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Abstract—Predicting anomalies and diagnosing various ma-
chines using IoT technology have been widely studied. Refrig-
eration and air-conditioning systems are among them. Anomaly
detection systems for refrigeration and air-conditioning systems
often work with many distributed devices, posing a challenge
in creating a learning model. Additionally, the data collection
period to create learning models needs to be shortened. In this
study, we propose a method to automate anomaly detection model
creation for a large number of distributed refrigeration and
air-conditioning systems and to improve the efficiency of the
operation of the diagnosis system. In addition, we propose a fine-
tuning method that creates a learning model for the target device
with minimal learning data based on a learning model created by
another device, thus reducing the learning model creation period.

Index Terms—IoT, Anomaly detection, AI, Data mining

I. INTRODUCTION

Machines installed in buildings and production facilities
constitute critical infrastructure in modern society. Anomalies
in such machines significantly affect the environment and
business continuity. Therefore, anomaly prediction and diag-
nosis are essential for preventing such problems. The authors
utilized Internet of Things(IoT) technology to install a data-
collection and diagnosis system for existing air conditioners,
focusing on anomaly detection technology in air conditioning
systems [1]. Our research discussed strategies for using low-
cost sensors in noisy environments at the right locations and
ensuring precise tuning of seasonal diagnosis models.

This study focuses on creating an anomaly-detection model
for refrigeration and air-conditioning systems. Refrigeration
and air-conditioning systems for small- and medium-sized
facilities are often distributed and installed in many facilities,
making it crucial to improve the efficiency of creating anomaly
detection models for such a large number of systems. In this
paper, we propose an automatic anomaly detection model
creation method for refrigeration and air-conditioning systems
to improve the efficiency of the diagnostic system operation.
In addition, we propose a fine-tuning method that creates a
learning model for the target device with minimal learning

data based on a learning model created by another device. This
approach significantly reduced the learning model creation
period, thereby greatly assisting the operation of diagnostic
systems.

This paper discusses the model creation procedure and fine-
tuning method. The remainder of this paper is organized as
follows. Section 2 discusses related studies in this domain.
Section 3 explains the problem, while sections 4 and 5 describe
our solution approach. Section 6 presents experimental results,
and finally, section 7 summarizes our findings.

II. RELATED WORK

Extensive research has been conducted on anomaly detec-
tion in machines. Ito et al. [2] proposed a method for detecting
UNIX command-sequence anomalies using a combination of
an online sequential extreme learning machine [3] and an
autoencoder [4]. Harada et al. [5] detected anomalies in an
aquarium management system using a local outlier factor [6].
Shi et al. [7] realized a network intrusion detection system
using a support vector machine [8] and deep belief network [9]
with semi-supervised learning. However, these studies did not
address the efficiency of the learning model creation.

Additionally, the automatic creation of learning models in
machine learning has been studied. Lee et al. [10] proposed
a support tool for creating a deep learning model that re-
alizes network creation through a Graphical User Interface
and automatic tuning of hyperparameters. Thar et al. [11]
proposed a model generation framework for optimal resource
management to predict and cache popular content to reduce
operational costs in MVNOs. Okano [12] proposed a machine
learning analysis method to express requirements in a decision
table and automatically generate a model using a decision
tree. These studies focused on network model generation and
parameter tuning and not on automating model creation from
training data.

In this study, we propose a method to automate the creation
of an anomaly detection model for refrigeration and air-
conditioning systems. Furthermore, we propose a fine-tuning
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method designed to create a learning model for the target
device within a short period.

III. REFRIGERATOR AND IOT SENSORS

Figure 1 shows the configuration of the refrigerator and IoT
sensors. In this study, we focus on refrigerators comprising
indoor and outdoor units. A compressor, which is the power
source, compresses the refrigerant to increase its temperature
and pressure. The expansion valve lowers the temperature and
pressure by passing the refrigerant through a narrow gap,
thereby automatically adjusting the flow rate and superheat.
The fan motor moves the indoor and outdoor air, and the
heat exchanger exchanges heat between the refrigerants and
indoor and outdoor air. The temperature control mechanism
controls the operation of the compressor using an inverter and
a temperature controller.

During the experiment, vibration sensors were installed
to detect equipment failures at an early stage. Based on
preliminary experiments [1], the compressor and outdoor fan
motor were selected as the main parts on which the IoT
sensors were installed. Vibration data were collected using a
3-axis vibration sensor, each installed in the x-, y-, and z-axis
directions.

IV. ANOMALY DETECTION SYSTEM

A. Data collection subsystem

Figure 2 shows the configuration of the data collection sub-
system. The data collected from each sensor were aggregated
in the IoT-GW(Gateway) and transmitted to a cloud-based data
analysis server. In the cloud, sensor data can be monitored in
real-time, and data analysis for anomaly detection is performed
on the data analysis server.

TABLE I
DATA COLLECTION CONDITIONS

Sensor type Measured 
amount(unit)

Communication Sampling rate

Vibration sensor Acceleration(m/s2)
(3axis)

Bluetooth 50Hz

Fig. 3. Configuration of Convolutional Autoencoder

Table I lists the data-collection conditions for each sensor.
Based on the sensor specifications, the sampling rate was set to
50 Hz for the vibration sensor. According to the device spec-
ifications, Bluetooth was used as the communication method
for the vibration sensor.

B. Data analysis procedure

We analyzed data using a convolutional autoencoder
(CAE) [13]. An autoencoder [4] is a type of neural network
that creates a normal operation status model. The CAE is a
type of autoencoder that has convolution and deconvolution
layers for data (See Figure 3). As an input for the CAE, we
used 324 points power spectra obtained using a fast Fourier
transform (FFT) on each of the three axes vibration values.
Subsequently, the size and number of filters were determined
based on preliminary experiments [1].

When the input data represents normal operation status, the
difference between the output and input is small. We can detect
the anomaly status by comparing the difference with a specific
threshold. The anomaly score E for the predicted data x and
the observed data x′ is defined as the mean square error as
follows:

E =

∑N
n=1(∥ xn − x′

n ∥)2

N

Here the input dimension N of x is 972.
The learning model adopts a method that accounts for

seasonality, as proposed in our previous study [1]. A different
learning model was used for each season to improve the
anomaly detection accuracy, and the model with the lowest
anomaly score was selected from the various learning models.
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V. LEARNING MODEL GENERATION METHOD

A. Automatic model creation method

The basic concept of the automatic model creation method
is to create a learning model using data from the initial
model and subsequently add data when the anomaly score
exceeds the threshold during normal operation. Specifically,
we added data in the range where predetermined M points
consecutively exceeded the threshold. The threshold value for
anomaly detection was set based on multiple values of the
average value of the anomaly score during normal operation
and a value that can be distinguished between normal and
abnormal conditions in failure tests. The procedure for creating
the learning model is as follows:

Procedure 1
The procedure for creating the first learning model
is shown in Figure 4 (top left).

Step1: The time-series data from the first period is
used as the initial training data.

Step2: First learning model is created using the
initial training data.

Step3: Determine the threshold as previously de-
scribed in this subsection.

Procedure 2
The procedure for updating the learning model is
shown in Figure 4 (top right and bottom).

Step1: After creating the first learning
model(previously learned model), collect
data in the range where predetermined M
points successively exceed the threshold
among the new evaluation data (time-series
data).

Step2: Update the first learning model with data
collected in Step1.

Step3: Predict all past time-series data using the
updated first learning model.

Step4: If the predetermined M points of the pre-
diction results in Step3 do not consecutively
exceed the threshold, the updated model is
adopted.

Step5: If the predetermined M points of the
prediction results in Step3 consecutively
exceed the threshold, a second learning
model(newly created model) is created us-
ing the data extracted in Step1.

Step6: Determine a common threshold for the first
and second learning model as described
earlier in this subsection.

In terms of the amount of learning data, the proposed
procedure is expected to require less data than manual learning
model creation (manual method). Before designing the proce-
dure explained above, we used a manual method that uses
whole one-day data to update the CAE model. Not only does
the manual method require large data (i.e., one-day data), but
it also requires human assessment of updated models. Since

Initial training data
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Data

Determining threshold
Learning model

Creation of first learning model

New evaluation data

Data exceeding the threshold

First learning model(Update)

Update threshold(If necessary)

First learning model update
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Second learning model(Initial)

Determining threshold
(for first and second learning model)

Creation of second learning model

First learning model(Update)

Data
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Time

Time

Procedure 1 Procedure 2 
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Fig. 4. Automatic model creation procedure

TABLE II
TARGET NETWORK FOR RE-LEARNING ON FINE-TUNING

the above procedure requires data that the previous model
classified the data period as abnormal, the amount of required
data is less than the manual method. It also reduces the man-
hour for assessment.

B. Fine-tuning method

A learning model was created from the short-term learning
data of another device, based on the learning model created
for a device that collects long-term data using the fine-tuning
method [14]. In this study, we set the target network for re-
learning during fine-tuning to the specifications as listed in
Table II. Specifically, one to three layers from both the input
and output layers were chosen for re-learning.

VI. EXPERIMENTAL RESULTS

A. Test items and condition

Table III provides an overview of the field tests. For three
months, we collected data for normal operation status and data
on the failure test day. For the failure test, the air volume was
decreased by 40% after the inhalation port was closed while
maintaining a fixed temperature setting of -23 degrees.

B. Automatic model creation method

During the continuous operational test period, we generated
a learning model according to the procedure described in
section V. The threshold value was five times the average
normal score to distinguish between normal and abnormal
conditions. This threshold was based on the results of the
experiment, including the failure test. In addition, parameter
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TABLE III
TEST ITEMS AND CONDITION

# Test type Date Test condition
1 Failure test  October 27, 2022 Air volume reduction due to closure of inhalation 

port of indoor outdoor unit 
(Temperature setting:-23 oC)

2 Continuous 
operation test

From September 16, 
2022 to

December 26, 2022

24-hour continuous operation excluding failure test 
days

(Temperature setting:-23 oC)

Fig. 5. Transition in CAE anomaly score daily average (compressor)

Fig. 6. Transition in CAE anomaly score daily average (outdoor unit fan
motor)

M, indicating the number of continuous threshold-exceeding
points for assessing abnormalities, was set to 100. For the
evaluation, the learning model created by the proposed method
and the manually created learning model were compared for
the anomaly score of the data during the continuous operation
period and the failure test.

Figures 5 and 6 compare the transition in CAE anomaly
score daily average of both methods for the compressor and
outdoor unit fan motor, respectively. In addition, the correla-
tion coefficient, Two One-Sided Tests(TOST) using two-group
paired test with the normalized score, and cross-correlations
were calculated to evaluate the equivalence of the results of
both methods. The results indicated that both methods were
almost equivalent in daily average transition.

Figures 7 and 8 show the transition in the failure test
CAE anomaly scores for the compressor and outdoor unit
fan motor using both methods, respectively. The correlation

Fig. 7. Compressor data analysis in anomaly test

Fig. 8. Outdoor unit fan motor data analysis in anomaly test

coefficients, TOST, and cross-correlations were calculated.
While the compressor was unable to detect anomalies, the
overall trend was similar in terms of the correlation coefficients
and equivalence test results. The proposed method exhibited
better separation performance for the fan motor (Figure 8),
but the overall transition trend was the same in terms of
the correlation coefficient and equivalence test results. The
separation performances were determined by the ratio of the
maximum value of the abnormal section to that of the normal
section during the test period.

Figures 9 and 10 show the transition in the cumulative
number of added learning data for the compressor and outdoor
unit fan motor, respectively. In both cases, the proposed
method required less learning data than the manual method.
Although the timing of the model update is slightly different in
the proposed method than in the manual method, the learning
model was updated with a minimal data, as explained in
Section V.

Table IV provides a comparison of the man-hours required
by both methods during the test period. In the proposed
method, the learning data for the initial model creation must
be prepared manually; however, the model update can be
executed automatically (accuracy checks after updates must
be performed manually). In the manual method, the results of
the evaluation of the observational data must be reviewed daily
to determine if an update of the model is necessary. How-
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Fig. 9. Transition in the cumulative number of added learning
data(compressor)

Fig. 10. Transition in the cumulative number of added learning data(outdoor
unit fan motor)

TABLE IV
COMPARISON OF MAN-HOURS BETWEEN THE PROPOSED METHOD AND

THE MANUAL METHOD

Manual Proposed method

Number of 
executions

man-hours
(Hour)

Number of 
executions

man-hours
(Hour)

Initial model creation & 
threshold determination

1 1.0 1.0 0.75

Model update & threshold 
determination

3 4.0 4 2.0

Daily observation data 
evaluation

40 5 0-40 0.0-5.0

Total - 10.0 - 2.75-7.75

ever, daily evaluation result checks are unnecessary because
the proposed method automates the model update decision.
Consequently, the proposed method can reduce man-hours by
22%–85% compared with the manual method.

The proposed method determined the threshold setting pa-
rameter (a multiple of the average value of the normal score)
and the number of consecutive threshold-exceeding points M
based on past experimental results [1]. Optimal parameters
should be established in future studies.

C. Fine tuning method

Based on the air conditioner learning model developed in
our previous study [1], we created a fine-tuning model for
refrigerators in this study. The network target for re-learning
during fine-tuning was set as specified in Table II, and the
number of training data points was set as shown in Table V.
In this experiment, the effect of fine-tuning was evaluated
independently; therefore, the automatic model creation method
described in subsection B was not used. However, it was also
possible to perform the automatic model creation method and
the fine-tuning method in combination.

Figures 11 and 12 show the transition in CAE anomaly
score daily average in the compressor and outdoor unit fan

TABLE V
THE NUMBER OF TRAINING DATA

Number of training 
data for base model

Number of training 
data for fine tuning

Compressor 8,640,015 2,777
Outdoor unit fan motor 21,174,008 2,777

Fig. 11. Transition in CAE anomaly score daily average (Compressor)

Fig. 12. Transition in CAE anomaly score daily average (Outdoor unit fan
motor)

motor, respectively. Each graph compares the results evalu-
ated using the fine-tuned model and the model created from
scratch (the original model) for the same device. Because the
original and fine-tuning models used different training data,
the anomaly scores were normalized for comparison.

For the compressor, the original and fine-tuning model
were almost equivalent in terms of the overall transition
trend of the CAE anomaly score, correlation coefficient, and
equivalence test (TOST) results. In contrast, for the fan motor,
the equivalence between the original and fine-tuning model
was slightly lower in terms of the overall transition trend of the
CAE anomaly score, correlation coefficient, and equivalence
test results. However, these differences are not significant for
practical use.

Additionally, as shown in Table V, the fine-tuning model
required only 0.03%–0.01% of the training data compared with
the original model.
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VII. CONCLUSION

In this study, we proposed a method to automate the creation
of an anomaly detection model for refrigerators. Furthermore,
we proposed a fine-tuning method to create a learning model
for the target device. The characteristics of the proposed
method are as follows:

• Enhanced efficiency in the learning model creation for
anomaly detection.

• Reduction in the learning model creation period through
fine-tuning.

Experimental results have been published in this paper, demon-
strating the effectiveness of the proposed method.
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