
Privacy-preserving Revocation of Verifiable
Credentials with Verifiable Random Functions

Athanasia Maria Papathanasiou
Department of Informatics

Athens University of Economics and Business
Athens, Greece

sissypapathanasiou@aueb.gr

George C. Polyzos
School of Data Science, CUHK-Shenzhen, China

ExcID P.C., Athens, Greece
Mobile Multimedia Laboratory, AUEB, Greece

polyzos@acm.org

Abstract—Self-Sovereign Identity (SSI) has highlighted the
benefits and importance of granting users complete control
over their identity. Unlike previous solutions, which entrust
identity management to third-party applications or services, SSI
empowers users to control their personal data. Nonetheless,
compromised identities remain a challenge as they must be
revoked in order to prevent additional privacy and security
issues. However, in several SSI systems, privacy is compromised
in favor of efficiency, allowing third parties to gain access to
users’ personal data. In this paper, we highlight the shortcomings
of existing SSI solutions and propose a system that addresses
credential revocation by balancing privacy with efficiency, by
leveraging Verifiable Random Functions (VRFs).

Index Terms—Self-Sovereign Identity, Proof-of-possession, Pri-
vacy, Personal data

I. INTRODUCTION

Personal data control is of paramount importance since
most existing digital identities are under the control of major
technology companies or governments, resulting in potential
privacy issues. Self-Sovereign Identity (SSI) systems introduce
a user-centric approach to digital identity management. In
an SSI system, users are able to select whom to share their
personal data with and at which granularity. Moreover, SSI
architectures introduce decentralization, as users control their
personal data without having to rely on any trusted authority.
Allen defined the principles of SSI, underscoring the signifi-
cance of user control over their identities [1].

Despite the benefits that SSI systems introduce, there are
still challenges that need to be addressed. One such challenge
is related to compromised identities, which may be the result
of theft or loss. In particular, in 2022, a total of 1802 instances
of data compromises were recorded in the United States, while
more than 422 million people experienced the consequences
of data compromises, encompassing incidents such as data
breaches, leaks, and exposure [2]. In some other cases, an indi-
vidual’s identity information may change or become outdated.
If the revocation status is not updated, the individual’s identity
information may continue to be considered valid, even though
it is no longer accurate. Due to the aforementioned reasons,
revocation of credentials is required in order to avoid various
security and privacy issues. However, revocation continues to
pose a technical difficulty in SSI systems, as most proposed
architectures sacrifice privacy for efficiency. Due to this lim-

itation, it is important to design a revocation mechanism that
will enable efficient revocation, while also ensuring that user
privacy is not compromised. In this paper, we discuss the
issues of revocation mechanisms in existing SSI systems and
propose and evaluate a scheme that utilizes Verifiable Random
Functions (VRFs), in order to handle revocation of credentials
in a privacy-preserving manner, while also achieving a level
of efficiency similar to a simple revocation list.

With the design of our solution, we make the following
contributions:

• We separate the credential from the public key or Decen-
tralized Identifier (DID) and instead include the output
hash of the VRF, which makes it harder for third parties
to connect the user with the credential.

• We use VRFs instead of digital signatures and therefore
guarantee that the result is unique and verifiable. Note
that with digital signatures, there may be multiple valid
signatures for a given message. This is important as we
need the verification algorithm to accept only one output
for a given message.

• The VRF output is unique to a specific input and appears
as random data. Also, the VRF proof doesn’t disclose
any user information, meaning that even if a malicious
user steals the user’s credentials, she cannot compute the
same VRF output, because she lacks the secret key.

• We enable revocation of credentials by utilizing a hash
table, which requires constant time in order to fetch the
status of a credential, similarly to revocation lists, and
thus efficient revocation is achieved.

• Finally, we enable Proof-of-possession (PoP), thus en-
hancing security and privacy.

The remainder of this paper is structured as follows: In
Section II, we provide background information about the
notions used in our study. In Section III, we discuss previous
research in the same field, while in Section IV we outline our
solution’s design and implementation. We proceed to compare
our solution with existing ones and discuss its benefits in
Section V. Finally, we conclude our work in Section VI.

391979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

typical Self-Sovereign Identity system.pdf
Issuer

(Issues a VC)
Holder

(Presents VCs)
Verifier

(Verifies VCs)

 Credentials Presentation

Verifiable Data Registry
(Maintains VC schemas, Revocation

registries, issuer public keys etc.)

Fig. 1. Verifiable Credentials Ecosystem

II. BACKGROUND

A. Verifiable Credentials

SSI systems enable the creation of Verifiable Credentials
(VCs). These are digital documents that utilize asymmetric
cryptography in order to confirm the validity of a collection
of claims about a Subject. VCs can represent the same
information found in physical credentials but in a more secure
and tamper-resistant way compared to their physical counter-
parts [3].

As illustrated in Figure 1, a standard SSI system comprises
three main components: the Issuer, the Holder, and the Verifier.
Initially, the Issuer generates a VC and sends it to the Holder.
Upon receiving the VC, the Holder can produce a Verifiable
Presentation (VP), which may consist of one or more VCs
signed by the Issuer. Finally, the Verifier receives the VP from
the Holder and cryptographically verifies its authenticity. It’s
worth noting that while in most cases, the Holder of the VC
is also the Subject for whom the claims are made, sometimes
the Holder can be different from the Subject (e.g., a parent
holding a child’s VCs). These operations are facilitated by a
Verifiable Data Registry (VDR), such as centralized databases
and Distributed Ledger Technologies (DLTs).

VCs rely on a set of established standards and technolo-
gies called the W3C Verifiable Credentials Data Model and
Encoding [3], which sets the guidelines for organizing and
encoding data to qualify as a VC. These standards facilitate
the secure and interoperable exchange of information among
various organizations and individuals. Moreover, this structure
aims to ensure the privacy, security, and reliability of the data
contained in the credentials.

B. Verifiable Random Functions

A VRF [4] is a cryptographic function that takes a secret key
and an input x and produces an output that appears random
and unpredictable, but can be efficiently verified by anyone
with access to the corresponding public key. In other words, a

VRF allows a party to generate a random-looking output that
can be publicly verified as authentic, without revealing the
underlying secret key. A more formal explanation of VRFs is
the following:

• Key generation algorithm, which takes no input and
outputs a public-private key pair (pk, sk).

• Compute vrf prove(sk, x) → p, where sk is the
secret key of a user and x is a known input. A
hash can also be extracted from the proof using
vrf hash from proof(p) → h. The value h is the
VRF output, which appears random and unpredictable to
anyone without knowledge of the secret key sk. The proof
p is a cryptographic proof that allows anyone to verify
the authenticity of the output h, given the public key pk.

• A third party can verify the correctness of the output
using vrf verify(pk, x, p) → h′, where pk is the public
key of the user with secret key sk. If h′ is equal to h then
the proof p is valid.

The security properties of a VRF are the following:
• Collision resistance: It is computationally infeasible to

find two inputs that produce the same VRF output.
• Pseudorandomness: The VRF output h should appear

random and unpredictable to anyone without knowledge
of the secret key sk.

• Verifiability: Given the public key pk, the input x and the
proof p, it should be computationally efficient to verify
the authenticity of the output h, without knowledge of
the secret key sk.

III. RELATED WORK

We divide revocation mechanisms of VCs in the following
categories:

• Centralized revocation: In this approach, a central entity
manages the process of revoking credentials by main-
taining a list of credentials that have been invalidated.
Verifiers examine this list before accepting a credential
to ascertain whether it has been revoked. One example
of a system employing this method is Let’s Revoke [5],
and a comparable approach is outlined in a W3C draft [6].
However, these solutions may introduce privacy concerns
due to the use of unique credential identifiers, which
allow Verifiers to potentially link the Holder to the
specific credential. In this paper, we extend the W3C VC
data model in order to incorporate the proofs and hashes
of VRFs and also describe the additional computations
that need to be performed in order to allow inclusion of
VRF operations.

• Decentralized revocation: Examples of decentralized re-
vocation mechanisms utilize DLTs [7] or smart con-
tracts [8], [9], typically by storing a revocation list inside
a blockchain. However, it is important to note that these
approaches can potentially introduce privacy concerns
due to their reliance on blockchain technology for han-
dling revocation [10]. Furthermore, this category includes
Peer-to-peer (P2P) networks. Chotkan et al. [11] propose

392

a protocol based on gossiping to disseminate revocation
information through a P2P network, which could lead to
increased communication overhead. Stokking et al. [12]
introduce an SSI system that uses direct P2P communi-
cation, again introducing communication overhead.

• Zero-knowledge proof-based revocation: In this method,
a Verifier can check the validity of a credential disclosing
only essential information and thus achieving a high level
of privacy. Typical examples include dynamic accumu-
lators [13], which enable the verification of a group of
values without exposing any details about each specific
value within the group. IRMA1 and Sovrin [14] leverage
dynamic accumulators in order to achieve revocation
of credentials. However, these systems significantly lack
efficiency compared to revocation lists.

IV. SYSTEM DESIGN AND IMPLEMENTATION

In Figure 2, an overview of our system’s architecture is
depicted. In our solution, each VC has an identifier which is
the same for all credentials of the same type. For instance, all
VCs that represent a driver’s license have the same identifier,
which is different from the identifier of VCs that represent
a Bachelor’s degree. We also use the functions vrf prove,
vrf hash from proof and vrf verify, as discussed in
Section II. More specifically, we utilize VRFs for two pur-
poses. First, the Holder can prove that he owns a specific
VC. Second, we achieve PoP as the Holder can prove that
he possesses the private key associated with the public key.
Note that the public key or DID itself is not included in the
VC. PoP is achieved using only the hash of the VRF, which
is included in the credential. Moreover, revocation is enabled
using a hash table with the hash output of the VRF as keys and
bit values 0 or 1, with 0 representing non-revoked credentials
and 1 referring to revoked credentials.

Issuer
(Issues a VC)

Holder
(Presents VCs)

Verifier
(Verifies VCs)

Credentials Presentation

private
key (sk)

public
 key (pk)

key generation

A1. VRF_prove(sk,r) = p1

compute send p1

5. assigns VC
with id = x

(same for all VCs)

1. VRF_prove(sk,x) = p

compute
send p

3. VRF_verify(pk, x, p) = h'

00 11 0

sends random
 challenge r

compute

A2. VRF_prove(sk,x) = p2
send p2

C2. VRF_verify(pk, x, p2) = h2C1. VRF_verify (pk, r, p1) = h1'

2. VRF_hash_from_proof(pk, x, p) = h

Revocation hash
table

4.if h = h' store 0
with key h

B. VRF_hash_from_proof(pk, x, p) = h1

D. if h1 = h1' and h = h2 check
revocation hash table with key h

Fig. 2. System architecture

From a high level perspective, our system works as follows.
Initially, the Issuer signs and sends a VC to the Holder.

1https://irma.app/docs/what-is-irma/

Prior to this step, a couple of checks need to be performed.
First, the Holder has to compute vrf prove(sk, x), where
sk is her secret key and x is the VC identifier, which is
the same for all credentials of the same type (e.g., license
to drive), in order to prove that she possesses the private
key associated with the public key she submitted to the
system. The output of vrf prove(sk, x) is a proof p, which
is sent to the Issuer. When the Issuer receives p, he computes
vrf hash from proof(p), which outputs a hash h and then
calculates vrf verify(pk, x, p), which outputs h′ with pk
being the public key of the Holder. He then checks whether
there is a registration with key h in the revocation hash table
and if not, he places bit 0 with h as key. Finally, if h′ is equal
to h, the Issuer includes the hash h inside the VC(steps 1-5
in Figure 2).

When the Holder wants to present one or more VCs to
the Verifier, a valid VP needs to be constructed. The Verifier
also sends a random challenge r to the Holder, so as the
latter can use it for PoP. Subsequently, the Holder calcu-
lates vrf prove(sk, r), which outputs p1. He also calculates
vrf prove(sk, x), where x is the identifier of the VC we
mentioned above. This outputs p2, which will be used to prove
that the Holder indeed possesses the specific VC. Note that the
Holder needs to compute vrf prove(sk, x) for every VC he
wants to include in the VP. After these calculations, p1, p2 and
the public key of the Holder are included in the proof section
of the VP (steps A1 and A2 in Figure 2).

Once the Verifier receives the VP he extracts the proof
section and computes vrf hash from proof(p1), which
outputs h1, vrf verify(sk, r, p1), which outputs h′

1 and
vrf verify(sk, x, p2), which outputs h2. If h1 is equal to
h′
1 and h2 is equal to h, which is the hash included in the

VC we mentioned above, then the Holder indeed possesses
the specific VC and the secret key associated with the public
key. The Verifier then checks the revocation table using h2 as
key and if the VC status has a value equal to 0 then the VP
validation has been performed successfully (steps B, C1, C2
and D in Figure 2).

When a VC needs to be revoked, the Issuer can simply
place bit 1 in the revocation hash table. In case an adversary
steals the VC of a Holder, he cannot compute a valid proof
for the hash inside the VC, as he does not possess the secret
key. We could also enable decentralized revocation by storing
the hash table inside a blockchain. Although this would offer
transparency, it needs to be checked in terms of efficiency.

The code2 for our solution is implemented in Python
programming language using Flask. It includes examples of
VCs, which can be used to construct VPs and makes all the
necessary checks we mentioned in this section. For the imple-
mentation of the VRF functions we used libsodium library3

of the Algorand blockchain4, where the VRF operations are
based on an elliptic curve-based VRF construction designed

2Code available at: https://github.com/sissyp/VRFsForVcRevocation
3Code available at: https://github.com/joshjdevl/libsodium-jni-algorand
4https://algorand.com/

393

Revocation mechanism Complexity Privacy
Revocation lists [5]–[7] O(1) Allow Verifiers to correlate the Holder with the VC
P2P networks [11], [12] O(n) Revocation based on trusted relationships between nodes

Dynamic accumulators [13], [14] O(n) Do not expose any detail about each VC
VRFs O(1) Decouple VC from public key or DID

TABLE I
COMPARISON OF REVOCATION MECHANISMS

by Goldberg et al. specified in an IETF draft5. These functions
are described similarly to the background information we
provided in Section II. Finally, we created a wrapper Python
library called VRFLibrary, which can be used to call the VRF
functions using the C written functions of the original library.

V. EVALUATION

In Table I we compare our system with existing ones in
terms of complexity and privacy. Regarding complexity, in
our system we need constant time to fetch a VC from the
revocation hash table, which is also the case in revocation
lists. In P2P network architectures revoking a credential needs
O(n) time in the worst case scenario, where n is the size of the
network. However, it is expected that on average, revocation
updates will not propagate through the whole network and
thus the complexity would be logarithmic. Moreover, dynamic
accumulators require O(n) time, meaning that each time we
need to revoke or generate a VC, we have to compute again
the witness value of the accumulator. Our system, as well as
systems that utilize lists for VC revocation can be implemented
with a central registry in the Issuer, or a decentralized one in
a blockchain. However, including a hash table in a blockchain
will not be as efficient as a list with VCs with unique
identifiers.

In terms of privacy, our solution decouples the VC from
the Holder’s public key or DID and only includes the hash of
the VRF, therefore making it harder for Verifiers to correlate
the Holder with the VC and track its digital presence, as can
happen in solutions that include the public key or DID. Even if
a malicious user steals the VC of a Holder, he will not be able
to compute the same hash as he does not possess the secret
key. Furthermore, we replace the use of digital signatures in
the Holder’s side with VRFs, whose output is unique to a
specific input and indistinguishable from random data. Digital
signatures are not unique for the message they sign and thus
when privacy is considered a major requirement, VRFs are
more suitable. Also, we enable PoP, in which the random
challenge that the Verifier sends to the Holder could be the
same for a certain number of users and thus resulting in a
more private solution. P2P networks, which are based on trust
relationships to achieve revocation are less preferred compared
to a system that is based on cryptographic primitives. Lastly,
although dynamic accumulators are considered the best solu-
tion in terms of privacy, each time a credential is revoked or

5https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-03

generated, the witness value needs to be calculated again and
transmitted to the other parties.

VI. CONCLUSIONS

We leveraged VRFs in order to build a revocation mecha-
nism for VCs, which are structured according to the W3C Data
Model. Our solution achieves efficient revocation by utilizing
a revocation hash table. We also replaced digital signatures
during the VP, leading in unique provability for a specific
input, while at the same time enabling PoP, which results in
higher privacy levels. We compared our system in terms of
complexity and privacy with existing ones and showed that our
solution is efficient and feasible considering existing standards,
while also offering a certain level of privacy.

REFERENCES

[1] Allen C. The Path to Self-Sovereign Identity; 2016. Accessed
2023-09-15. Available from: http://www.lifewithalacrity.com/2016/04/
the-path-to-self-soverereign-identity.html.

[2] Johnson J. Annual number of data breaches and exposed records in
the United States from 2005 to 2020; 2021. Available from: https:
//www.statista.com/statistics/273550/.

[3] Sporny M, Longley D, Chadwick D. Verifiable credentials data model
1.0. W3C Candidate Recommendation. 2019 Mar.

[4] Micali S, Rabin M, Vadhan S. Verifiable random functions. In: 40th
annual symposium on foundations of computer science. IEEE; 1999. p.
120-30.

[5] Smith T, Dickinson L, Seamons K. Let’s Revoke: Scalable global
certificate revocation. In: Network and Distributed Systems Security
(NDSS) Symposium; 2020. .

[6] Sporny M, Longley D. Revocation List 2020: a privacy-preserving
mechanism for revoking Verifiable Credentials; 2021. Accessed: 2023-
09-15. Available from: https://w3c-ccg.github.io/vc-status-rl-2020/.

[7] Xu J, Xue K, Tian H, et al. An identity management and authentication
scheme based on redactable blockchain for mobile networks. IEEE
Transactions on Vehicular Technology. 2020;69(6):6688-98.

[8] Tariq A, Haq H, Ali S. Cerberus: A blockchain-based accreditation and
degree verification system. IEEE Transactions on Computational Social
Systems. 2022.

[9] Lundkvist C, Heck R, Torstensson J, Mitton Z, Sena M. uPort: a platform
for Self-Sovereign Identity; 2016. Accessed: 2023-09-15. Available
from: https://whitepaper.uport.me/uPort whitepaper DRAFT20170221.
pdf.

[10] Yli-Huumo J, Ko D, et al. Where is current research on blockchain
technology?—a systematic review. PloS One. 2016;11(10):e0163477.

[11] Chotkan R, Decouchant J, Pouwelse J. Distributed Attestation Revoca-
tion in Self-Sovereign Identity. In: 47th Conference on Local Computer
Networks (LCN). IEEE; 2022. p. 414-21.

[12] Stokkink Q, Ishmaev G, Epema D, Pouwelse J. A truly self-sovereign
identity system. In: 46th Conference on Local Computer Networks
(LCN). IEEE; 2021. p. 1-8.

[13] Camenisch J, Lysyanskaya A. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In: Annual International
Cryptology Conference. Springer; 2002. p. 61-76.

[14] Khovratovich D, Law J. Sovrin: digital identities in the blockchain
era;. Accessed: 2023-09-15. Available from: https://sovrin.org/library/
sovrin-digital-identities-in-the-blockchain-era/.

394

