
Revisiting Secure Multi-Server Oblivious RAMs
Chaewon Kwak, Kangmo Ahn

Department of Computer Science and Engineering
Korea University

Seoul, South Korea
chaewonkwak0905@gmail.com, kmahn@isslab.korea.ac.kr

Changhee Hahn
Department of Electrical and Information Engineering
Seoul National University of Science and Technology

Seoul, South Korea
chahn@seoultech.ac.kr

Dongyoung Koo
Department of Convergence Security

Hansung University
Seoul, South Korea

dykoo@hansung.ac.kr

Junbeom Hur
Department of Computer Science and Engineering

Korea University
Seoul, South Korea
jbhur@korea.ac.kr

Abstract—Oblivious RAM (ORAM) facilitates search and up-
date on outsourced encrypted databases without leaking access
patterns. Since ORAM typically requires large client storage
and high computational overhead, many studies proposed more
efficient ORAM schemes. For example, Thang et al. proposed
a multi-server ORAM, S3ORAM, by utilizing Shamir’s secret
sharing and secure multi-party computation, instead of fully
homomorphic encryption to enhance the efficiency. However,
recent studies show that Shamir’s secret sharing is no longer
secure in Galois Fields. To solve this security problem while
achieving the efficiency, we propose two ORAM schemes: (1) BSS-
ORAM by applying Blakley’s secret sharing to S3ORAM, aiming
to improve security with high efficiency, and (2) VH-BSS-ORAM,
which further prevents size pattern leakage by storage padding.
According to our analysis, BSS-ORAM is secure in Galois Fields
with the same computational overhead of S3ORAM; and VH-
BSS-ORAM further hides size pattern with higher overhead
compared to S3ORAM.

Index Terms—Oblivious RAM, Blakley’s secret sharing,
searchable encryption, information leakage

I. INTRODUCTION

Oblivious RAM (ORAM) was first proposed to enhance the
security of searchable encryption schemes [1] by concealing
the access pattern to the remote storage. The operations within
ORAM are classified into two catergories: oblivious read
which involves reading data beyond the requested one, and
oblivious write which incorporates shuffling the read data to
random locations. Dynamic Symmetric Searchable Encryption
(DSSE) schemes [2] enable clients to search on encrypted
databases without the need for a separate decryption proce-
dure. DSSE aims to prevent untrusted server from obtaining
any information related to the data. However, the use of key-
words in client searches and the corresponding responses from
the server can still provide some linkabilities between different
queries [3], which allows an honest-but-curious server to
find search patterns by discovering correlations for the same
keyword. By observing how often the client accesses the same

This work was supported as part of Military Crypto Research Cen-
ter(UD170109ED) funded by Defense Acquisition Program Administra-
tion(DAPA) and Agency for Defense Development(ADD).

data during the search and update process, the server can
ascertain correlations pertaining to the access patterns, which
is then used to recover the hidden keywords with auxiliary
information [4]. To mitigate the search pattern and access
pattern leakage, ORAM is applied to DSSE as it thwarts
the server from observing the client’s behavior by performing
obfuscating operations.

Layer-based ORAM and tree-based ORAM are two tra-
ditional types of ORAM. Tree-based ORAM shows higher
efficiency than layer-based one due to its lower communi-
cational and computational costs during the oblivious write
phase [5], [6]. In tree-based ORAM, specifically, metadata
(e.g., encrypted indices) is stored in a tree structure and
uploaded to the server. When a client searches for a keyword,
the server returns a path together with the corresponding
data, and the client can figure out the correct one from
the received bulk of data. ORAM provides strong security
by obfuscation per every data access, but existing schemes
have generally sought to achieve an O(logN) client-server
bandwidth where N is the number of keyword-document pairs,
or O(1) communication overhead by leveraging the expensive
homomorphic encryption. To achieve O(1) bandwidth without
costly fully or partially homomorphic encryptions, Thang et al.
[7] proposed S3ORAM, a multi-server ORAM that leverages
Shamir’s secret sharing scheme [8]. S3ORAM harnesses multi-
party computation in a distributed setting to reduce the com-
putational complexity of ORAM. Moreover, it reinforces its
security by securely dividing and storing data across multiple
servers.

Motivations. Although S3ORAM has made significant
progress in enhancing the efficiency and security of exist-
ing ORAMs by taking advantage of a distributed setting, it
still faces a critical security challenge caused by the use of
Shamir’s secret sharing under Galois Fields [9]. Galois Fields,
a mathematical structure consisting of a finite number of
binary bits that support XOR and AND operations, are widely
used in cryptographic protocols and algorithms. In Shamir’s
(n, t)-threshold secret sharing scheme, a secret is divided into

472979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

n shares, and more than t shares are required to reconstruct
the secret. However, Shamir’s scheme selects n hyperplanes to
generate n shares in polynomial way, making it vulnerable to
brute-force attacks under Galois Fields. For instance, Shamir’s
secret sharing offers only 1,024 choices to select n shares
in GF(210), which is susceptible to brute-force attacks. As
shown in Table I, the state-of-the-art client-efficient multi-
server ORAMs (i.e., [5], [7]) are insecure under Galois Fields,
while single-server ORAMs (i.e., [10], [11]) are secure. We
note that there is no client-efficient multi-server ORAM which
is secure under Galois Fields.

Proposed Approach. In order to address the problem, we
propose a novel ORAM method by utilizing Blakley’s secret
sharing scheme [12]. Similar to Shamir’s scheme, Blakley’s
scheme selects n coefficient vectors to generate n shares of a
secret, and more than t shares should be gathered for the recon-
struction. In contrast to Shamir’s scheme, which polynomially
chooses n hyperplanes, Blakley’s secret sharing utilizes a
random selection approach. For example in GF(210), Blakley’s
secret sharing offers t × 210 options for selecting coefficient
vectors, surpassing those of Shamir’s scheme. Thus, Blakley’s
scheme makes ORAM more resilient to brute-force attack by
the malicious server, when t is large enough. Therefore, we
construct our method by appling Blakley’s secret sharing to
S3ORAM, instead of Shamir’s secret sharing.

Our Contribution. After S3ORAM was proposed, lots
of works have proposed ORAM-based DSSE schemes in a
distributed setting to take its advantages of computational
and communicational efficiency. Accordingly, revisiting the
security of S3ORAM, which serves as a foundational scheme
for many other multi-sever ORAM and identifying its vul-
nerability under Galois Field have significant implications. In
this regards, we propose BSS-ORAM by harnessing Blakley’s
secret sharing on S3ORAM, which has the same level of
time complexity as Shamir’s secret sharing, but overcomes
its security concern. To the best of our knowledge, BSS-
ORAM is the first secure multi-server ORAM under Galois
Fields. Furthermore, we propose VH-BSS-ORAM by applying
storage padding to further hide the size patterns with higher
overhead.

II. BLAKLEY’S SECRET SHARING

Secret sharing schemes divide a secret among multiple
parties, ensuring that only predefined subsets of the parties
can collectively reconstruct the secret [13]. This concept is
applicable in various cryptographic scenarios, including multi-
party computation and threshold cryptography [14], [15].
Shamir’s secret sharing scheme [8] divides a secret into n
shares, with more than t shares required for successful secret
reconstruction. Blakley’s scheme is also a kind of the classical
(n, t)-threshold secret sharing scheme [12].

A. BSS-Protocol

Blakley’s secret sharing (BSS) uses a graph-based approach
employing hyperplanes. In this scheme, a secret is represented
as a specific point on hyperplanes. The intersection of more

Algorithm 1 Blakley’s Secret Sharing Protocol
([[α]]1, ... , [[α]]n) ← BSS.Create(α, t): Create t-private shares of α
1: for i = 1, ... , n do
2: for j = 1, ... , t do
3: aj

$←−Fp

4: C ← RandomPermutation(a1, ...at)
5: [[α]]i ← Concatenate(C)
6: return ([[α]]1, ... , [[α]]n)
α ← BSS.Recover(A,t): Recover the value α from k ≥ t+ 1 shares
1: if A.length ≥ t+ 1 then
2: α ← [0]* t
3: for i = 1, ... , k do
4: α[i] ←α[i] ⊕ [[α]]i
5: return α

than t hyperplanes helps reconstructing the secret point, with-
out requiring knowledge of each individual hyperplane. We
note that each of the coefficients of n hyperplanes represents
each of the n shares. Specifically, a secret matrix S is divided
into n shares in the form of a linear system Sx mod p = y,
where p is a prime number [16]. According to geometrical
principles, the intersection of over t non-parallel hyperplanes
results in a certain point. Encoding S as any single coordinate
of this intersection point allows the reconstruction of the
secret via these hyperplanes’ intersection. When we generate
n hyperplanes with n random coefficient vectors in the form
of Sx mod p = y, the secret matrix S is ready to be
securely shared. Algorithm 1 shows how Blakley’s secret
sharing works.

As Blakley’s scheme relies on a geometric approach with
high resilience to brute-force attacks, it is appropriate for
managing complex access structures. As a result, we utilize
Blakley’s secret sharing scheme to construct a secure ORAM
method for DSSE in cloud computing that securely distributes
a secret among multiple severs, ensuring that the secret can
only be reconstructed by the client, unless all servers collude
to attack the client.

B. Comparison with Shamir’s Secret Sharing

We compare Blakley’s secret sharing with Shamir’s secret
sharing from the aspects of scalability, security, and computa-
tional complexity.

Scalability. The primary difference between Blakley’s secret
sharing and Shamir’s secret sharing lies in their approach
to selecting n coefficient vectors for n shares. Shamir’s
method involves polynomials, while Blakley’s method takes a
geometric approach utilizing hyperplanes. In Shamir’s secret
sharing, the shares of a secret are selected from a finite
field Fp in which p is a prime number greater than n. Once
n distinct coefficient vectors have been successfully chosen,
the client selects t random elements from Fp to define the
secret as a polynomial P (x) = k + Σt

i=1aix
i. To recover the

secret, Shamir’s secret sharing uses Lagrange interpolation. In
contrast, Blakley’s scheme defines a secret with hyperplanes
in a t-dimensional space as a1x1 + a2x2 + ... + atxt = b.
By intersecting any t of these hyperplanes, the secret can be
reconstructed. Due to the utilization of hyperplane geometry,

473

Blakley’s scheme is more scalable than Shamir’s secret sharing
when extending the number of servers in a multi-server setting.

Security. From a security aspect, Shamir’s secret shar-
ing offers significantly fewer choices for coefficient vectors
compared to Blakley’s secret sharing. Shamir’s polynomial
algorithm generates a matrix composed of coefficient vectors
(1, x, x2, x3, ... , xn−1), resulting in a finite number of
distinct coefficient vectors under Galois Fields, whereas it is
infinite under rational number fields [9]. On the other hand,
Blakley’s secret sharing provides a greater number of choices
by randomly selecting n coefficient vectors to generate n
hyperplanes, which makes it resilient to the brute-force attack
when t is large. Thus, Blakley’s scheme is secure under Galois
Fields in contrast of Shamir’s scheme.

Computational Cost. Generally, the most significant and
fundamental operation in secret sharing schemes is matrix
multiplication. Blakley’s and Shamir’s schemes generate ma-
trices during their share generation and division phases, yet
other operations are almost the same. Since the complexity
of protocol depends on the most demanding computation, the
matrix multiplications, both schemes have equivalent level of
computational costs.

III. PROPOSED SCHEMES

In this section, we propose two ORAM schemes, Blakley’s
secret sharing-based ORAM (BSS-ORAM) and volume-hiding
BSS-ORAM (VH-BSS-ORAM), by applying it to the search
and access algorithms in S3ORAM [7].

BSS-ORAM. Figure 1 shows how BSS-ORAM operates in
client-server environments. Since the internal structures of two
secret sharing schemes differ, the method used to compute
the share on the client side is modified as follows. First, the
client selects coefficient vectors in a random and geometric
manner from a finite field F p. Then, the client performs
an exclusive-OR with coefficient vectors and original query,
resulting in temporary vectors T. Next, the client conducts
a matrix multiplication with random matrix R, composed of
elements from the coefficient vectors and temporary vectors,
resulting in a matrix RS. When the client concatenates R
and RS to construct the final matrix, each row of the final
matrix is divided into n shares. For each data access, the client
performs all these operations using the BSS.Create protocol
in Algorithm 1, and sends the generated shares to n servers.
On receipt of a query, n servers perform computations on the
stored data and the query shares. The servers have the same
data structure, but the data is split into n shares and stored
across n servers. Once each server responds to the client with
its respective share, the client use the BSS.Recover protocol
in Algorithm 1 to find the response of its original query.

VH-BSS-ORAM. Although BSS-ORAM provides higher
security in Glois Field without performance degradation of
the baseline scheme, S3ORAM, it still leaks size pattern in-
formation which is regarded as important privacy violation [5],
[17]. To address the issue, we additionally propose VH-BSS-
ORAM that eliminates size patterns by storage padding. Size
patterns are revealed when the server figures out the linkability

Fig. 1. BSS-ORAM Overview

between search queries with the same response length by
observing the queries. In VH-BSS-ORAM, the response is
padded such that its length is fixed to the maximum number
of matching documents. Considering that ORAM returns all
data along the accessed path, we design VH-BSS-ORAM to
always return the maximum number of paths corresponding to
the keyword. Thus, the size pattern leakage is prevented due
to the indistinguishability among each response.

IV. ANALYSIS

Table I provides the comparative analysis result among dif-
ferent ORAM schemes, where APH, SPH, and ZPH represent
whether the scheme hides access patterns, search patterns,
and size patterns, respectively. The GF indicates whether
the scheme is secure under Galois Fields, with ‘o’ denoting
secure and ‘x’ denoting non-secure schemes. BSS-ORAM
replaces Shamir’s secret sharing with Blakley’s secret shar-
ing without altering the other foundational designs, thereby
preserving O(1) bandwidth and Õ(nw) computational cost.
While the polynomial approach of Shamir’s secret sharing
is vulnerable under Galois Fields, it offers the advantage
of simplicity and low space complexity. By polynomially
selecting n hyperplanes, the client can significantly reduce
space when generating shares. Table I displays the associated
costs with recursive S3ORAM and recursive BSS-ORAM. The
typical approach to reduce the client storage overhead is re-
cursive ORAM, which stores mapping information recursively
in smaller ORAM trees. In the case of recursive S3ORAM
and recursive BSS-ORAM, the difference in required storage
between both secret sharing schemes is negligible. Although
Blakley’s secret sharing requires the client to store t× more
hyperplane candidates, this has minimal impact on the client
storage. Consequently, the proposed BSS-ORAM satisfies the
security of Galois Fields through the use of Blakley’s secret
sharing, maintaining the efficiency of S3ORAM.

VH-BSS-ORAM pads the response length to the max-
imum to eliminate size patterns. Although the bandwidth,
communication, and computation costs of VH-BSS-ORAM
inevitably increase due to the storage padding as a trade-off,
it provides the strongest security against size pattern leakage-
abuse attacks. Therefore, in the cloud environment where the
size pattern leakage is a major threat, VH-BSS-ORAM can
be a proper solution if the computational resource is not
significantly limited. Consequently, the proposed BSS-ORAM
and VH-BSS-ORAM are client-efficient multi-server ORAM

474

TABLE I
COMPARISON OF ORAM SCHEMES

Scheme Bandwidth Communication Cost Computation Cost Client Storage APH SPH ZPH GF
Path ORAM [10] O(logN) O(log2 N) O(log2 N) O(N) o o x o
Path ORAM (recursive) [10] O(log2 N) O(log3 N) O(log3 N) O(logN) ∗ ω(1) o o x o
Orion [11] O(log2 N) O(nw log2 N) O(nw log2 N) O(1) o o x o
S3ORAM [7] O(1) Õ(log2 N) Õ(nw) O(1) o o x x
Eurus [5] O(log2 K) O(F 2 log2 N) O(max{nw, F}+K) O(K) o o o x

Proposed
BSS-ORAM O(1) Õ(log2 N) Õ(nw) O(1) o o x o
VH-BSS-ORAM O(logN) O(M log2 N) O(M logN) O(K) o o o o

(N : number of (keyword, document) pairs, K: number of distinct keywords, F : number of files, M : maximum number of corresponding file identifiers to the
index, nw: number of files containing keyword w, APH: Access Pattern Hiding, SP: Search Pattern Hiding, ZP: siZe Pattern Hiding, GF: Galois Fields
security.)

schemes secure under Galois Fields, which protect well-known
information leakages, such as the search pattern and the size
pattern.

V. CONCLUSION AND FUTURE WORKS

We propose two multi-server ORAM schemes, BSS-ORAM
and VH-BSS-ORAM, both secure under Galois Fields and
utilizing Blakley’s secret sharing. To the best of our knowl-
edge, BSS-ORAM is the first ORAM scheme achieving Õ(nw)
computational cost, ensuring resistance against brute-force
attacks under Galois Fields. Additionally, VH-BSS-ORAM
goes a step further by preventing size pattern leakage.

Oblivious RAMs play a key role in preventing information
leakage in DSSE among the various trade-offs between se-
curity and performance. While our methods enhance security
through the implementation of Blakley’s secret sharing, such
primitives can be replaced or modified depending on the
system environment, taking into account security threats and
computational limitations. Adapting more advanced secret
sharing algorithms to multi-server ORAM, and understanding
its implications will provide valuable insights and contribute
to performance and security improvements, which will be
important future works.

REFERENCES

[1] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams,” in Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pp. 182–194, 1987.

[2] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 2012 ACM conference
on Computer and communications security, pp. 965–976, 2012.

[3] C. Liu, L. Zhu, M. Wang, and Y.-a. Tan, “Search pattern leakage
in searchable encryption: Attacks and new construction,” Information
Sciences, vol. 265, pp. 176–188, 2014.

[4] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: ramification, attack and mitigation.,” in Ndss,
vol. 20, p. 12, Citeseer, 2012.

[5] Z. Liu, Y. Huang, X. Song, B. Li, J. Li, Y. Yuan, and C. Dong, “Eurus:
towards an efficient searchable symmetric encryption with size pattern
protection,” IEEE Transactions on Dependable and Secure Computing,
vol. 19, no. 3, pp. 2023–2037, 2020.

[6] Z. Wu and R. Li, “Obi: a multi-path oblivious ram for forward-and-
backward-secure searchable encryption.,” in NDSS, 2023.

[7] T. Hoang, C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and T. Nguyen,
“S3oram: A computation-efficient and constant client bandwidth blowup
oram with shamir secret sharing,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
pp. 491–505, 2017.

[8] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[9] S. Chen, Y. Chen, H. Jiang, L. T. Yang, and K.-C. Li, “A secure
distributed file system based on revised blakley’s secret sharing scheme,”
in 2012 IEEE 11th International Conference on Trust, Security and
Privacy in Computing and Communications, pp. 310–317, IEEE, 2012.

[10] E. Stefanov, M. v. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path oram: an extremely simple oblivious ram
protocol,” Journal of the ACM (JACM), vol. 65, no. 4, pp. 1–26, 2018.

[11] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili,
“New constructions for forward and backward private symmetric search-
able encryption,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1038–1055, 2018.

[12] G. R. Blakley, “Safeguarding cryptographic keys,” in Managing Re-
quirements Knowledge, International Workshop on, pp. 313–313, IEEE
Computer Society, 1979.

[13] A. Beimel, “Secret-sharing schemes: A survey,” in International confer-
ence on coding and cryptology, pp. 11–46, Springer, 2011.

[14] C.-C. Yang, T.-Y. Chang, and M.-S. Hwang, “A (t, n) multi-secret
sharing scheme,” Applied Mathematics and Computation, vol. 151, no. 2,
pp. 483–490, 2004.

[15] I. N. Bozkurt, K. Kaya, A. A. Selcuk, and A. M. Güloglu, “Threshold
cryptography based on blakley secret sharing,” Information Sciences,
pp. 1–4, 2008.

[16] A. Shamsoshoara, “Overview of blakley’s secret sharing scheme,” arXiv
preprint arXiv:1901.02802, 2019.

[17] Y. Zhao, H. Wang, and K.-Y. Lam, “Volume-hiding dynamic searchable
symmetric encryption with forward and backward privacy,” Cryptology
ePrint Archive, 2021.

475

