
Integrating Netfilter into SRv6 Routing
Infrastructure of Linux as an SR-Aware Network

Function
Kaito Sawada
Keio University

Kanagawa, Japan
sabaniki@wide.ad.jp

Ryo Nakamura
The University of Tokyo

Tokyo, Japan
upa@nc.u-tokyo.ac.jp

Keisuke Uehara
Keio University

Kanagawa, Japan
kei@wide.ad.jp

Abstract—This paper proposes a new SRv6 End behavior,
called End.AN.NF, integrating Linux netfilter as a network
function for service function chaining by Segment Routing (SR).
End.AN.NF allows netfilter-based applications to be executed as
SR-Aware applications without modification, as it applies netfilter
to inner packets encapsulated in SRv6 while performing the basic
SRv6 End behavior. Furthermore, End.AN.NF utilizes the argu-
ment of the segment identifiers to mark packets. Consequently,
this enables netfilter-based applications to match the marks on
packet buffers and change rules to be applied. We implemented
End.AN.NF on the Linux kernel and evaluated its performance.
The evaluation shows that End.AN.NF achieves 27% higher
throughput and 3.0 microseconds lower latency than applying
netfilter to SRv6-encapsulated inner packets by End.DT4 and
H.Encaps.

Index Terms—Service Function Chaining, Segment Routing,
SRv6

I. INTRODUCTION

Service Function Chaining (SFC) is a topic that has been
studied in contexts of Software Defined Network (SDN) and
Network Function Virtualization (NFV) [1]–[4]. SFC steers
packets to Network Functions (NFs) according to predeter-
mined rules about the order and type of NFs to traverse.
SDN controllers or routing protocols install the rules to steer
packets, and the headers of packets may include information
matched by these rules. In SFC, routers require to select the
next hops for forwarding packets regardless of the shortest
path. SFC offers flexible and economical alternatives to to-
day’s static environments for Cloud Service providers (CSPs),
Application Service Providers (ASPs), and Internet Service
Providers (ISPs) [5].

Several technology candidates could achieve SFC, such as
OpenFlow [6], Network Service Header (NSH) [7], MPLS [8]
and so on. These technologies can steer packets to intended
NFs based on rules, regardless of the shortest path. In Open-
Flow, a controller installs flow rules to OpenFlow switches
explicitly. OpenFlow switches forward packets to go through
intended NFs with properly managed match the rules. This
architecture allows flexible path control that is not based on
traditional routing protocols. NSH identifies an NF by Service
Path Identifier (SPI) and Service Index (SI). NSH nodes for-

ward packets according to SPI and SI by encapsulation. NSH
creates a dedicated overlay network called service plane and
allows service forwarding to occur within that plane without
modifying the underlying network topology. In MPLS, instead
of using NSH directly, MPLS label stack contains the hop by
hop order to pass through, routers and NFs. This approach
also achieves steering packets for SFC without modifying the
underlying network topology.

Segment Routing (SR), especially Segment Routing over
IPv6 (SRv6), is also one of the technologies used for im-
plementing SFC. SR represents every entity, such as links,
nodes, and services, in a network by segments. A header of
a packet contains a list of the segments. The list of segments
indicates a path that the packet should pass through. SRv6
uses an IPv6 address as an identifier for a segment, called
Segment Identifier (SID). In other words, SRv6 leverages IPv6
routing infrastructure as its underlay to deliver packets through
arbitrary order of segments. SRv6 achieves SFC by assigning
segments to the NFs to be performed on those segments, and
forwarding packets accordingly.

In SRv6, NFs represented by SIDs would achieve SRv6-
based SFC. However, it is not obvious how to integrate the
behavior of NFs above the SRv6 layer and the underlying IPv6
routing infrastructure. For example, let us consider a Network
Address Translation (NAT) for IPv4 packets as an NF in an
SRv6 network. IPv4 packets are encapsulated in outer IPv6
headers involving SR Header (SRH). If the NAT implemen-
tation is not aware of SRv6, it requires SR-proxies [9] for
SR-unaware NFs that introduce additional complexity [10]. If
the implementation can perform both NAT for inner packets
and the SRv6 forwarding behavior simultaneously, it would be
layer violation. Such an implementation in Linux, SERA [11],
acts as an End behavior by modified iptables actions, although
the Linux kernel has the capability of performing an End
behavior in its IPv6 routing and forwarding infrastructure.

Along these lines, in this paper, we introduce an SR-Aware
service function, called End.AN.NF, which enables existing
netfilter-based applications to be SR-Aware applications with-
out modification. More specifically, it integrates Linux netfil-
ter as an NF while leveraging the IPv6 routing infrastructure

251979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

of Linux. We designed End.AN.NF to treat netfilter hook
points transparent to the SRv6 inner packet. We implemented
End.AN.NF on the Linux kernel and evaluated its throughput
and latency. The evaluation shows that End.AN.NF achieves
27% higher throughput and 3.0 microseconds lower latency
than applying netfilter to SRv6-encapsulated inner packets by
the combination of End.DT4 and H.Encaps. In addition, the
latency of End.AN.NF is the same as that of End behavior
in microsecond resolution.

II. BACKGROUND AND RELATED WORK

SRv6 [12] is one of the source routing architectures that uses
IPv6. It allows network operators or applications to specify
intermediate points that a packet passes through by embedding
a sequence of identifiers into the IPv6 extension header, called
SRv6 header (SRH) [13]. The identifiers are called by Segment
Identifiers (SIDs), and each SID represents a specific function
to be performed at a specific location in a network. To specify
which SID is the current SID in the SID list, SRH has a field
called Segments Left (segleft). segleft is an index for the SID
list, starting from (number of SIDs)−1 and ending at zero.
A SID is an IPv6 address associated with a specific segment
in a network. The SID is structured as LOC:FUNCT:ARG,
where LOC represents a locator, FUNCT is an identification of
a local behavior associated with the SID, and ARG may encode
additional information required for an action. The locator may
also be represented as B:N, where B is the SRv6 SID block
(an IPv6 prefix allocated for SRv6 SIDs) and N is the identifier
of the node instantiating the SID.

When SRv6 node receives a packet whose destination IPv6
address is a local SID configured in the node, the SRv6 node
performs pre-defined behavior associated with the SID. In
the SRv6 context, the behaviors that SRv6 nodes perform
are called End behaviors. Currently, RFC8986 [12] defines
15 types of End behaviors, and the most basic End behavior
is End. End decrements the segleft of SRH of a received
packet and replaces the destination IPv6 address with the next
SID. Next, the SRv6 node forwards the packet to the next
hop in accordance with the updated destination IPv6 address.
RFC8986 also defines behaviors that encapsulate packets in
SRH involving SID lists, which are called Headend behaviors.

SIDs in SRv6 are IPv6 addresses; therefore, advertising
SIDs over the existing routing protocols can build a network
based on SRv6. For example, H.Encaps and End.DT4,
which are Headend and End behaviors respectively, can com-
pose layer-3 VPN [14]. H.Encaps encapsulates IPv4 or IPv6
packets in outer IPv6 headers with SRH, and End.DT4 decap-
sulates the packets encapsulated in the SRH. When H.Encaps
in an ingress SRv6 node encapsulates packets in outer IPv6
headers, whose destination address is End.DT4 SID of an
egress SRv6 node, the encapsulated packets are forwarded
to the egress SRv6 node in accordance with the LOC of the
End.DT4 SID over the underlying SRv6 routing infrastruc-
ture. The egress SRv6 node receives the packets and performs
End.DT4; the packets are then decapsulated and the inner

packets are routed based on a Virtual Routing and Forwarding
(VRF) table associating the ARG of the SID.

The above examples illustrate the behaviors associated with
SIDs. On the other hand, some behaviors are not limited to
encapsulation and decapsulation; NFs applied to packets can
be also represented by SIDs. When an NF applies some net-
work services for transit packets while performing End—
decrementing segleft and updating destination IPv6 address
with the next SID, such an NF is called an SR-Aware function.
SERA [11] is an implementation of an SR-Aware function,
integrated with Linux iptables. SERA extends Linux iptables
so that iptables matches fields in SRH with iptables rules,
to apply filtering rules for firewall purposes. SERA can also
perform like End, forwarding packets toward the next SID.
This design choice makes it difficult to integrate the SIDs as-
sociated with SERA into routing infrastructures; these SIDs in
iptables cannot be advertised via the existing routing protocols,
unlike the example of layer-3 VPN. As outlined above, how
to integrate a form of NF and the underlying IPv6 routing
infrastructure still has room for consideration.

In contrast to SR-Aware functions, various methodologies
to integrate traditional, SR-unaware NFs into SRv6-based SFC
have been proposed. SR Proxy [9] is the key component to
connect SR-unaware NFs with underlying SRv6 networks. An
SR Proxy receives packets destined to a local SID, passes
inner packets without the SRH to a associated NF, attaches
proper SRH to packets returned from the NF, and forwards
the packets to tne next SID. Some SR Proxy implementations
in Linux have been proposed [15]–[17]. On the other hand,
SR Proxies fundamentally introduce additional complexities to
networks. For example, SR proxies need to determine proper
SID lists attached to packets returned from NFs. There is a
possibility that inner packets have arbitrary destinations and
arbitrary sources. Thus, SID lists that the SR proxy should
attach can vary depending on the inner packets. SR proxies
need to implement their own mechanism to determine proper
the SID lists to be attached, for example, attaching static ones
(End.AS) or caching some states inside proxy implementa-
tions [15]. Moreover, some issues for deploying SR proxies
are addressed—a type of service that cannot co-exist with a
specific SR Proxy type, service liveness detection, and an SID
advertisement issue for services behind SR proxies [10].

III. DESIGN AND IMPLEMENTATION OF END.AN.NF

As a new implementation of SR-Aware NF, we introduce
End.AN.NF, which integrates the ability to filter and mangle
packets by netfilter into the routing infrastructure in Linux.
End.AN.NF means an End behavior of SR-Aware Native
function for NetFilter. We also designed End.AN.NF to lever-
age the IPv6 routing stack of the Linux kernel. An End.AN.NF
SID is represented as an IPv6 routing table entry; therefore,
its route can be exported and advertised to other nodes via the
existing routing protocols and their implementations transpar-
ently. Moreover, End.AN.NF applies netfilter rules to inner
packets encapsulated in SRv6. This enables the use of any
netfilter-based applications, such as selective packet discarding

252

and applying NAT for traffic, configured via nftables [18]
and iptables [19], as SR-Aware NFs without modifying their
implementations.

netfilter has three hook points in Linux layer-3 packet for-
warding flow, which applies netfilter rules to packets at differ-
ent timings: prerouting, forward, and postrouting. Figure 1 de-
picts a flow of transit packets and netfilter hooks to be applied.
As shown, there are two stages for applying netfilter hooks
to an SRv6 encapsulated packet as an IPv6 packet including
the SRH and its inner packet without the SRH. First, when
a Linux-based SRv6 nodes that implements End.AN.NF re-
ceives an IPv6 packet, its kernel applies the prerouting hook to
the received packet, and then performs longest prefix matching
for the destination IPv6 address as usual. If the destination
address is a local End.AN.NF SID, the kernel passes the
packet to the End.AN.NF implementation, otherwise the ker-
nel forwards the IPv6 packet to a corresponding next hop
while applying forward and postrouting hooks. Meanwhile,
End.AN.NF applies prerouting, forward, and postrouting hooks
again, but to the inner packet encapsulated in the SRH. During
the netfilter applying in the stage of End.AN.NF, the SRH is
hidden by End.AN.NF, so netfilter does not have to consider
to treat the SRH.After End.AN.NF finishes, the destination
address of the outer IPv6 header is replaced with the next SID,
and the encapsulated packet returns to the usual forwarding
path.
End.AN.NF utilizes the ARG field in the SID to mark pack-

ets. ARG is the lower bits of a SID [12]. The SRv6 specification
allows End behaviors to utilize ARGs in accordance with their
specific behaviors. In End.AN.NF, ARG of SIDs is attached
to packet buffers as a mark. netfilter-based applications can
match the marks on packet buffers and change rules to be
applied. Therefore, operators can adjust rules for traffic based
on ARG even behind a single End.AN.NF SID.

Algorithm 1 describes how End.AN.NF passes a packet to
a netfilter hook point. First, End.AN.NF extracts the ARG
value from the destination address of a received packet if
the ARG length is specified for this End.AN.NF SID. The
extracted ARG value is attached to the packet buffer as a mark.
Next, End.AN.NF switches the head of the packet buffer from
the outer SRH to the inner packet, and pass the buffer to a
netfilter hook. After rules installed in the hook are applied to
the inner packet, End.AN.NF restores the head of the packet
buffer from the inner packet to the outer SRH, and takes the
packet to the next process. This procedure occurs three times
for each hook point illustrated as the red rectangles in Figure 1.

The Linux kernel implements End behaviors as routing
table entries whose destinations are SIDs of the functions.
This mechanism is called seg6local. End.AN.NF is one
of the End behaviors, so its implementation also leverages
seg6local. As shown in the Figure 2, we can confirm
that the kernel treats the SID representing End.AN.NF as
a routing table entry similar to the others End behaviors.
When routing software or iproute2 adds the SID as a routing
table entry, it is possible to advertise the routes in the kernel
routing table using the traditional routing protocols. We con-

Routing

prerouting

forward

postrouting
Routing Layer

prerouting postroutingforwardRouting

End.AN.NF

Outer IPv6
Header

SRv6
Header

Inner IP
Header Payload

SRv6 Layer

Fig. 1. End.AN.NF applies three netfilter hook points, prerouting, forward,
and postrouting, to inner packets encapsulated in SRv6.

firmed that FRRouting [20] can advertise SIDs associated with
End.AN.NF in the kernel as IPv6 routes to other routers via
BGP. The architecture of End.AN.NF is highly compatible
with the existing NFs because it can use the existing routing
protocols for routing control. This architecture is one of the
ways to realize SR-Aware NF using Linux netfilter.

IV. EVALUATION

We conducted three experiments to evaluate the perfor-
mance of our implementation: two focused on throughput
and one on latency. The first experiment examines throughput
based on the packet size, while the second assesses throughput
in relation to the number of filter rules in a netfilter-based
application. The third experiment investigates the latency
associated with different packet forwarding mechanisms.

We compare the performance of End.AN.NF with three
forwarding mechanisms: End, the combination of End.DT4
and H.Encaps, and IPv4, which serves as a baseline. As
shown in Figure 1, when End.AN.NF operates, a received
packet passes through twice the number of hook points com-
pared to End. Hence, the performance of End.AN.NF might
be inferior to End. On the other hand, the performance of
End.AN.NF is expected to be higher than the combination
of End.DT4 and H.Encaps. When applying netfilter rules to
packets encapsulated in SRv6, a practical approach in a vanilla
Linux kernel is the combination of End.DT4 and H.Encaps.
Vanilla Linux kernel does not have a method to apply netfilter
to a packet that is still encapsulated in SRv6. Therefore, it
needs to decapsulate the packet once and encapsulate it instead
of the originally attached SRH again. A packet decapsulated
by End.DT4 passes through netfilter hook points as an IPv4
packet, and H.Encaps stores new SRH. Thus, this method
has overheads because it requires End.DT4 to decapsulate the
packet and then H.Encaps to encapsulate the packet again.
Therefore, it is anticipated that this overhead will lead to a
degradation in performance.

253

Algorithm 1 Pseudo code of passing a packet to a netfilter hook point in End.AN.NF
1: function PASSPACKETTOHOOK(packet)
2: if the length of ARG is specified for this End.AN.NF SID then
3: Extract the ARG value from the destination address of outer SRH
4: Mark the ARG value on the packet buffer packet
5: end if
6: Switch the head of packet buffer packet from the outer SRH to the inner packet
7: Pass packet to a netfilter hook
8: Switch the head of packet buffer packet from the inner packet to the outer SRH
9: end function

$ ip -6 route | grep End

2001:db8:1::/96 encap seg6local action End.AN.NF arglen 32 dev eth0 metric 1024 pref medium

2001:db8:2::200 encap seg6local action End dev eth0 metric 1024 pref medium

2001:db8:3::300 encap seg6local action End.DX4 nh4 192.168.99.1 dev eth1 metric 1024 pref medium

Fig. 2. The modified Linux kernel treats an End.AN.NF SID as an IPv6 routing table entry. We can manage the End.AN.NF routes with the existing tools
such as iproute2.

The environment is the same configuration for all exper-
iments. We prepared two machines directly connected with
a 100 Gbps link. The two machines are identical: Intel(R)
Xeon(R) Silver 4310 12-core CPU x2, 64-GB DDR4-2666
memory, and Intel E810 100 Gbps NIC. We disabled The
CPU’s hyperthreading function. One is used as a traffic gener-
ator, and the other as a System Under Test (SUT). In the traffic
generator machine, we installed Ubuntu 22.04 and TRex [21],
which we used to generate test traffic. In the SUT machine,
we installed the customized Linux kernel 5.15.106, where we
have implemented End.AN.NF and the customized iproute2
command to configure End.AN.NF SIDs. We also prepared
two VLANs on the link between the two machines.

A. Throughput per packet size

We measured the throughput of End.AN.NF, End, IPv4,
and the combination of End.DT4 and H.Encaps while
changing the packet size to increase. This experiment clarifies
the change in throughput with packet size for each packet
forwarding mechanism. We did not use any netfilter rules
in this experiment. We assessed the throughput reduction of
End.AN.NF in comparison to End and the performance im-
provement of End.AN.NF over the combination of End.DT4
and H.Encaps.

We sent traffic generated by TRex on the traffic generator
machine to the SUT machine, from a minimum packet length
of 126 bytes to a maximum packet length of 1518 bytes. We
calculated the packet length at the time of measurement as
follows: l = 174n + 126. l means the length of the packet,
and n means the number of measurements. We collected a
total of 10 measurements, from n = 0 to n = 10.

The reason we chose a packet length of 126 bytes as a
minimum packet length is the minimum length for a UDP
packet with a tagged VLAN when the SID list length is two.
End.AN.NF mandates a SID list length of at least two, as
it decrements the packet’s segleft, which must remain zero
or above. With a SID list length of one, the segleft starts

at zero, and decrementing it with End.AN.NF would result
in a negative value. Conversely, End.DT4 necessitates that
the segleft is zero. In the measurement of the combination
of End.DT4 and H.Encaps, TRex generated packets with a
SID list length of two but set the segleft to zero. To effectively
use the Receive Side Scheduling (RSS) mechanism, TRex
incremented both the destination and source addresses of the
inner IPv4 packet during packet generation. For IPv4, we
embedded dummy data in the UDP payload to match the
SRv6 packet length, starting the packet length at 126 bytes. We
also incremented the destination and source addresses during
packet generation to leverage RSS effectively. Given that the
maximum size of an Ether frame, including the tagged VLAN
header, is 1518 bytes, we set the upper packet size limit to
1518 bytes for this measurement.

Figure 3 shows the result of this experiment. The throughput
of End.AN.NF never degrades by more than 6% compared
to End across all packet lengths. For a packet length of 1518
bytes, End.AN.NF exhibits the least throughput degradation
relative to End, approximately 1.7%. Conversely, about 5.6%
of the highest degradation occurs at a packet length of 478
bytes when comparing End.AN.NF to End. There is no cor-
relation between packet length and throughput, which varied
significantly. This degradation in throughput can be attributed
to packets in End.AN.NF traversing twice the number of
netfilter hook points compared to those in End, which remains
within an acceptable range.

When comparing the throughput of End.AN.NF to the
combination of End.DT4 and H.Encaps, End.AN.NF con-
sistently outperforms, irrespective of the packet length, as an-
ticipated. Specifically, End.AN.NF achieves a throughput that
is 26.7% higher than that of the End.DT4 and H.Encaps
combination. The throughput disparity between End.AN.NF
and the combination of End.DT4 and H.Encaps is influ-
enced by packet length: shorter packets result in a larger
relative performance gap, while longer packets yield a nar-

254

126 300 474 648 822 996 1170 1344 1518
Packet size (byte)

0

25

50

75
Th

ro
ug

hp
ut

 (G
bp

s)

End.AN.NF
End
IPv4
End.DT4 and H.Encaps

Fig. 3. Throughput per SRv6 End behaviors and IPv4

rower difference. The packet per second (pps) rate increases
as packet size decreases. As a result, smaller packet sizes make
any overheads in packet forwarding more noticeable.

B. Throughput per number of filter rules installed in netfilter

Next, we evaluated the throughput of End.AN.NF, IPv4,
and the combination of End.DT4 and H.Encaps, varying
the number of filter rules installed in netfilter. We used nftables
as a netfilter-based application to install filter rules. In nftables,
the rules are expressed as sets of chains. There are two types of
chains: base chains and regular chains. All filter rules in base
chains apply to forwarding packets. nftables uses the regular
chains only when the other chain refers to the regular chain. In
our experiment, we gauged the throughput for each chain type,
incrementing the count of each chain type. We anticipated a
throughput decline with the addition of filter rules, irrespective
of the forwarding mechanisms. This experiment aims to clarify
the characteristic of the throughput degradation for each packet
forwarding mechanism due to the filter rules.

We sent traffic generated by TRex on the traffic generator
machine to the SUT machine. For this measurement, we set
the packet length consistently at 126 bytes. Our choice for a
126-byte packet length aligns with the rationale provided in
Section IV-A, which corresponds to the minimum length of a
UDP packet with a tagged VLAN when the SID list length is
two.

Figure 4 illustrates the throughput per number of rules of
base chains. The chain rule is one of the worst cases of the
nftables chain rule. In this measurement, we installed filter
rules at the netfilter’s forward hook point. These rules are
consistently designed to accept all passing packets and then
apply the same subsequent rule. netfilter permits the installa-
tion of multiple rules on a single hook point. Throughout the
experiment, we incrementally increased the number of these
identical cascading rules applied at this hook point. Across all
packet-forwarding mechanisms, throughput diminishes with an
increasing number of rules. As rule count rises, the throughput
for all three mechanisms converges to approximately 0.4
Mbps. When comparing the throughput of End.AN.NF and
IPv4, there is no pronounced disparity of characteristics in
throughput decline, with End.AN.NF not showing any signif-
icant disadvantage relative to IPv4. Consistently, End.AN.NF

20 21 22 23 24 25 26 27 28 29

of rules of base chains
0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (G

bp
s)

End.AN.NF
IPv4
End.DT4 and H.Encaps

Fig. 4. Throughput per number of rules of base chains

20 21 22 23 24 25 26 27 28 29

of rules of regular chains
0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (G

bp
s)

End.AN.NF
IPv4
End.DT4 and H.Encaps

Fig. 5. Throughput per number of rules of regular chains

outperforms the combination of End.DT4 and H.Encaps in
terms of throughput. However, this performance gap narrows
with increasing rule count, reaching a mere 9% difference at
128 rules. As the rule count in the regular chain escalates, the
advantage of End.AN.NF over the combination of End.DT4
and H.Encaps diminishes.

Figure 5 presents the throughput as per number of rules
in regular chains. Notably, there’s no observed degradation in
throughput, End.AN.NF consistently outperforms the com-
bination of End.DT4 and H.Encaps. The filter rules for
regular chains were the same configuration as when we
measured for the base chains, consistently designed to accept
all passing packets and then apply the same subsequent rule.
However, in this chain rule configuration, none of the defined
regular chains are referenced by other chains, so none of the
rules configured in regular chains apply to the packets. As a
result, the actual number of rules applied as packets traverse
the netfilter hook point remains unchanged.

C. Latency of End.AN.NF, End, IPv4, and the combination of
End.DT4 and H.Encaps

We also measured the latency of End.AN.NF, End, IPv4,
and the combination of End.DT4 and H.Encaps. This
experiment focused on latency. Our objective was to evaluate
the latency of End.AN.NF by comparing its degradation
relative to End and its improvement when juxtaposed with
the combination of End.DT4 and H.Encaps. For this eval-
uation, we used IPv4 latency as the baseline reference.

We measured packet forwarding latency using TRex. TRex
can capture the time interval between packet transmission and

255

End.AN.NF End IPv4 End.DT4
and H.Encaps

0

5

10

15
RT

T
(μ

s)

Fig. 6. Latency per SRv6 End behaviors and IPv4

reception in microsecond resolution. In this measurement, the
packet length was 142 bytes: 126 bytes is the minimum packet
length End.AN.NF requires, as explained in Section IV-A,
and the next 16 bytes is used to pass information needed to
measure latency by TRex. During the experiment, the traffic
generator dispatched 10000 packets per second to the SUT
for 10 seconds. We disabled RSS in this measurement by not
changing the source and destination addresses. At this level of
pps, distributing CPU cores using RSS would worsen latencies
and cause extra jitter.

The result is shown in Figure 6. Each data point on these
graphs represents the average of 100,000 latency measure-
ments. The latencies for End.AN.NF, End, and IPv4 are
consistently 16.0 microseconds. In contrast, the combination
of End.DT4 and H.Encaps exhibits a latency of 19.0
microseconds. When measured in microsecond resolution,
End.AN.NF matches the latency of End and IPv4 and is ap-
proximately 15.8% faster than the End.DT4 and H.Encaps
combination.

V. CONCLUSION

In this paper, we have proposed a new SRv6 End behavior,
End.AN.NF, which integrates Linux netfilter and achieves the
coexistence with routing protocols, such as BGP. End.AN.NF
allows netfilter-based applications to serve as SR-Aware ap-
plications without modification, as End.AN.NF spoofs three
netfilter hook points—prerouting, forward, and postrouting—
to make them transparent to the SRv6 inner packet. Further-
more, End.AN.NF utilizes the ARG field in the SID to mark
packets. This approach facilitates netfilter-based applications
in matching marks on packet buffers, thereby allowing for
dynamic rule adjustments. We implemented End.AN.NF
on the Linux kernel and evaluated its performance. As a
result, our implementation achieved 27% higher throughput
and 3.0 microseconds lower latency than the combination
of End.DT4 and H.Encaps, which is one of the ways to
apply netfilter rules to an SRv6 inner packet. Moreover, the
difference in throughput between End and End.AN.NF was
under 6%, indicating that the overhead of End.AN.NF is the
acceptable range compared with the most basic End behavior.

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[2] K. Kaur, V. Mangat, and K. Kumar, “A comprehensive survey of service
function chain provisioning approaches in sdn and nfv architecture,”
Computer Science Review, vol. 38, p. 100298, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574013720303981

[3] I. Trajkovska, M.-A. Kourtis, C. Sakkas, D. Baudinot, J. Silva, P. Harsh,
G. Xylouris, T. M. Bohnert, and H. Koumaras, “Sdn-based service
function chaining mechanism and service prototype implementation
in nfv scenario,” Computer Standards & Interfaces, vol. 54, pp.
247–265, 2017, sI: Standardization SDN&NFV. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S092054891730017X

[4] G. Davoli, W. Cerroni, C. Contoli, F. Foresta, and F. Callegati, “Imple-
mentation of service function chaining control plane through openflow,”
in 2017 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), 2017, pp. 1–4.

[5] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey
on service function chaining,” Journal of Network and Computer
Applications, vol. 75, pp. 138–155, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804516301989

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, p. 69–74, mar 2008. [Online]. Available:
https://doi.org/10.1145/1355734.1355746

[7] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header
(NSH),” RFC 8300, Jan. 2018. [Online]. Available: https://www.rfc-
editor.org/info/rfc8300

[8] A. Farrel, S. Bryant, and J. Drake, “An MPLS-Based Forwarding
Plane for Service Function Chaining,” RFC 8595, Jun. 2019. [Online].
Available: https://www.rfc-editor.org/info/rfc8595

[9] F. Clad, X. Xu, C. Filsfils, D. Bernier, C. Li, B. Decraene, S. Ma,
C. Yadlapalli, W. Henderickx, and S. Salsano, “Service Programming
with Segment Routing,” Internet Engineering Task Force, Internet-
Draft draft-ietf-spring-sr-service-programming-08, Aug. 2023, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-
spring-sr-service-programming/08/

[10] R. Nakamura, Y. Ueno, and T. Kamata, “An Experiment
of SRv6 Service Chaining at Interop Tokyo 2019 ShowNet,”
Internet Engineering Task Force, Internet-Draft draft-upa-srv6-service-
chaining-exp-00, Oct. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-upa-srv6-service-chaining-exp/00/

[11] A. Abdelsalam, S. Salsano, F. Clad, P. Camarillo, and C. Filsfils, “Sera:
Segment routing aware firewall for service function chaining scenarios,”
in 2018 IFIP Networking Conference (IFIP Networking) and Workshops,
2018, pp. 46–54.

[12] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and
Z. Li, “Segment Routing over IPv6 (SRv6) Network Programming,”
RFC 8986, Feb. 2021. [Online]. Available: https://www.rfc-
editor.org/info/rfc8986

[13] C. Filsfils, D. Dukes, S. Previdi, J. Leddy, S. Matsushima, and
D. Voyer, “IPv6 Segment Routing Header (SRH),” RFC 8754, Mar.
2020. [Online]. Available: https://www.rfc-editor.org/info/rfc8754

[14] G. Dawra, K. Talaulikar, R. Raszuk, B. Decraene, S. Zhuang, and
J. Rabadan, “BGP Overlay Services Based on Segment Routing
over IPv6 (SRv6),” RFC 9252, Jul. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9252

[15] M. Haeberle, B. Steinert, M. Weiss, and M. Menth, “A caching sfc proxy
based on ebpf,” in 2022 IEEE 8th International Conference on Network
Softwarization (NetSoft), 2022, pp. 171–179.

[16] A. Mayer, S. Salsano, P. L. Ventre, A. Abdelsalam, L. Chiaraviglio, and
C. Filsfils, “An efficient linux kernel implementation of service function
chaining for legacy vnfs based on ipv6 segment routing,” in 2019 IEEE
Conference on Network Softwarization (NetSoft), 2019, pp. 333–341.

[17] B. Zhao, Y. Qin, W. Yang, P. Fan, and X. Zhou, “Sra: Leveraging af xdp
for programmable network functions with ipv6 segment routing,” in
2022 IEEE 47th Conference on Local Computer Networks (LCN), 2022,
pp. 455–462.

[18] The Netfilter’s webmasters, “The netfilter.org ”nftables” project.”
[Online]. Available: https://nftables.org/projects/nftables/index.html

[19] ——, “The netfilter.org ”iptables” project.” [Online]. Available:
https://nftables.org/projects/iptables/index.html

[20] FRRouting Project, a Linux Foundation Collaborative Project,
“Frrouting.” [Online]. Available: https://frrouting.org/

[21] TRex Team, “Trex: Realistic traffic generator.” [Online]. Available:
https://trex-tgn.cisco.com/

256

