
Differentially-Private Data Aggregation over
Encrypted Location Data for Range Counting Query

Taisho Sasada∗†, Nesrine Kaaniche‡, Maryline Laurent‡, Yuzo Taenaka∗, and Youki Kadobayashi∗

∗Nara Institute of Science and Technology, Nara, Japan
†Research Fellow of the Japan Society for the Promotion of Science

‡SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris
{sasada.taisho.su0, yuzo, youki-k}@is.naist.jp, {kaaniche.nesrine, Maryline.Laurent}@telecom-sudparis.eu

Abstract—Location data has the potential to uncover patterns
of congestion and overcrowding during specific times of day
and days of the week. By pooling location data across different
organizations, valuable insights can be derived that would be
challenging to obtain independently. For instance, combining
binary flag data (0 or 1), such as hotel stays, medical histories,
and purchase records, with location data can facilitate range
counting to reveal stay trends and the prevalence of infectious
diseases in each region. However, the practice of aggregating data
from various organizations introduces a critical concern: privacy
leakage. When organizations share their data for aggregation,
there is a risk that sensitive information could be exposed. To
address this privacy challenge, it is imperative to aggregate the
data of each organization while preserving privacy, and to make
it impossible to infer sensitive information. In this research, we
introduce an innovative differentially-private data aggregation
protocol, facilitating the analysis of range counting across various
organizations while maintaining data encryption throughout
the process. Our proposed protocol leverages Homomorphic
Encryption to secure both flag data and location information,
confidentially merging only shared records to generate a unified
table. Subsequently, our approach introduces encrypted noise to
the resulting table until Differential Privacy guarantees privacy
protection, even upon decryption. However, applying differential
privacy to encrypted data carries the risk of enabling adversaries
to inject manipulated data at their discretion. To counteract the
potential mixing of manipulated and encrypted data, we have
developed an algorithm within our proposed protocol to validate
the content of encrypted data.

Index Terms—Data Aggregation, Differential Privacy, Homo-
morphic Encryption, Location Data, Data Privacy

I. INTRODUCTION

Location data has the capability to reveal trends of traffic
congestion and excessive occupancy during particular hours
of the day and days of the week. We can retrieve the count
of data items that fall within a specific range in location
data, and this query is commonly referred to as a Range
Counting Query (RCQ), which represents the most prevalent
utilization of location data [1]–[3]. RCQ counts the sum of
flag values1 for each region and can identify spatial/temporal
flag trends in user behavior for each region. However, location
data collection and analysis require large databases and high-
performance computing environments, which not all entities

1Flag value is data that represents a category variable as 1 or 0 with one
hot encoding. In the case of the flag in the product data, if “1” is registered,
it means that the item was purchased.

can afford. Cloud technology has solved this challenge. The
spread of cloud computing, which provides large-capacity
databases and high-performance computing environments in-
stead of on-premise systems, enables data aggregation among
organizations. By aggregating data from entities that can col-
lect location data and entities that have the data containing flag
values (flag data) to be analyzed with each other in the cloud,
it is now possible to grasp spatial and temporal trends that
could not be created by a single organization. Nevertheless,
the utilization of personal location data is bound by stringent
data protection regulations, such as the EU’s General Data
Protection Regulation (GDPR), necessitating the safeguarding
of data privacy to avoid breaching these regulations.

Given that multiple entities share their data through data
aggregation, the relationships among participating entities and
the selection of privacy protection technologies that align with
their needs become immensely important. Homomorphic En-
cryption (HE) allows arbitrary operations, including addition
and multiplication, to be performed on encrypted data without
requiring decryption. When employed in data aggregation, HE
enables the extraction of only those records that match in both
datasets (location data and flag data), all while maintaining
encryption. By implementing this process within the data store
(DS), They can effectively respond to RCQ from any DAs.
However, if query results are repeatedly provided to the same
DA under the application of HE to data aggregation, the
DA can back-calculate the original data from the difference
between query results [4]. In short, the idempotency of the
query result leads to privacy leakage. As a technique capable
of removing the idempotency of the query result, Differential
Privacy (DP) was introduced by Dwork et al [5]. DP thwarts
attempts to deduce original data by introducing noise into
the query result even if same query results are produced. In
the context of data aggregation, noise is incorporated into the
aggregate results prior to presenting the query outcomes. This
ensures that even if DAs submit same contents of queries, the
noise introduced by DP prevents any inference regarding the
original data. However, the DP requires the DA to provide
the data once to the untrustworthy DS, even when DAs are
uncertain about the proper protect their privacy on DS.

Since HE and DP by themselves cannot prevent privacy
leaks in data aggregation, there are research on a combination

409979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

of HE and DP that utilizes both techniques to protect the
privacy of the original data provided by the data owner
(DO) while preventing privacy leakage from query results
[4], [6], [7]. The presumption here does not involve DAs
actively uploading their data, but it’s worth noting that there
have been documented instances of attacks against location
data aggregation [8]. If even a single adversary is present
among the DAs, they can manipulate query outcomes with
ease by introducing crafted data into the mix. This becomes
problematic because, due to the encryption of query results
and the inherent noise addition by DP, idempotency is not
maintained. Consequently, any distortion in the results re-
mains undetectable. In summary, when both HE and DP are
employed simultaneously, it becomes challenging to identify
whether the results have been tampered with by an adversary.

In this study, we design a data aggregation protocol that
combines HE and DP to facilitate encrypted data aggregation
from each organization. This approach enables the execution
of RCQ without necessitating the decryption of original data.
Through the proposed protocol, location data and flag data
encrypted using HE are merged within the DS. This enables
DAs to actively participate in data aggregation, ensuring
mutual protection of their respective data privacy from the
DS. Although only DAs receive the analysis results as query
responses after data aggregation, the idempotency is not main-
tained in the query results by applying DP. Therefore, even if
the DA send the query repeatedly, privacy does not leak from
the difference between query results.

In cases where certain DAs may have malicious intent and
attempt to upload crafted data to manipulate query results,
Our method creates a formidable challenge due to the en-
cryption of all data using HE alongside DP. Consequently,
distinguishing manipulated data from query results becomes
exceedingly hard. To address this complexity, we introduce
a data poisoning verification (DPV) algorithm tailored for
encrypted data. If the DPV algorithm detects an attack to
data aggregation by DAs, it refrains from furnishing a query
response, identifies the breach, and alerts about the crafed
data, thereby preventing from attack to data aggregation. As a
summary, our contribution is below:

• Providing the result of RCQ for DAs that cannot collect
location data themselves.

• Detecting attack to data aggregation while all data is
encrypted and notifies details of attack.

• Providing RCQ at a very fine granularity using large-scale
location data collected from DOs.

The rest of this paper is as follows: In Section II, we first
describe related work. In Section III, we explains the design
of proposed aggregation protocol. In Section IV, we evaluate
our protocol from the perspective of performance. Finally, we
conclude this paper in the Section V.

II. RELATED WORK

Chowdhury et al. [4] have integrated HE and DP to establish
a secure framework for data collection and analysis within
their study. In their system, the DOs encrypts and transmits

the original data to the DS. The encrypted data is then
aggregated by the data store. While the DS does decrypt the
data during this process, it introduces noise to the ciphertext
prior to decryption, thereby ensuring the application of DP.
Consequently, the DS remains unaware of the actual values of
the original data. The output of query responses is guaranteed
to adhere to DP, thereby preventing the DAs from predicting
the original data. Although Cryptϵ is applicable to the scenario
in our study, it does not assume the uploading of data by DAs.

As a potential attack targeting location data aggregation,
Zhao et al. [8] propose the concept of ”Poisoning Attacks on
Location Data Aggregation” (PALDA). In the PALDA frame-
work, a malicious DAs (adversary) crafts specific locations,
referred to as ”poisoned locations,” and transmits them to a DS
with the intent of manipulating or poisoning the aggregation
outcomes carried out by the DS. If the DS possesses fore-
knowledge regarding the expected pattern of received locations
(for example, congested or underpopulated areas), it may be
capable of detecting instances where an adversary submits
conspicuously crafted locations. To bypass such detection, the
PALDA technique employs a two-step process for data ma-
nipulation: generation and adjustment. Initially, the adversary
generates a composite location according to their manipulation
goal. Subsequently, the adversary computes the mean squared
error between the composite point and the actual ground truth
data, and then fine-tunes the composite point to appear more
plausible while effectively distorting the aggregate results.

III. PROPOSED AGGREGATION PROTOCOL

In this section, we present a location-counting query pro-
cessing system that offers prompt responses to queries from
DAs when integrated with HE and DP. Indeed, the pro-
posed method combines GPS data and flag data encrypted
by SHE and counts them by region, providing the result of
differentially-private RCQ (DP-RCQ) while keeping both GPS
data and flag data confidential. A Somewhat Homomorphic
Encryption (SHE) scheme refers to a scheme that enables
evaluation of any circuit for data encrypted up to a certain
depth. The maximum depth depends on the encryption param-
eters chosen, and generally, selecting larger depth parameters
incurs a significant performance penalty. In this study, the BFV
scheme is utilized as the SHE to encrypt the input. Since
all data is processed in encrypted form, DAs only need to
send GPS data indexing information (e.g., cell phone number
or user ID) and flag data to DS, enabling range counting
without the ability to collect GPS data themselves. Moreover,
to prevent data poisoning such as PALDA, we design a data
poisoning verification (DPV) algorithm for encrypted data.
This algorithm can detect data poisoning attacks and notify
entities who join data aggregation. We describe the system
model in Sect III-A and the DPV algorithm in Sect III-B,
respectively.

A. System Model

Fig. 1 depicts an overview of our system model. In our
system, we assume four entities; Cryptographic Service Server

410

(CSS), DOs, DS, and DAs. We assume that the CSS and DOs
are trusted, DS follows the ”honest but curious” mode, i.e.,
correctly perform the protocol while trying to infer the original
GPS data owned by DOs. DAs are assumed to be malicious
by at least one person. We provide a detailed description of
each entity below.

• Cryptographic Service Server (CSS)
It is responsible of the key managment process. They
generate public and private keys for SHE and provide
them to DAs and DOs. They also decrypt the results
of applying DP received from the DS with the private
key and return them to the DAs. We assume that CSS is
trusted; It does not infer DO/DA’s data.

• Data Owners (DOs)
They participate in the proposed system and view the
results of RCQ published by DAs. DOs encrypt their
location data using the SHE public key received from
CSS and upload it to DS. After uploading the data, they
do not interfere with the system in any way. We define
them as trusted and assumes mobile carrier as the profile.

• Data Store (DS)
It have the ability to collect location data and the neces-
sary environment to do so. DS receives SHE-encrypted
data from DOs and DAs, combines the data of DOs
data with the data of DAs, applies DP to the combined
data, and transfers it to the CCS. Since DS only process
SHE encrypted data, the original data is never viewed
in cleartext. However, they try to infer DOs and DAs
data from the received data. We set it to the “honest but
curious model”, and assume it as cloud service providers.

• Data Analysts (DAs)
DAs send flag data to DS and attempt to receive RCQs
coupled with GPS data. Then, malicious DAs are present
among at least one DAs and have the same affiliation as
the DAs. By receiving incorrect query results from CSS
as the organization they belong to, they plan to degrade
the quality of service provided by DAs and intentionally
manipulate the service. For this purpose, they are capable
of data poisoning. They only aim at manipulating query
results and collapsing protocols.

The proposed system protects the privacy of GPS data
owned by DOs and flag data owned by DAs from CSS and
DS; CSS and DS can only store data protected by DP, and by
guaranteeing DP in the results of location count queries after
aggregation allowed to store query results in plain text. Only
DOs and DAs hold the encryption keys, only they encrypt
their data, and only CSS decrypts them. The procedure of
the proposed method is shown below based on Fig. 1. In the
following procedure, the sequence of processes from “1. Key
Generation” to “9. Output” is our data aggregation protocol.

• ① Key Generation: CSS generates a SHE public key (pk).
The generated (pk) is sent to the DOs, DAs, and DS.

• ② Encrypt GPS Data: DOs encode their GPS data DGPS
via quadkey and encrypt it using the (pk) received from
the CSS and upload the encrypted data to the DS.

Quadkey is a spatial data indexing technique, which split
the whole world into a set of tiles and store the tile
identifier for each data point.

• ③ Encrypt Flag Data: DAs encrypt their flag data Dflag
using the (pk) received from the CSS and upload the
encrypted data to the DS.

• ④ Generate Verification Array: DS generates an array
to verify that the data received from DAs has not been
crafted, and sends it to CSS.

• ⑤ Decrypt Verification Array: CSS verifies the contents
of the verification array and detects data poisoning. If
there is no crafted value in the array, CSS notifies it to
DS; otherwise, CSS does not demand DP result from DS,
and notifies data poisoning attack with DAs.

• ⑥ Private Join: DS joins the encrypted GPS data (DO’s
data) with the encrypted flag data (DA’s data) using SHE
and gets the encrypted result of RCQ DRCQ.

• ⑦ Applying DP: DS calibrates and adds noise to RCQ
result using the Laplace mechanism without decryption
followed by sending the DP-RCQ DRCQ

′ to the CSS.
• ⑧ Decryption: CSS decrypts DRCQ

′.
• ⑨ Output: CSS sends DRCQ

′ to the DAs.

B. Detecting Poisoning Data (DPV) Algorithm

The proposed method designs an algorithm to enable anal-
ysis even when there is an adversary among DAs, i.e., when
DS and DAs are mutually untrustworthy. Our algorithm ver-
ifies whether data has been poisoned without decrypting the
encrypted flag data, and can detect and notify the presence
of an adversary among DAs without returning a false query
response.

To detect data poisoned by malicious DAs, we design an
algorithm to verify that the encrypted input vector xflag is
binary. Algorithm 1 shows the overall process of verification
algorithm via calculating inner/hadamard product and applying
DP to the result of RCQ. First, we create a verification vector
vver with all elements initialized to 0 and a verification vector
vone with all elements initialized to 1. Then we substitute vver
for vflag minus vone. By this computation, we obtain an array
vver. The method then computes the inner product vflag · vver
for data poisoning detection. If the malicious DAs craft at least
one element of the flags array, the crafted element of the flags
array vflag and the corresponding index array vver element will
also have values other than 0 and −1. Therefore, it is possible
to detect poisoning by malicious DAs by calculating the inner
product vflag · vver and checking whether it is zero or not.

However, calculating the inner product only indicates data
poisoning; it does not tell malicious DAs which element
has been crafted. The index of the crafted element in the
array indicates the interest of the malicious DAs and is also
necessary information for identifying the malicious one in the
DAs. To identify the index of the crafted element, we then
compute the Hadamard product vflag

⊙
vver for identification

of crafted element in array. Hadamard product is the product
of arrays determined by taking a component-by-component
product over arrays of the same size. If malicious DAs craft

411

Fig. 1. The Overview of Proposed Data Aggregation Protocol

Algorithm 1 Verification Flag Array vflag and Applying DP
1: Input: Enc(vflag)
2: Output: DRCQ

′ (or vflag
⊙

vver)
3: DS : generate verification array vone (vone : [1, 1, . . . , 1])
4: DA : vver → DS
5: for i ∈ n do
6: DS : vver[i] ← Enc(vflag[i])− Enc(vone[i])
7: end for
8: if Enc(vflag · vver) = 0 then
9: DS : generate appropriate noise η \\ Generate noise

10: DS : DRCQ
′ ← Enc(DRCQ) + Enc(η) \\ Add noise

11: DS : DRCQ
′ → CSS

12: CSS : DRCQ
′ → DAs \\ Return DP-RCQ result

13: else
14: CSS : vflag

⊙
vver → DAs \\ Notify data poisoning

15: end if

flag data, the value of the index corresponding to the crafted
element in the Hadamard product vflag

⊙
vver of the flags

array and the verification array becomes non-zero. If there
is no data poisoning, all elements in the flag array are binary,
so the inner product vflag · vver is zero, and the Hadamard
product vflag

⊙
vver is also an array of all zero elements. In

the malicious case, on the other hand, at least one element of
the array has been crafted, so the inner product is never a zero
and the element of Hadamard product is not all zero.

C. Applying Differential Privacy

This section describes how to apply DP to encrypted data.
DP protects data privacy by calibrating and adding noise.
There is a trade-off between the strength of privacy protection

and the value of differentially-private data. Increasing the noise
amount enhances protection strength, but it also increases the
deviation of differentially-private data from the original data,
resulting in decreased value. However, the data received from
DOs/DAs and the results of private inner joins are encrypted
in our protocol, thus the DS cannot calibrate the noise amount.
Naive methods that simply use the privacy mechanism to
guarantee DP spoil the data value by producing more than
minimal errors

In this protocol, the DS and CSS work together to calibrate
the noise. The private inner join result DRCQ and the number
of users in quadkey are transferred to CSS, which divides
DRCQ by the number of users and divides it equally. The DS
calibrates noise from the equally divided data. We use the
Laplace mechanism as a privacy mechanism, which is a func-
tion that adds a random value to its input to satisfy DP. The
Laplace mechanism calibrates noise from the Laplace distri-
bution with zero mean, represented as M′

LAP(D) = q(D)+r.
Here, q denotes a query, r is sampled from Lap

(
∆q

ϵ

)
, and

∆q represents the sensitivity of query q. The DS adds noise to
DRCQ by Laplace mechanism, obtains DRCQ

′, and transfers it
to the CSS. Finally, the CSS decrypts the query result DRCQ

′

and returns it to DAs.

D. Security Analysis

We describe the security assumptions of our system.
1) We assume that DOs and CSS are trusted. CSS issues

pk to DOs according to our proposed protocol, and DOs
encrypt and transmit data using the received pk.

2) DS is assumed to be “honest but curious”. They collect
data according to the proposed protocol, but try their

412

best to steal the original DGPS and Dflag owned by DOs
and DAs.

3) There is at least one malicious (adversary) among the
DAs, and they cannot be trusted by DOs, DS, and CSS.

The proposed protocol protects the privacy of DGPS owned
by DOs and Dflag owned by DAs. The original data is
encrypted by SHE and sent to DS, which naturally cannot
check the original data. DS then asks CSS to verify that the
received data has not been crafted. If the data integrity is
maintained, DS joins the DGPS and Dflag in encrypted form
without knowing the contents of the received data, applies DP,
and sends the DRCQ

′ to CSS (if the data has been edited, the
protocol halts at that point). The CSS can decrypt DRCQ

′, but
since DS applies DP before decryption, the CSS cannot deduce
the original data (DGPS or Dflag) from the DRCQ

′ no matter
how many times they receive and decrypt the DRCQ

′.

IV. EVALUATION

We evaluate the execution time and memory usage. To
measure these performance on our protocol, we implement all
program on ASRockRack 3U8G+/C621E workstation, CPU is
40-core Intel Xeon Gold 6230 Processor at 2.10 GHz, 262 GB
RAM, and the host OS is Ubuntu 18.04 LTS. To implement
homomorphic operations, we use the SEALv3.6 library, a
fast and actively developed open source library maintained
by Microsoft Research. The plaintext modulus log2(p) of the
BFV parameter is set to 42. We evaluate the overhead with
the privacy parameter ϵ = 1, which determines the strength of
DP protection. However, our proposal is not influenced by the
value of ϵ. We perform experiment by generating a random
number representing quadkey (e.g. 1320130) as the location
vector and a random number representing the phone number
(e.g. 01-12-34-56-7) as the user identifier.

A. Execution Time and Data Size

To verify the feasibility of the proposed method, we measure
the execution time until the data poisoning verification process
is completed by the DPV algorithm by inner joining encrypted
DGPS and Dflag using SHE. Since the execution time depends
on the number of DOs (size of DGPS) and the granularity
of DGPS (the domain size of SHE), we measure the execution
time by changing these two parameters. Since multiple entities
are involved in the proposed aggregation protocol, we divide
the execution time into three steps: encryption, data aggrega-
tion (including data poisoning verification), and decryption, in
order to easily understand the load of each step.

The left side of the Table I shows the execution time for each
process of encryption (Enc), aggregation (Agg), and decryp-
tion (Dec). While encryption is not affected by the # of users
and grids, aggregation and decryption are greatly affected.
In particular, (16000,65536) has four times as many users
and grids as (8000,16384), and its aggregation speed is also
approximately four times faster. However, when comparing
(16000,65536) and (32000, 262144), the aggregation speed is
about 8 times faster. In other words, an exponential growth
trend can be read.

The right side of Table I provides the size of input/output
data, the size of public key pk, the size of galois key gk,
and the size of relinearization key rk. The pk serves as a
fundamental element to achieve the required security level,
while gk are indispensable for executing rotation operations
in homomorphic computations. Here, rk play a critical role
in transforming the outcomes of ciphertext-ciphertext multi-
plications into a linear structure. The data size remains the
same for pk, gk, and rk, while only the output is affected by
the number of users/grids. Calculating the throughput from
the execution time and data size, we get (8000, 16384) :
2.63Mbps, (16000, 65536) : 690.81kBps, (32000, 262144) :
83.85kBps, respectively.

B. Memory Usage

We measure the memory usage to show the load on the
workstations. Since memory usage also varies greatly with
the amount of data to be computed, i.e., the number of DOs
and the granularity of DGPS, we measure the change for
each encryption, data aggregation, and decryption. In order
to focus only on processes related to the proposed protocol,
we use htop, a process viewer for Linux. Fig. 3 shows
the memory usage (MB) for patterns where we varied the
number of users/quadkey grids (collection granularity). The
maximum memory usage is measured for each process, and
the numbers in the squares indicate means of memory usage.
One characteristic that was common to all of the patterns was
that the maximum and average values for encryption were
of the same magnitude for all patterns. It can be seen that
the speed of encryption is not proportional to the number of
quadkey grids. On the other hand, data aggregation is quite
different for each pattern, showing a proportional increase with
the number of users and grids.

C. Data Value

We also conduct evaluation experiments to evaluate that
proposed protocol can preserve data value before and after
applying DP. We focused on the experimental results on the
pattern (b) (# of user = 16000, # of grid = 65536) in Sect
IV-B and set parameter. Figure 6 shows the mean absolute
error before and after applying DP to the result of RCQ for
each privacy budget ϵ. In the logarithmic scale graph, the
quartile ranges in each ϵ are approximately equal, and it can
be seen that the mean error decreases almost linearly. When
the ϵ was small, the infrequent locations (i.e., underpopulated
areas) in Quadkey had values that were quite different from
the original locations due to noise.

D. Discussion

The proposed protocol has some limitations. First, the
protocol cannot guarantee that DOs will use truthful data in
the first place. For example, if the DOs are malicious, there
could be cases where they craft DGPS and send it to the DS. In
that case, the proposed protocol guarantees the privacy of these
wrong inputs, but the query results returned to the DAs will be
distorted. Another case could be where DAs craft in the binary

413

TABLE I
EXECUTION TIME AND DATA SIZE

Execution Time (Sec) Data Size (MB)
(# of user, # of grid) Enc Agg Dec Total Input Output pk gk rk Total

(8000, 16384) 11.039 213.518 0.482 225.039 0.913 0.896 1.028 584.579 8.228 595.646
(16000, 65536) 11.597 850.361 3.725 865.683 0.913 3.587 1.028 584.582 8.228 598.340

(32000, 262144) 13.452 7204.469 88.943 7306.864 0.913 17.935 1.028 584.584 8.228 612.688

Fig. 2. Memory Usage

Fig. 3. Data Value

range (e.g., editing 0 to 1) rather than extreme data poisoning.
In this case, the DPV algorithm included in the proposed
protocol will overlook it because the input data is binary, but
the query results will be distorted due to crafted data. This
reliance on the truthfulness of input data is unfortunately a
general problem for any computation (plaintext and privacy
protection) and cannot be prevented by cryptographic means.
We therefore recommend the use of “bullet proof”, a zero-
knowledge proof that guarantees that the sum or product of
data falls within a certain range while concealing input data.

V. CONCLUSION

In this paper, we introduced a novel approach to
differentially-private data aggregation, harnessing the power
of CDP to operate on encrypted data. It also emphasize the
capability to perform RCQ for DAs that might not possess
access to GPS data. Unlike the existing systemq, which lack
provisions for DAs to submit their data for RCQ and are
consequently vulnerable to data poisoning attacks, our data
aggregation protocol has successfully thwarted such attacks,
thanks to the incorporation of a robust DPV algorithm that
rigorously validates the uploaded data. Our experiments have
evaluated factors like throughput, memory load, execution

time, and message size, shedding light on the incurred over-
head. Future endeavors will delve into devising methodologies
for preemptively addressing data poisoning attacks, where DAs
manipulate binary data.

ACKNOWLEDGEMENTS

This work was supported in part by Japan Society for the
Promotion of Science KAKENHI Grant Number JP22J23910,
and IPA’s ICS-CoE Program.

REFERENCES

[1] Y. Yan, X. Gao, A. Mahmood, T. Feng, and P. Xie, “Differential Private
Spatial Decomposition and Location Publishing based on Unbalanced
Quadtree Partition Algorithm,” IEEE Access, vol. 8, pp. 104775–104787,
2020.

[2] H. Mahdikhani, R. Lu, Y. Zheng, J. Shao, and A. A. Ghorbani, “Achieving
O (log3n) Communication-Efficient Privacy-Preserving Range Query in
Fog-Based IoT,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5220–
5232, 2020.

[3] Z. Cai, X. Zheng, J. Wang, and Z. He, “Private Data Trading towards
Range Counting Queries in Internet of Things,” IEEE Transactions on
Mobile Computing, 2022.

[4] A. Roy Chowdhury, C. Wang, X. He, A. Machanavajjhala, and S. Jha,
“Cryptϵ: Crypto-Assisted Differential Privacy on Untrusted Servers,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pp. 603–619, 2020.

[5] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our Data, Ourselves: Privacy via Distributed Noise Generation,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pp. 486–503, Springer, 2006.

[6] S. Ushiyama, T. Takahashi, M. Kudo, and H. Yamana, “Construction of
Differentially Private Summaries Over Fully Homomorphic Encryption,”
in Database and Expert Systems Applications: 32nd International Con-
ference, DEXA 2021, Virtual Event, September 27–30, 2021, Proceedings,
Part II, pp. 9–21, Springer, 2021.

[7] J. Li, H. Ye, T. Li, W. Wang, W. Lou, Y. T. Hou, J. Liu, and R. Lu, “Ef-
ficient and Secure Outsourcing of Differentially Private Data Publishing
with Multiple Evaluators,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 1, pp. 67–76, 2020.

[8] P. Zhao, H. Jiang, J. Li, Z. Xiao, D. Liu, J. Ren, and D. Guo, “Garbage in,
garbage out: Poisoning Attacks Disguised with Plausible Mobility in Data
Aggregation,” IEEE Transactions on Network Science and Engineering,
vol. 8, no. 3, pp. 2679–2693, 2021.

414

