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Abstract—Data scarcity is a crucial concern in the traditional
approach of training deep learning and one of the bottlenecks that
limit its growth. Recently, Federated Learning (FL) has become
a suitable approach for providing data privacy and is emerging
as a solution for data scarcity. However, FL has opened up a
new issue, i.e., model privacy and security. In vanilla FL, each
participant receives the updated global model in every training
round. Hence, if a model trainer wants to keep the updated global
model private from participants, there is limited scope to protect
the model access. There needs to be more literature on preserving
the global model, and possible solutions like differential privacy,
cryptography, or subnetworks are insufficient. In the proposed
work, we have introduced the privacy issues in the global model
and provided experimental results to demonstrate global model
leaks, i.e., each participant has a model with equivalent accuracy
to the global model in the subnetwork-based FL approach.

Index Terms—federated learning, model privacy, model sam-
pling, subnetwork training, global model protection, global model
access

I. INTRODUCTION

Today, Deep Learning (DL), under the umbrella of Artificial
Intelligence (AI), is leading the digital growth. However,
the paradox between the high requirement versus the ac-
cess limitation on data has become the bottleneck for DL.
Recently, various privacy concerns from users, governments,
and enterprises have resulted in different data privacy laws
(for example, GDPR) that have further intensified the data
scarcity. The restriction on data access and data privacy
has motivated the development of Privacy-Preserving Machine
Learning (PPML). Under PPML, it is advocated that the
model trainer or model owner must not directly access the
user’s raw data for model training [1]. Some popular privacy-
preserving methods, such as Homomorphic Encryption (HE)
and Differential Privacy (DP) are used for centralized training.
These are also used in distributed training, and specialized
approaches, such as Federated Learning (FL) [2], and Split
Learning (SL) [3] for providing privacy to user data and
enabling model training.

In traditional or vanilla FL, the focus is to protect “data pri-
vacy,” so each participant receives the updated global model in
each training round and has access to the complete model [4].
Nevertheless, such architecture overlooked the privacy and
access restrictions of the global model that trained on different
client’s data. Protecting access to the global model became
crucial in scenarios where differentiating between participation
is essential, such as providing incentives for contributing to

the global model training. In addition, use cases, such as
using crowdsourcing for FL (e.g., CrowdFL [5]) have a high
requirement to protect full access (i.e., any participant will
have a model with equivalent accuracy to the updated global
model) to the global model during training.

Currently, there is minimal literature on privacy and access
limitations of the global model in FL [4]. SL aims to provide
the privacy of the global model during training. However,
SL training is done sequentially, and the splitting model has
its own limitations. Due to FL’s widespread acceptance and
appeal as a centralized deep learning training alternative, the
proposed work has leveraged it to explore the issues regarding
access to the global model. In FL, global model privacy is
not discussed, and model splitting is done as subnetworks.
The subnetworks-based training aims to achieve computational
suitability on edge devices or reduce the computation and
communication cost of model training [6], [7].

In the proposed work, we have introduced and demonstrated
the issues of protecting access to the global model. The
model access pitfalls are apparent in vanilla FL, so we have
experimented with subnetwork-based FL approaches, which
may be misleading the possibility of model access protection.
To the best of our knowledge and available literature, we are
the first to present literature on the access issue of the global
model in FL.

We have organized the rest of the paper as follows. Sec-
tion II provides the required background and related works.
Section III provides details about subnetwork-based model
training in FL and the issue with the access of the global
model. The experimental setup and results are presented in
Section IV, while Section V concludes the proposed work and
provides future research direction.

II. BACKGROUND AND RELATED WORKS

The federated learning [2] started to enable decentralized
model training in a data privacy-preserving manner by remov-
ing the centralized collection of raw data from sources. With
this motivation, earlier literature mainly focus on aggregation
approaches and communication and computational efficiency.
Later, methods were proposed to defend training from various
attacks, such as data and model poisoning and privacy of com-
munication via differential privacy, homomorphic encryption,
and multi-parties computation. FL also makes it possible to
use new sources, such as data from individual users’ devices
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TABLE I
LIST OF SYMBOLS AND ABBREVIATIONS USED

Symbol Description
α Subnetwork cardinality
θ Local training update
Ci i-th client
SWi Subnetwork for i-th client
Xi,Yi Labeled Dataset of i-th client
Acc Accuracy of global model
AI Artificial Intelligence
Avr Average accuracy of subnetworks
D Neurons dropping percentage
DL Deep Learning
DP Differential Privacy
FC Fully Connected
FL Federated Learning
GDPR General Data Protection Regulation
HE Homomorphic Encryption
IID Identically Distributed
PFL Personalized Federated Learning
PPML Privacy-Preserving Machine Learning
PVT Partial Variable Training
SL Split Learning
SW Set of subnetworks
W Global model

or storage for training. Considering such a crowdsourcing
training paradigm, various research on incentivizing the partic-
ipants in FL emerged. For example, CrowdFL [5] outlines the
methods and process of FL using crowdsourcing. However,
the existing literature should address global model access
protection [4], especially in cases where the model trainer
incentivizes participants (monetary or in other modes instead
of access to the global model) and desires exclusive access to
the final global model, limiting participants’ access.

A few works related to incentive mechanism in FL have
advocated for sharing varying levels of the global model
as per the quality or quantity of updates received from the
participants [8]–[10]. However, the proposed work differs from
incentive approaches because it highlights the drawback of
sharing the global model with each participant in every training
round. Similarly, it also differs from Personalized FL (PFL)
in that instead of sharing a complete global model, globally
learned features (global part) are shared with all participants,
and each participant can have their local head (output layer)
and trains the whole model on its data [11], [12].

The model privacy, i.e., to protect access to the global
model from each participant, splitting and sharing only part of
the model in each training round, seems a feasible solution.
Split Learning (SL) adopts this approach and splits the global
model horizontally from a cut layer and only shares a part
of the model with participants for training [3]. However, it
has two main bottlenecks: 1) finding suitable cut layers that
limit the use of possible deep learning architecture, and 2) It
requires training to be sequential (relay-based), i.e., one after
another client [4]. The proposed work is based on federated
learning, and hence, further discussion on split learning is out
of scope. In federated learning, global model splitting is done
vertically, keeping the original architecture intact, and many

splitting is possible. Each part is known as a subnetwork.
Each subnetwork is shared with individual participants for
each training round.

Yang et al. [6] have proposed Partial Variable Training
(PVT) using only a small subset of model weights (variables)
in each training round by dividing variables into freezable vs.
non-freezable. The authors aim to minimize on-device training
memory usage and communication costs without altering
model architectures or needing network-specific knowledge for
training. However, the authors have not presented any discus-
sion about the privacy of the global model (only have non-
freezable variables) during the training round. FedDrop [7]
uses dropout to create several subnetworks (limited by total
clients participating in each round) at the server. Then, each
unique subnetwork is shared with individual clients for every
training round. Authors claim to achieve communication and
computational efficiency to enable FL on resource-constrained
devices and also be able to handle model overfitting issues
due to dropout. Dropout is only applied to the fully connected
layers because other layers have fewer parameters.

Based on the literature available on dividing the global
model for training, we have observed two main streams of
work: 1) global model splitting (subnetwork, dropout, etc.) is
mainly carried out to achieve efficient training by reducing
communication and computation cost, 2) there is minimal
discussion on the privacy of the global model. Table I lists
the symbols and abbreviations used in the paper.

III. PROPOSED GLOBAL MODEL PROTECTION
MECHANISM IN FEDERATED LEARNING

A. Overview

Federated learning provides data privacy to the
clients/participants. However, traditional FL (hereinafter
referred to as Vanilla FL) architecture does not consider the
model privacy (access restriction of the final global model).
In the upper part of Fig. 1, steps of vanilla FL are shown,
and it can be observed that each participant has access to
the updated global model in every training round. Recently,
many new FL architectures have been proposed to address
communication and computation efficiency. The lower part
of Fig. 1 shows the subnetwork-based FL, in which the
parameter server divides the global model into required
numbers of subnetworks and then shares subnetworks with
participants for training. Each participant performs local
training on a subnetwork and shares the update with the
server for aggregation. Considering the local training on
separate network architecture, it is possible to gain global
model privacy. However, there is limited number of literature
to validate the privacy of the global model. In the proposed
work, we aim to study the privacy concern of the global
model in subnetwork FL.

If we want to protect the privacy of the global model using
model splitting approaches, then there needs to be a few key
considerations, such as:

• The global model should be divided in such a way that
local training on the subnetwork and then their aggrega-
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Fig. 1. The federated learning process and the possible global model privacy and access issues in Vanilla FL (upper) and Subnetwork-based FL (lower).
In the case of Vanilla FL, there is no protection for global model access by a participant while in subnetwork-based FL, a participant has only access to
subnetworks through various rounds. However, a malicious participant (e.g., Participant-3) can store these subnetworks and recover an equivalent global model
by aggregating these subnetworks. There can be many methods to create a subnetwork. For example, Yang et al. [6] have created a subnetwork by freezing
a layer, and a participant only trains the unfreeze layers and shares the update.

tion at the server will not impact the model performance
(accuracy), and the overall process should require less
computation.

• The clients should not be able to collaborate to recon-
struct the original global model by sharing its subnet-
works (e.g., Byzantine attacks).

• The main challenge is deciding the level of shallowness of
the subnetwork so that the accuracy difference should be
significant between the aggregated model and individual
subnetwork in every training round.

Algorithm 1 presents the steps and process of subnetworks
creation, federated training, and calculating the accuracy dif-
ferences between the global model and each subnetwork. The
value of P is the accuracy difference between the global model
and the client’s subnetwork. A higher value of P indicates a
large accuracy gap between the global and local subnetworks
that is suitable to protect the privacy of the global model.

In contrast, a lower value of P indicates a lower accuracy
difference; hence, access to the global model is not protected.
In Table II, the difference is shown as the average of all
subnetworks of the last training round; however, a similar trend
is observed in all the training rounds. In Algorithm 1, the
method CreateSubnetworks() is the main difference from
Vanilla FL, and to achieve the privacy of the global model or
protect the access of the global model from participants during
the training round, i.e., we need to enhance the method in such
a way that we achieve a lower value of P in each training
round.

B. Steps for Global Model Privacy Protection

• Step 1: Splitting the global model (pre-trained dense
versus randomly assigned weight or initialization): one
common approach would be to turn odd /even or random
percentages of neurons on and off to create a subnetwork.
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Algorithm 1: Subnetworks-based Federated Learning
and Global Model Privacy Measurement

Input: W , α, D
Output: P (Privacy Level)
Data: Client Dataset Xi, Yi

1 for round do
/* At Server: */

2 SW ← CreateSubnetworks(W , α, D)
3 for client do
4 Ci ← SWi

/* At Client: */
5 for epoch do
6 θ ← LocalTraining(SWi, Xi, Yi)

7 SendUpdate(θ)

8 W r ← W r−1 +
∑N

i=0 θi
9 P ← CalculateAccuracyDiff(W r, SW i

r−1)

10 Function CreateSubnetworks(W , D):
11 FC ← SelectFullyConnectedLayer(W )
12 Layers ← Count(FC)
13 for i ∈ 1 . . . Layers do
14 for fc ∈ FC do
15 masks ← CreateMask(fc)
16 neuorns ← Chooseneurons(fc,D)
17 SW ← ApplyMask(fc,neurons,masks)

18 SWi ← SW

19 return SW

Similarly, creating a variable α will decide how many
subnetworks need to be created for a particular round of
training. Based on α, random activation of links among
the nodes can be used to create the required subnetwork.

• Step 2: Sharing the subnetwork to the client (repetition
vs. unique subnetwork): The rule for sharing the sub-
network will be crucial for the privacy protection of the
global model. Some of the possible rules could be sharing
a unique subnetwork with each client (a vast number of
submodels need to be created, i.e., a large value of α)
versus repetition of submodel, i.e., a single submodel can
be shared among multiple clients (it will reduce the value
of α, however, will pose threats to privacy, in case of
collaborating clients).

• Step 3: Local training and update sharing: It will be the
same as vanilla FL and needs no changes.

• Step 4: Aggregation of update and recovering the dense
global model. Aggregation of updates will vary slightly,
and the server needs to aggregate various subnetworks
instead of updates. For the privacy of the global model,
there should be a significant difference between the
accuracy of the subnetwork and the global model in each
training round.

C. Usecase: Binary Split and Aggregation

A simple approach could be a simple binary split of the
global model by enabling and disabling alternative activation
links and sharing both sub-models with two disjoint sets
of clients. Each set of clients will train a part of the sub-
model and share updates with the server. Once the updates
are received from each set of clients, the server can aggregate
each sub-model separately and merge the model to get a
better global one. The process can be repeated for a fixed
number of training rounds or up to required performance
requirements. However, this approach will not be sufficient
if each subnetwork has good individual accuracy and there is
less improvement after aggregation.

IV. EXPERIMENTS AND RESULTS

We have performed all the experiments on a server computer
having Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz
processor with Ubuntu 18.04 64-bit operating system and
Python 3.9 with PyTorch deep learning framework federated
learning. We experimented with the MNIST [13] having a total
70K data sample divided into training 60K and test dataset
10K.

We divided the training dataset into 1, 000 clients using
an independent and identically distributed (IID) approach,
i.e., each client has similar data and class distribution. For
training, each client got 60 samples for all ten classes, and
the testing data has 10, 000 samples. Our model architecture
has three fully connected (FC) layers, and a ReLu activation
layer follows the first two FC layers. In each training round,
ten clients get selected randomly, and so the server creates
ten subnetworks, one for each client. The input image in the
MNIST dataset has 28 × 28 pixels, so the first FC has 728
neurons. Local training is done with 10 epochs with a batch
size of 32.

Yang et al. [6] have suggested three choices for freezing
the variables: 1) be fixed (fixed), 2) vary per round (PR),
and 3) vary per client per round (PCPR). The authors stated
that PCPR provides the highest accuracy than others with the
same training rounds, and it also works well for training that
starts with a scratch model. Our privacy study is similar to
PCPR; we choose a fixed percentage of neurons to deactivate
in each training round and create subnetworks to share with
participants. The number of subnetworks equals the number
of participants (10 in our study).

FedDrop [7] proposes an adaptive dropout rate as per the
device capacity, i.e., the device with a large capacity will have
a lower dropout rate, which means a larger model size. In
the case of a malicious participant (for example, participant
3 shown in Fig. 1) with more capacity will get a subnetwork
having a large number of enable weights, and that will help
to recover the global model faster with higher accuracy. The
uniform dropout is similar to vanilla FL, except it has a smaller
size model (due to dropout), but all clients trained and shared
updates using the same subnetwork in a training round.

For our experiments, first, we excluded the adaptive dropout
and applied the same dropout rate for each device. Later,
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TABLE II
ACCURACY (ACC) OF AGGREGATED GLOBAL MODEL, AVERAGE

ACCURACY (AVR) AND MAXIMUM ACCURACY (MAX) OF THE LAST SET
OF SUBNETWORKS AFTER FINAL TRAINING ROUND (100 ROUNDS) IN IID

FOR MNIST, D: NEURONS DROPOUT PERCENTAGE

D% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Avr 81.57 74.18 62.57 58.73 60.03 44.61 41.24 27.10
Acc 86.86 82.91 71.60 66.60 64.72 48.34 46.42 31.88
Diff. 5.29 8.73 8.93 7.87 4.69 3.73 5.18 4.78
Max 84.04 79.51 65.17 62.57 68.59 49.80 49.28 34.37
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Fig. 2. Accuracy of subnetworks and global model with different value of
neurons dropping percentage (D) in the last training round

we assume that a malicious participant has more resources
and gets a subnetwork created with a lower dropout rate.
Table II shows the accuracy of the aggregated model and the
average accuracy of all ten subnetworks after the 100-th round
of training on MNIST. Based on the result, we can observe
the accuracy difference between average accuracy (Avr) and
aggregated accuracy (Acc) of subnetworks range between
3 − 8%; such a narrow gap highlights the privacy concerns
of the global model. In addition, the difference between
the highest subnetwork accuracy and the aggregated model
accuracy is dependent on the level of dropout or deactivation
of neurons. For example, the aggregated model has higher
accuracy up to 0.5, while individual subnetwork accuracy is
higher if the neuron deactivation crosses 0.5.

Fig. 2 shows the accuracy of all ten subnetworks and global
models with different values of D i.e., (0.1 . . . 0.8) in the last
training round. From the line chart, we can observe that in
each dropout case, there are 1-3 subnetworks with equivalent
accuracy as the global model, which indicates the privacy
breach of the global model. Further, if the participants with
high-accuracy models can collaborate, they can achieve a
model equivalent to the global one. So, such subnetwork-
based federated learning cannot protect the access to the global
model from the participants.

V. CONCLUSION AND FUTURE DIRECTIONS

Federated Learning is a data-centric approach and aims to
protect the privacy of client’s data. However, model privacy

is also essential and has become critical for use cases like
incentive-based or crowdsourcing-based FL. The proposed
work introduces model privacy concerning the requirement
of restricted access to the global model in vanilla FL and
subnetwork-based FL. We also studied the possibility of model
privacy in subnetwork-based FL. We provided experimental
results to demonstrate that individual participants can have a
model with accuracy close to the global model. Further, we
can extend our study to observe model privacy in the case
of participants collaboration and different training scenarios,
such as the impact of resource-based adaptive deactivation of
neurons and malicious participants with extensive resources.
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