
Cloud5GC : Design and implementation of scalable
and stateless mobile core system on public cloud

Kunio Akashi, Seiichi Yamamoto,
Haruki Sakurai, Koki Ito, Tomohiro Ishihara,

Takuji Iimura, Yuji Sekiya
The University of Tokyo

Tokyo, Japan
k-akashi@si.u-tokyo.ac.jp, yama@iis.u-tokyo.ac.jp,

harusaku0412@g.ecc.u-tokyo.ac.jp,
utmt0328@g.ecc.u-tokyo.ac.jp, sho@c.u-tokyo.ac.jp,

iimura-takuji@g.ecc.u-tokyo.ac.jp, sekiya@nc.u-tokyo.ac.jp

Hiroki Watanabe, Keiichi Shima, Katsuhiro Horiba,
Research Institute of Advanced Technology

SoftBank Corp.
Tokyo, Japan

hiroki.watanabe14@g.softbank.co.jp,
keiichi.shima@g.softbank.co.jp,

katsuhiro.horiba@g.softbank.co.jp

Abstract—For contemporary IT services, Wireless communi-
cation, facilitated by mobile phones, is a fundamental infrastruc-
ture. 5G comprises RAN (Radio Access Network) and Mobile
Core (5GC) technologies. Specifically, 5GC handles communica-
tion from smartphones and IoT devices, enabling communication
tailored to each use case, thereby solidifying its position as
the Mobile Core system within the 5G network. With the
recent proliferation of smartphones and IoT devices, along with
advancements such as digital twins, there has been a substantial
increase in traffic demand on 5GC. This surge has compelled
telecom companies to invest heavily in equipment upgrades and
operational maintenance to ensure stable 5GC communication.
To address the challenges in the Mobile Core, our research
has aimed at reimagining the 5GC architecture. We introduced
Cloud5GC, a groundbreaking solution that transitions away from
traditional function-based systematization towards a more cohe-
sive micro Mobile core architecture. Implementing Cloud5GC on
a public cloud platform demonstrated its flexibility, resilience,
and fault-tolerance. Our findings underscore the architectural
excellence of Cloud5GC, representing a significant advancement
in 5G communications.

I. INTRODUCTION

Mobile phones are essential in the modern IT world, with
smartphones enabling not just calls but also data communica-
tion. The rise of IoT devices adds to the growing number of
devices connecting to mobile networks each year. As mobile
network technologies progress, the shift from 4G/LTE to 5G
is underway. The 5G system is divided into two systems; the
Radio Access Network (RAN) and the Core Network (CN).
The RAN system includes mobile devices and base stations,
mainly for radio wave transmission. CN is composed of
the control network, called “Control plane” (C-Plane), which
handles User Equipment (UE) registration, billing, and state
management, and “User plane” (U-Plane), which manages data
communication from UEs to the Internet. In other words, the
Core system is a critical part of a mobile network because a
single Core manages tens of millions of UEs. On the other
hand, the gNodeB (gNB) systems are installed based on the
reach of their radio waves, inevitably resulting in a fewer
number of UEs managed by a single gNB.

NSSF NEF NRF PCF UDM

AFAUSF

N2

AMF SMF

N1

radioUE (R)AN UPF DN

N4

N3 N6

N9

Nnssf Nnef Nnrf Npcf Nudm

NafNsmfNamfNausf

RANUE

Core Network (CN)

Fig. 1: Overview of a typical 5G system

Both the RAN and the CN are essential components of the
5G system. However, a failure in the CN typically leads to a
severe and potentially catastrophic outage in the 5G system.
This is because, as previously mentioned, the RAN consists of
numerous gNBs. If one of these gNBs experiences a failure,
only the UEs managed by that specific gNB are affected by
the issue. Moreover, even if a failure occurs in a single gNB,
as long as the signal from neighboring gNBs reaches the UE,
the UE will switch to a functioning gNB to maintain commu-
nication, preventing a complete communication breakdown.

On the other hand, if a failure occurs in the CN, all the gNBs
connected to that CN are impacted, and consequently, all UEs
linked to those gNBs lose communication capabilities. Such
a failure in the CN can be catastrophic for the 5G system.
Mobile communication companies invest heavily in system
redundancy to prevent CN failures. This stems from the fact
that the mobile network was built following the legacy of
the circuit-switched model used in traditional telephony. The
CN acts as a system that aggregates and centrally manages
endpoints, or UEs, a model that has remained consistent from
the era of the second-generation GSM, through 3G, 4G/LTE,
and into the current 5G. As the number of devices connected
to the mobile network and the volume of communication
continue to increase annually, the cost to maintain the CN

310979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

system has also increased. The potential impact scope of a
failure in the CN system has expanded, and real incidents have
occurred in Japan [1], leading to significant societal concerns.

In this study, rather than relying on the traditional central-
ized and large-scale Core system, we designed and imple-
mented a micro Mobile Core architecture named Cloud5GC.
The proposed micro Mobile Core architecture executes server-
less functions on a per-procedure code basis, rather than
distributed execution on a per-function basis as designed
in traditional 5GC. This ensures that only a single UE is
affected during a CN process failure. In addition, the micro
Mobile Core architecture is designed as deployment on AWS
Lambda, making it easy to scale out and ensuring redundancy.
This approach aims to significantly enhance the scalability,
redundancy of the Mobile Core. We further evaluated its
performance and benefits.

The structure of this paper is as follows: Section II discusses
related works; Section III elaborates on the design philosophy
of Cloud5GC. Further, Section IV and V provide details on
the design and implementation of Cloud5GC, while Section VI
presents the evaluation results. Finally, Section VII concludes
this study.

II. RELATED WORKS

This section describes related studies on Mobile Core sys-
tems and summarizes the differences from this study.

“Investigating Inter-NF Dependencies in Cloud-Native 5G
Core Networks” [2] describes the Service-Based Architecture
(SBA) in CNs. In this paper, SBA achieves flexibility and
agility in a move towards cloud-native implementations. How-
ever, the advanced functional decomposition in SBA implies
an increase in Network Function (NF) signaling traffic during
the execution of C-Plane procedures, amplified overheads
from serialization, and complexities in ensuring UE state
consistency and orchestration in systems where NF dependen-
cies are tight. Furthermore, the Stream Control Transmission
Protocol (SCTP), unchanged from the 4G era, is utilized for
the connection between RAN and CNs, presenting challenges
due to its low compatibility with load balancers in public
clouds, scalability concerning the number of connectable RAN
devices, and significant impacts from temporary transport
network disconnections.

PP5GS [3] discusses the challenges and implications of
adopting SBA for CN. PP5GS addresses the challenges
of edge-offloading in 5G Core Networks by introducing a
procedure-based and stateless architecture. This design en-
ables the deployment of self-contained Per-Procedure Network
Functions (PPNFs) at the edge, subsequently reducing inter-
NF communication and signaling overhead. Unlike the tradi-
tional SBA, PP5GS minimizes the need for communication
between NFs by integrating the processing logic of a C-Plane
procedure into a single PPNF.

ECHO [4] adopts an SCTP proxy to leverage the load
balancer functionality of public clouds, aiming to achieve a
scalable CN.

MAGMA [5], on the other hand, defines a consolidated NF
called AGW, which integrates AMF, SMF, and UPF. This not
only functions as an SCTP proxy but also reduces C-Plane
traffic between NFs. Additionally, within the AGW, modules
for Mobility Management and Session Management, as well
as interactions with other NFs, utilize gRPC. This approach
minimizes signaling overhead and ensures resilience against
transient transport network disconnections.

Organic 6G Core [6] focuses on the complexity of inter-NF
coordination brought about by the SBA in 5GC and presents
a design for the 6G core network that revisits the concept of
functional split.

Procedure-based 5GC (Proc5GC) [7] shares with PP5GS
and Cloud5GC the approach of re-focusing on the steps to
redesign the functional partitioning of the Mobile Core. Fur-
thermore, like Organic 6G Core, it delves into the complexity
of the Mobile Core and discusses the prerequisites for solving
it. Proc5GC not only meets these prerequisites, but also
addresses the SCTP challenge by introducing SCTP proxies,
similar to the ECHO and MAGMA approaches. However,
Proc5GC differentiates itself by placing a message queue
between the SCTP proxy and the various functions of the
Mobile Core. This setup allows N1/N2 message transmission
using the Pub/Sub method and enables event-driven processing
on a message-by-message basis.

III. OUR GOALS

Summarizing the issues with the Mobile Core as discussed
in Sections I and II, we identify the following three problems.
P-1 Current designs are not ideal for data communications

because they inherit concepts from the era of telephone
circuit-switching networks. As a result, it lacks scalability
and redundancy.

P-2 To accommodate a large number of UEs, the Mobile Core
system has been scaled up significantly. This means that
in the event of a failure, the impact range is consider-
able, and the construction and operation entail substantial
costs.

P-3 The functions within the Mobile Core are fragmented.
To manage the state of UEs, there’s frequent state mes-
sage exchanges between functions, leading to significant
messaging overhead.

To realize these design objectives, our study did not simply
implement the functionalities required by the Mobile Core
based on the definitions provided by 3GPP and then combine
them. Instead, we designed a procedural Mobile Core where
functionalities are activated on-demand according to the re-
quests from UEs. Essentially, for each UE, it works as if an
exclusive Mobile Core is instantiated, allowing processes to
be isolated per UE. The idea and preliminary measurement
results were published in Proc5GC. The paper discusses the
limitations of the current CN architecture and proposes a
novel architecture, Proc5GC to address these issues. Proc5GC
focuses on providing stateless functional processing for each
message of a 5GS procedure, eliminating the need for context
maintenance across multiple NFs.

311

Proc5GC introduces several key features that contribute to
its improved performance and scalability compared to the
traditional NF-based 5GC architecture.

• Separation of SCTP endpoints from CN: Proc5GC installs
a module called n1n2gw next to gNB, separating the
SCTP endpoint from the CN. This allows for asyn-
chronous communication between the RAN and CN, re-
ducing the spread of faults and improving fault tolerance.

• Single program for each CN functionality: In Proc5GC,
each CN functionality is provided as an independent func-
tional program for each message. This stateless design
allows easier implementation of new functionalities and
reduces the side effects of adding new features.

• Instantiation of CN functionality for each message arrival:
Proc5GC instantiates and executes a stateless functional
program for each message arrival. This ensures that
the impact of software-specific problems or processing
issues is localized to a single UE or RAN, improving
performance and scalability.

• Sharing a single GUAMI within a CN: Proc5GC allows
for a single Global Unique AMF Identifier (GUAMI)
to be shared within a CN, regardless of the n1n2gw or
Message Queue (MQ) instance. This eliminates the need
for UEs to switch AMFs, reducing signaling and context
migration during inter-AMF handover and maintenance.

These key features of Proc5GC address the limitations of
the NF-based 5GC architecture and contribute to improved
performance, fault tolerance, and scalability.

To improve the scalability and redundancy of the Proc5GC
design, in this study we tried to implement each procedure in
Proc5GC as a micro Mobile Cores. The design requirements
for micro Mobile Core are outlined as R-1 to R-3:
R-1 Ensuring scalability across the entire Mobile Core, it is

designed such that the required number of micro Mobile
Cores can be initiated and executed in parallel, based on
the number of UE connections.

R-2 Enhancing the overall redundancy of the Mobile Core, the
implementation is partitioned by processing units, ensur-
ing that one process implementation does not influence
another.

R-3 Minimizing the resources used by the entire Mobile Core,
it is designed to only activate the functions necessary
to address a request from the UE, thereby eliminating
resource wastage.

By fulfilling these requirements, it became possible to
deploy Proc5GC on a per-UE basis. This allowed state man-
agement specific to each UE, eliminating the need for state
sharing between UEs and realizing a truly stateless Mobile
Core. As a result, the Mobile Core could be built in the Public
Cloud using a Serverless model.

IV. DESIGN

In this study, to fulfill the design requirements R-1 to R-
3 discussed in the previous section, we designed and im-
plemented Cloud5GC, which dynamically launches a micro

Mobile Core containing only the functions necessary for
processing requests from a UE.

To evaluate the feasibility of Cloud5GC, we designed and
implemented C-Plane of the Core system mentioned in Section
I. This section describes the detailed design and implementa-
tion. Figure 2 shows the proposed architecture of C-Plane in
Cloud5GC.

Fig. 2: The structure of Cloud5GC

As shown in Figure 2, Cloud5GC is implemented without
using centralized control servers, employing a serverless ar-
chitecture to implement various functionalities. Moreover, for
inter-functional data exchanges invoked within the serverless
architecture, we utilized a message queue and Key Value
Store (KVS), common in web systems. The “Queuing” module
establishes connections between RAN and Core, and the “Pro-
cedures” module activates and connects only the necessary
functions in response to the UE’s processing requests.

Figure 3 shows the concept of micro Mobile Core architec-
ture in Cloud5GC. A dedicated Mobile Core is initiated for
each UE, and upon completion of the process, it terminates.
Data required for processing is stored in databases. Only the
necessary information is read and written by each function,
It enables stateless processing without continually retaining
information in processes. The details of how we met the
requirements are described below.

Fn
Lambda

DB
Registration req.

Authentication req.

UE

Authentication res.

Security mode comm.

Security mode comp.
+ Registration req.

Registration accept

Dispatcher
Lambda

micro Mobile Core

Ti
m

el
in

e

store contexts

store contexts
load contexts

store contexts

store contexts
load contexts

store contexts

store contexts
load contexts

Disp.

Disp.

Disp.

Fn-1

Fn-2

Fn-3

Fig. 3: The Concept of micro Mobile Core

A. Design for Scalability
We explored methods for executing Mobile Core processes

on a public cloud with excellent scalability and parallel

312

execution capabilities to fulfill the requirement R-1. Instead of
implementing them on VMs within IaaS to maximize cloud
benefits, we chose to deploy them on PaaS. When using IaaS
and implementing the Mobile Core on a VM, one would
either need to enhance a single VM’s resources or initiate
multiple VMs for load distribution, similar to traditional
Mobile Core scaling methods. This approach involves high
costs and complexity for VM startup, termination, and man-
agement, making rapid scalability challenging. Consequently,
our research leveraged serverless execution environments, a
feature of public cloud PaaS, as the foundation for the Mobile
Core. This allowed us to instantly initiate only the necessary
functions in response to UE requests, facilitating fast start-ups,
terminations, and numerous parallel executions. Specifically,
we implemented using AWS Lambda [8] functions. Only re-
quired functions responding to UE requests were implemented
as multiple Lambda functions, which were then integrated
using message queues such as Amazon SQS [9], realizing
Mobile Core functions using only AWS PaaS capabilities.

B. Design for Redundancy

We designed a dedicated micro Mobile Core on a per-UE
basis, which activates only the necessary functions for the
operation and manages the state solely on a per-UE basis,
we employed two types of databases. These are the KVS, a
high-speed database, and the RDB, a database that manages
information based on a schema.

The KVS was deployed to parameters related to the UE’s
status. As a result, there is no longer a need for the Mobile
Core itself to continuously hold information or to transfer
information from one function to another using APIs or mes-
sage queues. When the Mobile Core executes a procedure, it
activates only the necessary functions temporally, retrieves the
required information from the KVS, and stores the parameters
which may be used in the next procedure, then deletes the
procedure.

This approach realized a micro Mobile Core that processes
on a per-request basis from the UE. On the other hand,
the RDB was employed to manage static information, such
as subscriber details and gNB data, which doesn’t change
frequently with UE processing. We deploy these two types
of databases following the inherent characteristics of each: the
KVS for temporary value reading and writing, and the RDB for
reading fixed values. This approach allowed for the realization
of a stateless micro Mobile Core that doesn’t manage the UE’s
state internally.

V. IMPLEMENTATION

As shown in Figure 2, we implemented Cloud5GC as three
modules; Queuing module, Procedures module, and Database
module.

A. Procedure module

In Cloud5GC, same as Proc5GC, CN functions were imple-
mented monolithically for each procedure. We refer to each
implemented procedure as “Fn procedure”. Additionally, we

prepared a procedure exclusively for task dispatching to call
each Fn procedure, which we named “dispatcher procedure”.
The dispatcher procedure checks the presence of the Initial
Message in the NGAP-PDU and references the NGAP Type
within the Initial Message to invoke the corresponding Fn
procedure.

Since the procedures utilize a PaaS environment, cloud
service providers employ horizontal scaling through their load
balancing functionalities. Specifically, when the load on a par-
ticular procedure increases, the procedure process is automat-
ically replicated, performing a scale-out operation to enhance
the processing speed over a certain duration. Conversely, when
the load on a procedure decreases, procedures in an idle state
waiting for processing undergo a scale-in operation, where
they are terminated after a specific idle time duration.

Each Fn procedure was monolithically implemented to
achieve the following two features:

(1) Reducing Inter-process Messaging Overhead: The input
for the procedure consists of N1 and N2 messages received
through RAN and the state or context of UE and RAN stored
in the DB. Since the procedure is monolithically implemented,
it processes without any additional messaging among proce-
dures.

(2) Reducing Operational Cost: There are no dependencies
between procedures, making the Fn procedures in this system
loosely coupled. An Fn procedure is invoked for each UE, so
this allows for rolling updates to be performed on specific Fn
procedures during system operations without service interrup-
tion.

B. Queueing module

The procedures in the Procedure module are processed
swiftly; however, under heavy loads, the processing may
experience delays. If the influx of messages to a procedure
exceeds its processing capacity, some messages might be
missed. To address this, a queue is positioned at the beginning
of the procedure process, acting as a buffer to temporarily
store incoming messages. This design concept is the same as
Proc5GC.

Cloud5GC uses PaaS for procedure processing. When
there’s a spike in load, the procedure process is duplicated
and created as a serverless function at the request of the UE.
This scale-out process of duplication and creation can cause
delays. If the influx of messages into a procedure exceeds the
scaling speed of that procedure, some messages may not be
processed. To avoid this, Cloud5GC introduces queues.

Also, we strategically positioned the queues to optimize
processing performance. By using separate queues for requests
from the UE to the Procedure module and for responses
from the Procedure module to the UE, we enabled responses
to the UE immediately upon completion without sequential
processing. Furthermore, in the response process from the
Procedure module to the UE, by detecting NGAP-PDU value
within the response messages, it allows for targeted messages
to route to the appropriate n1n2gw’s queue. This approach
enables the decentralization of response message processing.

313

C. Database module

We implemented a database module to facilitate processing
for each UE and maintain the management state of each UE.
By storing information in the database, the procedure process
is allowed to terminate once their required tasks are completed.
We utilized two types of databases: a Key Value Store (KVS)
for temporary information and a Relational DataBase (RDB)
for persistent data. This concept is the same as Proc5GC. In
Cloud5GC, we use AWS DynamoDB [10] for KVS and AWS
RDS [11] for RDB to implement the concept in a public cloud
environment.

VI. EVALUATION

We evaluated the performance of the Registration Procedure
defined in 3GPP TS 23.502 [12] on Cloud5GC. Cloud5GC
experiences significant latency because it communicates be-
tween the gNB, located at our university, and Cloud5GC
on AWS via the Internet. Consequently, the performance of
a single UE tends to be inferior compared to other 5GCs.
However, Cloud5GC is designed to scale with the granularity
of Procedure Functions. As the number of UEs increases, the
decline in Cloud5GC’s performance becomes less significant.

We conducted two experiments to evaluate the performance
of Cloud5GC. In the first experiment, we measured the time
taken from the Registration Request to the Registration Accept
for a single UE and compared it to free5GC. Free5GC is an
open-source 5GC developed by NCTU that is compatible with
3GPP Release15. This experiment is focused on evaluating
whether the process is completed within the specified timeout
period for the registration procedure, as defined by the 3GPP
standard. In the second experiment, to assess scalability, we
measured the time of the Registration Procedure for multiple
UEs and compared it to free5GC.

For the experiments, we prepared three servers. The first
one, running UERAMSIM [13], is a DELL PowerEdge R640
with Ubuntu Linux 22.04 LTS, two Intel Xeon Gold 6230
2.1GHz 20-Core CPUs, and 384GB memory. The second
server, running the n1n2gw and free5GC, is a DELL Pow-
erEdge R650 with Ubuntu Linux 22.04 LTS, two Intel Xeon
Gold 6330N 2.2GHz 28-Core CPUs, and 512GB memory. The
third server, running Spirent Landslide [14] for emulating UEs
and gNB systems, is DELL PowerEdge R7524 with VMware
ESXi 7.0.3, two AMD EPYC 7443 24-Core CPUs, and 512GB
memory.

A. Processing Time for Registration Procedure

In the first experiment, we use UERANSIM to emulate
a UE and a gNB system, focusing on evaluating the time
for Registration Procedure. Table I presents the result of this
experiment. The table illustrates the time duration for a single
UE and gNB system to complete the Registration Procedure,
which is a series of functions such as Authentication Request,
Security Mode Command, and Registration Accept. While
free5GC completes each step in approximately 20 ms or
less, Cloud5GC requires about 250 ms to 350 ms. As a
result, Cloud5GC requires a longer duration to complete the

Registration Procedure compared to free5GC. However, since
the Registration was completed within 4 seconds, which corre-
sponds to the 3GPP Registration Procedure timer, it indicates
that Cloud5GC can provide service to the UE with sufficient
speed.

Additionally, Figure 4 depicts the breakdown of the time
required for processing in each serverless function. It becomes
clear that in all serverless functions, activities like Context
Restore/Store and RDB Get/Update, which involve database
access, dominate the processing time. In other words, the
Registration Procedure of Cloud5GC is heavily influenced by
the time to access the DBs.

TABLE I: Registration Response Time (Single UE)

Cloud5GC free5GC
Authentication Request 250ms 26ms

Security Mode Command 591ms 36ms
Registration Accept 958ms 47ms

AuthenticationRequest SecurityModeCommand RegistrationAccept
0

50

100

150

200

250

300

350

Ti
m

e[
m

s]

RDB Get
RDB Update
Context Restore
Context Store
Subscriber Restore
Subscriber Store
Other

Fig. 4: Processing Time at Fn procedures (Single UE)

B. Scalability for Registration Procedure

In the second experiment, aimed at evaluating scalability,
we measured and analyzed the processing times required to
complete the Registration Procedure from the number of UEs
and achieve the “Registration Complete” state. The results are
illustrated in Figure 5. The x-axis indicates the time from
the initiation of the “Initial UE message” to achieving the
“Registration Complete” state, and the y-axis shows the CDF
of completed registrations. In this experiment, we used Spirent
LandSlide to emulate a large number of UEs and a gNB
connecting them.

Cloud5GC scales the Procedure function based on requests
from UEs, and it’s evident that the more UEs present, the
quicker Cloud5GC completes the Registration Procedure. This
indicates that the micro Mobile Core architecture is designed
to scale out with the increasing number of UEs, as it trig-
gers a serverless function for each UE request. In contrast,
free5GC consistently encountered retries and never completed
the registration for 1024 UEs, while Cloud5GC successfully
processed 1024 UEs without any retries. However, there were
occasions where Cloud5GC’s Registration for 1024 UEs was
delayed in reaching Acceptance state.

314

Based on these findings, even with the Write Capacity Unit
(WCU) in DynamoDB increased from 1000(default) to 4000,
write throttling occurred, causing delays during the UE’s con-
text Store/Restore. [15] Since it depends on the configuration
of AWS DynamoDB, it is expected that performance will
improve if a larger WCU is configured.

0 10 20 30 40 50
Registration Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

UE Registration Time

Cloud5GC 128UEs
Cloud5GC 256UEs
Cloud5GC 512UEs
Cloud5GC 1024UEs
Cloud5GC 2048UEs
Cloud5GC 3000UEs
free5GC 128UEs
free5GC 256UEs
free5GC 512UEs
free5GC 1024UEs

Fig. 5: Registration Completion Time (Cloud5GC vs free5GC)

VII. DISCUSSION AND CONCLUSION

PaaS is a serverless architecture, a model in which the
cloud provider handles scaling and resource management. This
model is based on the concept of deploying the necessary
amount of resources when needed. From this, resource ini-
tialization work is required for the first time processing, and
compared to processing after the first time, processing time is
required only for the first time.

Public clouds have service specifications determined by the
cloud providers, which implies certain limitations regarding
resource utilization. Scalability is not infinite. While there
are undeniable advantages in terms of scalability and fault
tolerance when using a public cloud, it’s clear that these
benefits are not provided without bounds, as evidenced by
our evaluation. Furthermore, public clouds can also experience
outages. Therefore, when operating the Mobile Core on the
cloud, relying solely on a single cloud provider can be risky.

Conventional 5G core architectures face the issues such
as a large impact during some system failures and signifi-
cant operational and maintenance costs. This is due to the
Mobile Core system architecture supporting cellular networks
inheriting the legacy telephone switching systems, aiming
for a centralized management architecture. To address these
issues, we proposed a new Mobile Core architecture called
Proc5GC, which processes only the necessary tasks statelessly
in response to requests from UEs. However, while Proc5GC
is designed to run on on-premises servers or IaaS cloud
environments, it has limitations in scalability and operability.

In this study, we introduce an improved Mobile Core
architecture, called Cloud5GC. Compared to the conventional
5G core, Cloud5GC boasts superior scalability, fault tolerance,
and resource efficiency. To validate the feasibility of the
proposed architecture, we implemented the system on a public

cloud environment and evaluated. Our results indicated that
Cloud5GC could outperform compared to an existing 5G core
implementation.

ACKNOWLEDGEMENT

We would like to express our deepest gratitude to the
“Spirent Landslide” product. Additionally, our sincere thanks
go to Mr. Akihiro Nakamura and Mr. Masayuki Takemura
from Spirent Communications for their technical support in
emulating UEs and gNB systems on Landslide. We also thank
Mr. Kentaro Someya from AWS Japan for his technical support
to use AWS.

REFERENCES

[1] KDDI. The July 2 Communication Failure and Our Response, 2022.
https://www.kddi.com/english/important-news/20220729 01/.

[2] Endri Goshi, Michael Jarschel, Rastin Pries, Mu He, and Wolfgang
Kellerer. Investigating inter-nf dependencies in cloud-native 5g core
networks. In 2021 17th International Conference on Network and
Service Management (CNSM), pages 370–374, 2021.

[3] Endri Goshi, Raffael Stahl, Hasanin Harkous, Mu He, Rastin Pries, and
Wolfgang Kellerer. Pp5gs – an efficient procedure-based and stateless
architecture for next generation core networks. IEEE Transactions on
Network and Service Management, pages 1–1, 2022.

[4] Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan Stutsman, Thomas
Karagiannis, Jakub Kocur, and Jacobus Van der Merwe. Echo: A
reliable distributed cellular core network for hyper-scale public clouds.
In Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, MobiCom ’18, page 163–178, New York,
NY, USA, 2018. Association for Computing Machinery.

[5] Shaddi Hasan and et al. Building flexible, Low-Cost wireless access
networks with magma. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages 1667–1681,
Boston, MA, April 2023. USENIX Association.

[6] Marius Corici, Eric Troudt, and Thomas Magedanz. An organic 6g core
network architecture. In 2022 25th Conference on Innovation in Clouds,
Internet and Networks (ICIN), pages 1–7, 2022.

[7] Hiroki Watanabe, Kunio Akashi, Keiichi Shima, Yuji Sekiya, and Kat-
suhiro Horiba. A Design of Stateless 5G Core Network with Procedural
Processing. In 2023 IEEE International Black Sea Conference on
Communications and Networking (BlackSeaCom), pages 199–204, 2023.

[8] Amazon Web Services, Inc. What is AWS Lambda?, 2023. https:
//docs.aws.amazon.com/lambda/latest/dg/welcome.html.

[9] Amazon Web Services, Inc. What is AWS Simple Queue Service?, 2023.
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeve
loperGuide/welcome.html.

[10] Amazon Web Services, Inc. Amazon DynamoDB, 2023. https://aws.am
azon.com/pm/dynamodb/.

[11] Amazon Web Services, Inc. Amazon Relational Database Service, 2023.
https://aws.amazon.com/rds/.

[12] 3GPP. Procedures for the 5G System (5GS). Technical Specifica-
tion (TS) 23.502, 3rd Generation Partnership Project (3GPP), 9 2022.
v17.6.0.

[13] Ali Güngör. UERANSIM v3.1.0, 2023. https://github.com/aligungr/UE
RANSIM.

[14] Spirent Communications plc. Landslide Core Network Testing, 2023.
https://www.spirent.com/products/core-network-test-5g-lte-ims-wifi-d
iameter-landslide.

[15] Amazon Web Services, Inc. Amazon DynamoDB Developer Guide
Read/write capacity mode, 2023. https://docs.aws.amazon.com/am
azondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacit
yMode.html.

315

