energy harvesting. A 2-state 
Markov Model is used for simulating solar energy harvesting. 
The two states of the Markov model are (1) low radiation state, 

where sunlight is blocked by clouds and hence, radiation is not 
enough to charge the battery and (2) high radiation state, where 
there is direct sunlight and is sufficient to charge the battery. 
This is represented by the transition probability matrix R, where 
state 1, 2 represent high and low radiation states respectively:  

R = ��
𝑅𝑅�,� 𝑅𝑅�,�
𝑅𝑅�,� 𝑅𝑅�,�

��                  (1) 

Assuming that the cloud size is exponentially distributed 
with mean ‘𝐶𝐶’ m and the wind speed is  𝑤𝑤� m/s, the elements of 
matrix R can be obtained using the analytical model in [4]: 

𝑅𝑅�,� ≈ � �
��
� 𝑡𝑡 × e�

�
��
��,  𝑅𝑅�,� ≈ � �

��
� 𝑡𝑡 × e�

�
��
��, 

𝑅𝑅�,� = 1 − 𝑅𝑅�,� and 𝑅𝑅�,� = 1 − 𝑅𝑅�,� 
Here, 𝜇𝜇� =

�
��

, 𝜇𝜇� =
�×(����)
��(��)

 are the average time for which 
the radiation is low and high respectively; 𝑃𝑃� is the probability 
of solar radiation in low state and 𝑡𝑡 is the length of a time frame. 
Each node has a battery capacity of 𝐵𝐵 units, where a packet 
transmission consumes one unit of battery. Thus, the battery 
status at time 𝑡𝑡 is given by 𝑏𝑏 ∈ {0,1,2, … , 𝐵𝐵}, with battery 
charging probability 𝑃𝑃������ . When 𝑏𝑏 = 0, battery is 
completely depleted and needs recharging. If 𝑏𝑏 = 𝐵𝐵, the battery 
is fully charged and, the recharging circuitry is turned off. 

The energy consumption model in [11] is considered for the 
radio hardware energy dissipation. In this model, power 
consumed while transmitting and receiving a packet are given 
by Eqs. (2) and (3), where 𝑃𝑃�� represents the transmission 
power of the transmitter with amplifier inefficiency factor 𝛼𝛼� 
and 𝑃𝑃��  is the circuitry power consumption, which is a constant 
depending on specific transmitter. 

𝑃𝑃� = (1 + 𝛼𝛼�) × 𝑃𝑃�� + 𝑃𝑃��                  (2) 
𝑃𝑃� = 𝑃𝑃��                                (3) 

IV. REINFORCEMENT LEARNING FOR JOINT SLEEP-
TRANSMISSION SCHEDULING 

The high-level objective of the proposed framework is to 
make the energy-harvesting wireless nodes learn an efficient 
transmit/sleep/listen scheduling policy. The desired behavior of 
the learnt schedule is that the available energy is judiciously 
managed so as to minimize the service disruption resulting from 
energy shortage. To be noted that there has to be a right balance 
between sleep and awake decisions. Sleeping, on one hand, can 
reduce a node’s energy consumption, and hence increase the 
network lifetime. On the other hand, excessive sleeping can 
lead to missed packet receptions. Similarly, an efficient 
transmission scheduling is important to strike the right balance 
between minimizing energy usage and reducing the packet 
drops resulting from an unstable queue.  

This joint scheduling behavior is achieved by the 
coordination of two RL agents per node, namely, Sleep 
Scheduling agent and Transmission Scheduling agent. Fig. 1 
shows a high-level working model of the RL-based 
architecture. The role of the  Sleep Scheduling agent is to learn 
policies for efficient decisions for turning the transceiver on and 
off. The role of the Transmission Scheduling agent is to make 
decisions on transmission scheduling when the sleep scheduling 
agent decides to turn the transceiver on. Note that both these 
agents share the same reward function which is computed from 
the RL observable variables including the harvested energy and 
network performance parameters. The state definitions for these 
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two agents, however, are different and independent. As 
indicated by the dotted arrows in the figure, the state for the 
transmission scheduling agent is perceived directly from the 
network observables, whereas the state for the sleep scheduling 
agent is dependent on the RL-policies of the transmission 
scheduler. The common aim of both these agents is to 
judiciously manage the available limited energy resources for 
maintaining sustainable communication in the network. Details 
of these learning agents are given below.  

 
Fig.1 Proposed Framework and the network model: Node 𝑁𝑁�� is indexed such 

that 𝑁𝑁 is the hop count of the node from source 1�� in flow 𝐾𝐾 
Transmission Scheduling Agent: Suitable transmission 

decisions are important, because, if the transmission rate is low, 
it leads to building up queues, which will eventually manifest 
as an increase in packet drops due to full MAC packet queue. 
On the other hand, high transmission rates affect energy 
consumption which gives rise to high missed packet receptions 
due to energy shortage. As a result, an efficient transmission 
scheduling policy is required, which will depend on the 
temporal dynamics and characteristics (depending on the 
geography, time of the day etc.) of energy harvesting. This is 
achieved by a transmission scheduling RL agent, that schedules 
packet transmission so that available harvested energy is 
efficiently used while maintaining reliable communication. 

The MDP action space (𝒜𝒜�) for this agent is defined by the 
probability of transmitting a packet (𝑃𝑃��) in the queue. To keep 
the action space discrete, this probability is quantized into |𝒜𝒜�| 
discrete values in the range [0, 1], where |𝒜𝒜�| denotes the 
cardinality of the action space. These actions are selected 

following a learning policy in an RL decision epoch which is 
set to a duration of ℎ frames. 

The state space (𝒮𝒮�) as perceived by the agent is represented 
by the energy influx to the node resulting from harvesting. The 
RL state at a decision epoch is given by the energy harvested at 
that epoch. Similar to the packet transmission probability, the 
harvested energy is also discretized into |𝒮𝒮�| distinct ranges. 
Formally, the state as perceived by an agent for node 𝑛𝑛 at an 
epoch 𝑡𝑡 is defined as 𝑠𝑠�,��(𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡�

�
∑ 𝐸𝐸��,�(𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡�

��� , where 
𝐸𝐸��,�(𝑘𝑘𝑘 is the energy harvested in time frame 𝑘𝑘 by node 𝑛𝑛 and 
𝑔𝑔𝑔𝑔𝑔𝑔 is the function for quantization as defined by: 

𝑔𝑔(𝑥𝑥) = �
𝓈𝓈�,   𝑖𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖� − 0.5≤  10𝑥𝑥 𝑥 𝑥𝑥� + 0.5≤  8.5

9,   𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖     (4) 

Here 𝓈𝓈� ∈ 𝐼𝐼 and 𝓈𝓈� ≥ 0. A point to note here is that unlike 
the classical MDP, in this case, the state transition is oblivious 
to the action taken at the epoch and is totally controlled by the 
environment, which is the wireless network in this case.  

In this work, a tabular RL-technique, known as Q-learning 
[12], is used. It is chosen due to its low computational 
complexity which is suitable for embedded sensor nodes with 
inherent energy and computational resource limitations. This 
approach is computationally less complex than other RL-based 
approaches such as the policy gradient-based RL method. The 
use of Q-learning ensures that the objective of efficient sleep 
scheduling is achieved with a low computational burden on the 
sensor nodes.  

The reward for the agent in node 𝑛𝑛 at an epoch 𝑡𝑡𝑡in this 
setting is given by Eq. 5. 

𝑟𝑟�(𝑡𝑡) = �
��

�����
�� (�)��

,  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖��� × 𝜈𝜈

−𝜏𝜏�,  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
              (5) 

Here, 𝑃𝑃����
�� (𝑡𝑡𝑡 and 𝑄𝑄𝑄𝑄(𝑡𝑡) denote the missed packet 

receptions and queue length at epoch 𝑡𝑡; 𝑄𝑄𝑄𝑄���  is the MAC 
packet queue size (that is, 𝑄𝑄𝑄𝑄��� = 𝐾𝐾, for an M/G/1/K queue); 
and 𝜏𝜏�, 𝜏𝜏�, 𝜈𝜈 and 𝛿𝛿 are hyperparameters that are chosen 
empirically, as detailed in Section V. The physical 
interpretation of the reward function is that if the queue length 
is higher than the discounted value of maximum possible queue 
length, then the action should be penalized, since it will lead to 
packet drops resulting from unstable queue. Else, the action is 
rewarded for low missed packet receptions. In other words, an 
action is rewarded more if it reduces the packet drops resulting 
from energy shortage, bad sleeps, or an unstable queue. 

Thus, the transmission scheduling agent learns the policy for 
packet transmission on-the-fly to reduce the packet drops 
resulting from shortage of energy while maintaining a stable 
queue. However, to be noted that the transmission strategy 
learnt by this agent is contingent upon the transceiver on/off 
policy of the node. To exemplify, if the packet transmission 
probability of a node is 𝑃𝑃�� and the node off probability is 𝑃𝑃��� , 
then the effective transmission rate of the node is given by 
𝑃𝑃�� × (1 − 𝑃𝑃���). Thus, the node’s sleep decisions indirectly 
affects the learning behavior of the transmission scheduling. In 
addition, efficient sleep decisions also play a role in reducing 
the missed receptions of packets from upstream nodes. This 
calls for the requirement of a sleep scheduling agent that can 
cooperate with the transmission scheduling agent to achieve the 
above goals. 
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Sleep Scheduling Agent: The goal of this agent is to find a 
transceiver ‘On/Off’ schedule for the energy harvesting node it 
is part of, so that the limited energy budget of the node can be 
efficiently managed while maintaining reliable communication 
by reducing packet loss.  

The action space (𝒜𝒜�) of the sleep scheduling agent is given 
by the probability of keeping the radio transceiver 𝑜𝑜𝑜𝑜 (𝑃𝑃��) in 
an RL decision epoch of ℎ frames. This probability is 
discretized into |𝒜𝒜�| discrete values in the range [0, 1], where 
|𝒜𝒜�| denotes the cardinality of the action space of the sleep 
scheduling agent. The actions are selected using 𝜖𝜖-greedy 
policy to maximize the expected long-term expected reward 
using Q-learning approach mentioned above. 

The state space (𝒮𝒮�)  for this agent is defined by the quantized 
probability of packet transmission (𝑃𝑃��) in a learning epoch. 
The probability 𝑃𝑃�� and hence the state of the sleep scheduling 
agent is directly controlled by the learning policy of the 
transmission scheduling agent. The logic behind using 𝑃𝑃�� as 
the state for this agent is because the suitable value of 
transceiver 𝑜𝑜𝑜𝑜 probability for minimum packet misses is 
dependent on the transmission probability (see the inset plot in 
Fig. 1). Now, for a given 𝑃𝑃�� governed by the action selected by 
the transmission scheduling agent, and that determines the state 
for the sleep scheduler, this RL agent decides the sleeping 
strategy based on the learnt Q-table. Formally, the state 
perceived by the agent for node 𝑛𝑛 at a decision epoch 𝑡𝑡 is given 
by Eq. 6 (𝓈𝓈� ∈ 𝐼𝐼 and 𝓈𝓈� ≥ 0).  

𝑠𝑠�,��(𝑡𝑡) = 𝑓𝑓�𝑃𝑃��,�(𝑡𝑡)� = 𝓈𝓈� 𝑖𝑖𝑖𝑖 𝓈𝓈� ≤  10 × 𝑃𝑃��(𝑡𝑡) ≤ 𝓈𝓈� + 1   (6) 
Here, 𝑃𝑃��,�(𝑡𝑡) is the probability of transmission by node 𝑛𝑛 at 

epoch 𝑡𝑡. Similar to the other agent, the state transition 
probability in this case is also totally controlled by the 
environment, unlike classical MDP problem, where the 
transition is dependent on the agent’s policy as well. The 
actions taken by the sleep scheduling agent are evaluated using 
the same reward function given in Eq. (5). The same reward is 
used for both the agents since they share the common objective 
of reducing missed packet receptions and queue drops. 

Using the above two-stage interactive RL model, the wireless 
nodes learn a joint transmit-sleep policy so as to manage 
available harvested energy efficiently to maintain a reliable 
communication in a resource-constrained network. 

V. EXPERIMENTATION 
The experiments are performed to analyze the performance 

of the proposed scheduling protocol using a MAC layer 
simulator with embedded learning components. The time-
driven simulation kernel performs event scheduling in terms of 
packet generation, transmissions, and receptions. To implement 
the proposed protocol, the RL model is embedded on top of the 
MAC layer functions. The baseline experimental parameters 
are tabulated in Table I. From the transmitter amplifier and 
radio energy consumption details tabulated in Table I, the 
reception to transmission power consumption becomes 
𝐸𝐸�: 𝐸𝐸� ≈ 0.04. The performance of the learning-based MAC 
protocol is evaluated on the following metrics. 

Missed Packet Reception Rate (𝑃𝑃����) represents the rate of 
packet misses due to oversleeping and shortage of energy. 
Queue drop rate (𝑄𝑄����) indicates the rate of packet drops 
resulting from full MAC packet queue. The combined packet 
loss (𝑃𝑃����) can be expressed as sum of 𝑃𝑃���� and 𝑄𝑄����. 

Queueing delay is computed 
from queue length using 
Little’s Law [1]. 

We consider two scheduling 
policies for comparing the 
proposed approach. First, a 
naïve scheduling policy is 
considered to understand the 
environment and to create a 
benchmark for the RL-based 
scheduling mechanism. The 
naïve policy here is that the 
node remains awake in a frame 
with probability 𝑃𝑃�� and 
transmits with probability 𝑃𝑃�� 
given the node is on. We 
experiment with different 
combinations of these 
probabilities to understand the 
variation of the objective space 
in response to these sleep-

transmit decisions and to see where the learning-based solutions 
lie in that space. The proposed approach is also compared 
against the decentralized hybrid scheduling policy (battery and 
queue-based) proposed in [1], where, a sensor node goes from 
active to sleep mode depending on the queue length and battery 
status.  

VI. RESULTS AND ANALYSIS 
In order to test feasibility and gain insights of the proposed 

mechanism, we first analyze it on a single flow, three nodes 
network as shown in Fig. 2 (h), where the node 𝐻𝐻 is the energy 
harvesting node, receiving packets from source 𝑆𝑆 with flow data 
rate 𝜆𝜆 = 0.75 packet per frame (ppf) to be forwarded to 
destination 𝐷𝐷. Performance is analyzed first using the naïve 
scheduling policy explained in Section V and then using the 
RL-based scheduling approach detailed in Section IV. A three- 
dimensional surface plot shown in Fig. 2 (a)-(d) summarizes the 
performance of the naïve policy for different sleep and transmit 
probabilities. The following observations can be made for the 
naïve scheduling policy. For low transceiver on probability 
(𝑃𝑃��), missed packet reception rate (𝑃𝑃����)  first increases with 
increase in transmit probability (𝑃𝑃��) and then saturates. This is 
because, with increase in 𝑃𝑃��, harvested energy drains out more 
that leads to high percentage of packet misses (𝑃𝑃����). 
However, for very high value of 𝑃𝑃��, missed packet reception 
(𝑃𝑃����)  becomes very less sensitive to 𝑃𝑃��, because of very low 
effective data rate 𝜆𝜆���  due to missed receptions. Note that the 
effective data rate 𝜆𝜆���(< 𝜆𝜆) is determined by 𝜆𝜆, 𝑃𝑃��, 𝑃𝑃�� and 
other energy harvesting parameters (Section V). With increase 
in 𝑃𝑃��, packet missed receptions increase and there are less 
packets received, and more packets transmitted by the node 
because of high 𝑃𝑃��. This causes the queue length and hence 
queuing delay to decrease with 𝑃𝑃�� (Fig. 2 (d)). With increase 
in queue length, queue drop rate (𝑄𝑄����) also increases with 𝑃𝑃�� 
in scenarios when 𝑃𝑃�� < 𝜆𝜆���, owing to unstable queue (Fig. 2 
(b)). On the other side, with increase in ON probability (𝑃𝑃��), 
𝑃𝑃���� decreases. Reduction in packet loss is because the node is 
ON for more duration and hence allowing more packets to be  
received. Note that, for high 𝑃𝑃��, the gradient of decrease in 

TABLE I: BASELINE 
EXPERIMENTAL PARAMETERS 
Parameter Value 

𝑃𝑃� 0.2 
𝑤𝑤� 33.33 m/s 
𝐶𝐶 50 m 
𝛼𝛼 0.99 
𝛾𝛾 0.1 
ℎ 200 
𝐵𝐵  150 

𝑃𝑃������ 0.9 
𝑄𝑄𝑙𝑙��� 1000 

|𝒜𝒜�| = |𝒜𝒜�| 10 
𝜏𝜏� 100 
𝜏𝜏� 1 
𝜈𝜈 0.90 
𝛿𝛿 0.001 

𝛼𝛼� 2.4 
𝑃𝑃�� 0.353 𝑚𝑚𝑚𝑚 
𝑃𝑃�� 50𝜇𝜇𝜇𝜇 
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𝑃𝑃���� with 𝑃𝑃�� reduces. This can be explained by the fact that 
since the node is ON with high probability for high 𝑃𝑃��, this 
leads to more energy consumption (which is high for high 𝑃𝑃��), 
so more packet loss. However, effect of 𝑃𝑃�� on queuing delay 
and hence queue drop rate (𝑄𝑄����) is not significant. This is 
because, expected queue length (𝔼𝔼�𝑁𝑁��) as defined by Eq. (7) 
does not get affected by 𝑃𝑃��, since flow rate and service rate 
both are affected by 𝑃𝑃�� the same amount. 

𝔼𝔼�𝑁𝑁�� ∝ ��

���
, where 𝜌𝜌 𝜌 ���×�

���×�
= �

�
         (7)          

Thus, the desired scheduling policy should be such that the 
packet drops resulting from missed receptions and queue drops 
should be minimized while still maintaining a stable queue. In 
other words, the aim here is to find transmit and sleep policies 
that can find the minimum in the surface of 𝑃𝑃���� in Fig. 2 (c). 
To be noted that the variation of 𝑃𝑃����  with 𝑃𝑃�� and 𝑃𝑃�� is 
dependent on the energy harvesting parameters and network 
traffic, and hence the static policies cannot find the right 
balance among all the above-mentioned performance metrics. 

Now, experimenting with the proposed RL-based 
architecture, the solutions obtained are indicated by red points 
on the surfaces as shown in Fig. 2 (a)-(d). The RL-solutions 
obtained are concentrated in the region of low values of 𝑃𝑃���� 
(Fig. 2 (c)). To be noted that the RL-based architecture finds 
solutions that are better than the naïve scheduling policy in 
terms of 𝑃𝑃���� for the same 𝑃𝑃��, 𝑃𝑃��  values, most of the times. 
This is because the RL approach allows the nodes to learn a 
dynamic sleep-transmit scheduling. In other words, the learnt 

scheduling probabilities oscillate epoch by epoch. To 
exemplify, a transmit probability of 0.8 can indicate refraining 
from transmission deterministically for two consecutive epochs 
(400 frames), thus recharging its battery, and then transmitting 
for next eight epochs (1600 frames), thus, utilizing its recharged 
battery. It is observed that such dynamic policies learnt by the 
RL agents help the node to obtain a packet loss (𝑃𝑃����) rate 
lower than the static naïve policies for the same < 𝑃𝑃��, 𝑃𝑃�� > 
tuple. Also, it is observed that the queueing delays of the RL-
based solutions lie in the narrow region of transition from stable 
to unstable queue. This is because, missed packet reception rate 
(𝑃𝑃����) increases with 𝑃𝑃�� and queue drop rate, delay decreases 
with 𝑃𝑃�� (Fig. 2 (a), (b)). The RL-based framework makes the 
nodes learn policies so that there is the right balance between 
these two opposing performance parameters. 

Fig. 2 (e), (f) demonstrates the convergence behavior of the 
learning framework in terms of average 𝑃𝑃��, 𝑃𝑃�� and 𝑃𝑃����. The 
plots show both the long-term average as well as the transient 
behavior to capture the learning progression. Over time, the 
nodes learns transmission and sleep scheduling policy using the 
above-discussed framework, so that MAC packet loss reduces. 
Another observation is that on an average, the learning 
convergence time remains in the vicinity of 10� frame 
durations. Thus, for a typical MAC frame duration (for a 
degree-10 network) of 3-4 𝑚𝑚𝑚𝑚 [13], the convergence happens 
within 30-40 𝑠𝑠𝑠𝑠𝑠𝑠. This makes the approach highly practical in 
that it can cope with network condition changes with a time 
constant larger than roughly a minute. For many static (i.e., 

  
Fig. 2:(a)-(d): Network performance with naïve policy and proposed RL-based policy, (e)-(f): RL convergence behavior, (g) Comparison of proposed policy 

with existing hybrid policy, (h) Simple one-flow network 

249



 

non-mobile) sensor networks, the time constants for network 
topology and traffic condition changes can be much larger – 
often up to hours.  

  
Fig. 3: Performance Comparison in heterogeneous traffic conditions 

The proposed RL-based scheduling logic is experimented for 
different flow data rate 𝜆𝜆 and then compared with the existing 
hybrid sleep scheduling policy mentioned earlier in Section V. 
As depicted in Fig. 2 (g), the RL-based policy outperforms the 
hybrid sleep scheduling policy in terms of packet loss for 
different traffic patterns. The mean MAC queueing delay for 
the range of flow rates experimented is 126.64 frame duration 
which is when the MAC packet queue is 9.5% full. 

 
Fig, 4: Performance in one-hop networks with varying network size (N) 
 Performance of the proposed approach has been evaluated 

for a 20-nodes network, with 10 active flows (𝑁𝑁 𝑁 𝑁𝑁𝑁 𝑁𝑁 𝑁 𝑁 in 
the network in Fig. 1) and heterogeneous traffic and is shown 
in Fig. 3. The traffic pattern is such that flow ID 1-3; 4-6; 7-9 
and 10 had data rate 𝜆𝜆 𝜆𝜆𝜆𝜆𝜆 ; 0.10; 0.50 and 0.25 ppf 
respectively. It is observed that there is an ≈ 12% decrease in 
𝑃𝑃���� and ≈ 6% decrease in normalized queue length (and 
hence queueing delay), compared to the hybrid sleep scheduler. 

As a special case, we experiment with the learning-based 
scheduler in a one-hop network (𝐿𝐿𝐿𝐿   in Fig. 1) with 𝑁𝑁 sensor 

nodes, where 𝑁𝑁 varies from 10 to 30. To be noted that since it 
is a one-hop network, the packet loss is completely due to queue 
drop It is observed that, as shown in Fig. 4, for all the three 
networks, the proposed protocol achieves a low packet loss rate 
as well as a low queuing delay compared to that achieved by the 
hybrid sleep scheduler. This is because the hybrid sleep 
scheduler does not consider transmission scheduling into 
consideration, which gives rise to both high packet delays and 
queue drop rate. Furthermore, the increase in delays with 
increase in network size is because of the increase in MAC 
frame size with increase in number of wireless nodes. 

VII. SUMMARY AND CONCLUSIONS  
In this work, a Reinforcement Learning-based joint transmit-

sleep scheduling architecture is proposed for reliable 
communication in a solar energy-harvested wireless network. 
The scheduling problem is modeled as an MDP and solved 
using an interactive RL model. The online learning ability of 
the proposed approach makes the nodes learn a scheduling 
policy so as to minimize the MAC layer packet loss, while 
maintaining a stable packet queue, in the presence of limited 
energy budget and heterogeneous traffic patterns. Learning is 
decentralized in that each node learns its policy independently 
without explicit information sharing. With simulation studies, 
the proposed approach is validated and compared against a 
benchmark policy and an existing hybrid sleep-scheduling 
mechanism. Future extension of this work includes developing 
the framework for time-varying energy harvesting model, 
heterogeneous topologies, and energy profile. 
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