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Abstract— Mining of formulaic alpha factors refers to the 

process of discovering and developing specific factors or indica-

tors (referred to as alpha factors) for quantitative trading in 

stock market. To efficiently discover alpha factors in vast search 

space, reinforcement learning (RL) is commonly employed. This 

paper proposes a method to enhance existing alpha factor min-

ing approaches by expanding a search space and utilizing pre-

trained formulaic alpha set as initial seed values to generate syn-

ergistic formulaic alpha. We employ information coefficient (IC) 

and rank information coefficient (Rank IC) as performance 

evaluation metrics for the model. Using CSI300 market data, we 

conducted real investment simulations and observed significant 

performance improvement compared to existing techniques. 

Keywords—Reinforcement learning, Formulaic alpha factor 

I. INTRODUCTION 

Artificial intelligence plays a vital role in enhancing 
profitability in stock investment and the financial sector. 
Specifically, quantitative trading involves an automated 
approach to buying and selling stocks to maximize the final 
net asset value. Machine learning models trained on technical 
stock trading data (e.g., open, close, high, low, volume, etc.) 
actively participate in the trading process. Research on 
quantitative  trading utilizing reinforcement learning considers 
the volatility and noise in stock data, addressing gaps between 
signal-based trading decisions. Reinforcement learning 
constructs end-to-end models, bypassing issues related to 
prediction. This approach proves suitable for various 
quantitative trading tasks such as algorithmic trading and 
portfolio management [1]. However, this field still faces 
several limitations. For instance, given the importance of risk 
management, there is a pressing need for explainable AI due 
to the black-box nature of agents [2]. 

Formulaic alpha factor mining, a subset of artificial 
intelligence research in the stock market, involves the process 
of generating formulas with high correlations to future returns 
from raw features associated with stock trading. Typically, it 
calculates correlations between alpha factor values and future 
returns and identifies factors showing high correlations as 
'alpha factors,' believed to bring returns exceeding the market 
performance. Symbolic factors are equated with formulaic 
factors and are typically expressions generated using various 
operators and operands. Traditionally, human intervention 
was involved in expression creation, but recently, machine 
learning models are used to automatically generate them. 
When conducting symbolic factor mining based on machine 
learning, it requires a search space that specifies which 
operators and operands to use in creating symbolic factors, as 
well as a search algorithm to find the optimal symbolic factors. 

There have been studies using genetic algorithms to find a 
single formulaic alpha factor [3-7]. Genetic algorithms aim to 
start from various initial factors and use an evolutionary 

mechanism to generate the optimal factor. However, 
explaining the complex stock market with a single alpha factor 
is challenging, so it is common to combine alpha factors with 
low correlations among them. Existing methods for alpha 
factor generation have prioritized the performance of 
individual alpha factors without considering the performance 
of combined alpha factors. Therefore, there are limitations in 
finding a set of alpha factors that synergistically contribute to 
each other. 

To address these limitations, Yu et al. [8] proposed a new 
framework aimed at optimizing the performance of alpha 
factor combination during formulaic alpha factor mining. In 
their study, they explored the space for alpha factor generation 
using proximal policy optimization (PPO)-based 
reinforcement learning [9] and updated weights of generated 
alpha factor set through gradient descent. The framework 
proposed in the paper demonstrated higher correlations with 
future returns compared to a single alpha factor generated by 
a genetic algorithm. However, unlike other studies on alpha 
factor generation, the limited number of operators in the search 
space restricts the ability to generate a wide variety of alpha 
combinations. These limitations highlight the need to expand 
the search space. But excessively expanding the search space 
raises complex issues, such as requiring a more sophisticated 
policy architecture and a more efficient search algorithm. 

In this paper, we build upon the research of Yu et al. [8] 
by proposing an enhanced initialization method that defines a 
more extensive search space and initializes it with pre-
generated seed formulaic alpha set, thereby leveraging the 
strengths of RL-based search algorithms. Our approach 
improves the performance compared with previous synergistic 
formulaic alpha factor methodologies. To assess performance 
against previous researches, we use CSI300 market data for 
the same period. We sequentially apply the proposed 
technique, observe improvements in performance, and 
evaluate investment outcomes through investment simulations 
in comparison with previous methods. 

The structure of this paper is as follows. In Section II, we 
present the improvements compared to previous synergistic 
formulaic alpha factor mining techniques. Section III provides 
a detailed explanation of data collection and processing 
methods, experimental settings, and results. Finally, in Section 
IV, we draw conclusions from this research and discuss 
directions for future studies. 

II. PROPOSED METHOD 

We adopt the alpha definition employed in [8]. We trade 
for a period of T  days and consider n stocks in the stock 
market. For each trading day 𝑡𝑡 ∈ {1, … , 𝑇𝑇} , each stock i 
corresponds to a feature vector 𝐱𝐱𝑖𝑖,𝑡𝑡 ∈ ℝ𝑚𝑚𝑚𝑚  where, m is the 

number of raw features such as opening and closing prices. 
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With the feature vectors of all stocks on a trading day XX ∈
ℝ𝑛𝑛×𝑚𝑚𝑡𝑡  consisting of n feature vectors, the alpha factor f is 
defined as a mapping function that converts the feature vectors 
XX ∈ ℝ𝑛𝑛×𝑚𝑚𝑡𝑡  to alpha values 𝑓𝑓(XX) ∈ ℝ𝑛𝑛. Finally, alpha values 

z are obtained as 𝐳𝐳 = ∑ 𝑤𝑤𝑗𝑗𝑓𝑓𝑗𝑗(XX)𝑘𝑘
𝑗𝑗=1  where, k is the number of 

elements within the alpha set ℱ = {𝑓𝑓1, … , 𝑓𝑓𝑘𝑘}  and their 
weights 𝒲𝒲 = {𝑤𝑤1, … , 𝑤𝑤𝑘𝑘} . To calculate the correlation 
between the alpha values and the real stock trend 𝒚𝒚 ∈ ℝ𝑛𝑛, we 
used IC as an metric. Also, we based on [8] as a method for 
generating alpha sets that can maximize IC. The alpha mining 
system of [8] consists of an alpha generator that produces 
alpha factors and a combination model that optimizes 𝒲𝒲 to 
maximize the IC of the alpha set over the training data. 

We propose a search space expansion of the alpha 
generator for diversity of alpha factors and initialization with 
seed alphas to effectively navigate a large search space. 

A. Expanding Search Space 

This paper utilizes reinforcement learning to generate a 
wide range of formulaic alpha factors by exploring a much 
broader search space, thus ensuring the creation of diverse 
factors. Table 1 depicts the search space used in the paper. We 
have incorporated new operators presented in [10] to those 
used in previous research [8], while excluding industry 
classification data. Additionally, to gain a deeper 
understanding of trend changes, we have included a constant 
range of {5, 60, 120, 252}, allowing for the reflection of both 
short-term and long-term trends. Table 2 provides detailed 
descriptions of the operators added in this paper. 

B. Initialization with Seed Alphas 

The policy must navigate the given search space to 
generate k alpha factors. This implies that as we expand the 
search space, the complexity of the search space that the policy 
must explore to generate optimal alpha factors increases, 
necessitating more sophisticated architectural structures for 
the policy and refinement of the search algorithm. This study 
sets pre-generated formulaic alpha set as the initial seed alpha 
set and then performs alpha set mining based on it. By storing 
a combination of pre-generated superior alpha set in the replay 
buffer, it is possible to bias the search space that the policy 
needs to explore, thereby reducing the complexity of the 
search and enabling the creation of synergistic alphas in fewer 
steps. The process is carried out in two stages. In the first stage, 
if there are no previously known alpha factors, the alpha set is 
initialized as empty(w/o initial seed alpha factor). 
Subsequently, mega alphas are generated through synergistic 

formulaic alpha mining. In the second stage, if there are 
already known (or generated) alpha factors, the alpha set is 
initialized with these factors included. Then, by continuing to 
generate mega alphas in a complementary manner, a more 
enhanced predictive model is ultimately constructed. 

III. EXPERIMENTS 

A. Experiment Environment 

The data used in this study is from the Chinese A-shares 
market, which includes six features: Open, Close, High, Low, 
Volume, and volume weighted average price (VWAP). To 
prevent survivorship bias, the listing date of each stock was 
used as its index inclusion date. Since this study only considers 
long positions, the dates when stocks are excluded from the 
index were not considered. The target variable is the stock 
price change percentage in 20 days later. The training set spans 

TABLE 1. Information on the tokens used in the experiment. 
Tokens that were added are indicated in bold. 

Category Symbols 
Features open, close, high, low, volume, VWAP 

Operators 

Abs, Log, Add, Sub, Mul, Div, Greater, Less, 
Ref, Mean, Std, Var, Sum, Max, Min, Med, 
Mad, Delta, WMA, EMA, Sign, CSRank, 
Product, Scale, Pow, Skew, Kurt, Rank, Rank, 
Delta, Argmax, Argmin, Cond 

Times deltas 5, 10, 20, 30, 40, 50, 60, 120, 252 

Constants -30.0, -10.0, -5.0, -2.0, -1.0, -0.5, -0.01, 0.5, 
1.0, 2.0, 5.0, 10.0, 30.0 

Sequence 
indicators 

BEG(begin), SEP(end of expression) 

 

TABLE 2. Description of the operators added in the paper. 

Operator Description 

Sign(𝑥𝑥) 
Returns 0 if the given 𝑥𝑥 value is 0, 1 if it is 
positive, and -1 if it is negative. 

CSRank(𝑥𝑥) 

The cross-sectional rank (CSRank) is an 
operator that returns the rank of the current 
stock's feature value 𝑥𝑥  relative to the feature 
values of all stocks on today's date. 

Product(𝑥𝑥, 𝑡𝑡) 

It returns the product of the feature values for 
each date from the current date up to 𝑡𝑡  days 
ago. 

Product(𝑥𝑥, 𝑡𝑡) = ∏ 𝑥𝑥𝑡𝑡−𝑖𝑖
𝑡𝑡

𝑖𝑖=0
 

Scale(𝑥𝑥) 

It returns the value obtained by dividing the 
current feature value 𝑥𝑥 by the total sum of the 
absolute values of the feature. 
Scale(𝑥𝑥) = 𝑥𝑥

∑ |𝑥𝑥𝑖𝑖|𝑖𝑖
 

Pow(𝑥𝑥, 𝑦𝑦) Pow(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝑦𝑦 

Skew(𝑥𝑥) 

Skewness. It represents the asymmetry of a 
data distribution and is expressed using the 
third standard moment. 
𝜇𝜇 = 𝐸𝐸(𝑥𝑥), 𝜇𝜇𝑖𝑖 = 𝐸𝐸[(𝑥𝑥 − 𝜇𝜇)𝑖𝑖], 

Skew(𝑥𝑥) =  ( 𝜇𝜇3
𝜇𝜇2

1.5) = ( 𝐸𝐸[(𝑥𝑥 − 𝜇𝜇)3]
(𝐸𝐸[(𝑥𝑥 − 𝜇𝜇)2])1.5) 

Kurt(𝑥𝑥) 

Kurtosis, a value indicating the peakedness of 
a data distribution, represents how much the 
observations are clustered around the mean. 

Kurt(𝑥𝑥) = 𝜇𝜇4
𝜇𝜇2

2 − 3 =  𝐸𝐸[(𝑥𝑥 − 𝜇𝜇)4]
(𝐸𝐸[(𝑥𝑥 − 𝜇𝜇)2])2 − 3 

Rank(𝑥𝑥, 𝑡𝑡) 

Time-series rank (Rank), an operator that 
returns the rank of the current feature value 𝑥𝑥 
among feature values from the current date up 
to t days ago. 

Delta(𝑥𝑥, 𝑡𝑡) 

An operator that returns the difference 
between the current feature value 𝑥𝑥  and the 
feature value from t days ago.  
Delta(𝑥𝑥, 𝑡𝑡) =  𝑥𝑥 −  Ref(𝑥𝑥, 𝑡𝑡) 

Argmax(𝑥𝑥, 𝑡𝑡) 

An operator that returns the date when the 
feature value 𝑥𝑥  was the highest within the 
period from the current date up to 𝑡𝑡 days ago. 

Argmin(𝑥𝑥, 𝑡𝑡) 

An operator that returns the date when the 
feature value 𝑥𝑥  was the lowest within the 
period from the current date up to t days ago. 

Cond(𝑥𝑥, 𝑦𝑦, 𝑡𝑡, 𝑓𝑓) 
An operator that returns 𝑡𝑡  if 𝑥𝑥 >  𝑦𝑦  is true, 
and 𝑓𝑓 if it is false. 
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from January 1, 2009, to December 31, 2018, the validation 
set from January 1, 2019, to December 31, 2019, and the test 
set from January 1, 2020, to December 31, 2021. For the 
backtest framework, Qlib [11] was utilized. 

To evaluate the performance of the proposed technique, 
we sequentially applied an expanded search space and 
initialization with the generated alpha set, setting the model's 
combination size to 20. Additionally, to verify accuracy, five 
different random seeds were applied. As a performance metric, 
we use the Pearson correlation coefficient to measure the 
correlation between the target variable and alpha factor. 
Additionally, we use the Spearman rank correlation 
coefficient to measure rank-based correlations. 

B. Main Result 

Table 3 presents the results of the performance comparison 
with [8]. Upon examining the experimental results, we 
observed that the performance differences among all models 
were minimal with changes in seed value. However, 
performance improvements were observed when expanding 
the search space and sequentially implementing the alpha set 
initialization strategy. While [8] showed a significant value 
difference between IC and RankIC, the proposed technique 
maintained value differences within the range of standard 
deviation. 

C. Case Study 1: Expanding Search Space 

In this paper, we conducted experiments to investigate the 
impact of the expansion of operators and operands on 
performance. The experiment observed changes in IC by 
varying the pool sizes to 1, 10, 20, 50, and 100. 

Figure 1 shows the results of IC changes for each pool size 
based on the CSI300 data. These results demonstrate a general 
trend of performance improvement with increasing pool sizes 
in [8]. However, the expanded search space proposed in our 
study showed that even with smaller pool sizes, IC was higher 
for the test period. In the expanded search space, we observed 
performance improvement up to a pool size of 20, after which 
no further changes in performance were noted. 

D. Case Study 2: Initialization with alpha 101 

In this paper, we conducted experiments to determine 
whether initializing with [10]'s alpha factors impacts the 
learning effectiveness. During the training process, we 
selected 5 formulaic alpha factors from the top 101 alphas with 

TABLE 3. Main results on CSI 300. Values outside parentheses 
are the means, and values inside parentheses are the standard 

deviations across 10 runs. 

Method 
CSI 300 

IC(↑) Rank IC(↑) 

Baseline [1] 
0.045 

(0.0036) 

0.058 

(0.006) 

Ours (Expanding search space) 
0.069 

(0.0079) 

0.073 

(0.010) 

Ours (Expanding search space + 

Initialization with 101 alpha) 

0.071 

(0.0086) 

0.071 

(0.008) 

Ours (Expanding search space + 

Initialization with generated 

alpha set) 

0.085 

(0.003) 

0.087 

(0.003) 

 

 

Figure 1. Comparison of IC changes according to pool size variations 

in the Combination model on CSI300. Display average IC after training 
five random seeds for each pool size. Red: Original search space, Blue: 

Expanded search space. 

TABLE 4. Top 5 formulas from Alpha 101 [10] with the highest 
IC. 

Alpha # Expression IC in 
test set 

Alpha 
006 (-1 * Corr(open, volume, 10)) 0.035 

Alpha 
099 

(Less(CSRank(Corr(Sum(((high + low) / 
2), 19.8975), Sum(Mean(volume, 60), 
19.8975), 8.8136)), CSRank(Corr(low, 
volume, 6.28259))) * -1) 

0.032 

Alpha 
061 

Less(CSRank((vwap - Min(vwap, 
16.1219))), CSRank(Corr(vwap, 
Mean(volume, 180), 17.9282))) 

0.031 

Alpha 
014 

((-1 * CSRank(Delta(Div(Sub(close, 
Ref(close, 1)), close), 3))) * Corr(open_, 
volume, 10)) 

0.028 

Alpha 
035 

((Rank(volume, 32) * (1 - Rank(((close + 
high) - low), 16))) * (1 - 
Rank(Div(Sub(close, Ref(close, 1)), 
close), 32))) 

0.024 

 

 

Figure 2. IC change during the Test period when initializing the Alpha 

set with Alpha 101's formulaic alpha factor. Non-Init: Training without 
initializing with a separate formulaic alpha. Blue: Original search 

space, Red: Expanded search space. Green: IC for the test set of the 

existing Alpha 101 formula. 
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high IC for the CSI300 index, excluding alphas that use 
'indneutralize' and 'market cap'. The formulas used are 
presented in Table 4. The pool size for the combination model 
was set to 20, ensuring that the formulas proposed in [10] were 
included in the initial alpha set. At the same time, the setup 
allowed for the possibility of these alpha factors being 
removed from the alpha set by the combination model during 
training. For the comparison, we named the original method 
without [10]'s seed alpha factors as 'Non-Init' and observed the 
performance differences depending on the presence or absence 
of [10]'s seed alpha factors. We also observed the performance 
changes in both the original search space and the expanded 
search space. In this experiment, training was conducted with 
five different random seeds for the CSI300 index. 

Figure 2 presents the results when the alpha set was 
initialized using the formulas proposed in [10]. In the original 
search space, the average IC increased by 0.0034, indicating a 
performance difference within the standard deviation. 
Conversely, in the expanded search space, the average 
decreased by 0.0016, showing no significant changes in 
performance in both search spaces. The formulas of alpha 101 
used in the experiment displayed low ICs during the test set 
period. In the original search space, only alpha 099 was 
included in the alpha set for one of the five random seeds, 
while the other formulaic alpha factors from alpha 101 were 
dropped during the generation process. These results suggest 

that the formulaic alpha factors of alpha 101 were generally 
removed from the alpha set creation process due to their 
overall low performance. 

E. Case Study 3: Initialization with pre-generated alpha set 

This experiment was designed to determine whether the 
initialization of alpha set using synergistic formulaic alpha im-
pacts the learning effectiveness. During the expanded search 
space experiment, we measured the test ICs of the alpha set 
generated when the combination model's pool size was 10. To 
conduct a comparative experiment with alpha 101, we selected 
a single formulaic alpha factor from the alpha set that showed 
the highest IC in the test set for use in alpha set initialization. 
The selected alpha set demonstrated an IC of 0.078 in the test 
set, and from this, a single formulaic alpha factor with an IC 
of 0.07 was chosen. 

The pool size of the combination model was set to 20, and 
5 different random seeds were used for training and evaluation 
of each technique. During the training, selected formulaic al-
pha factors were added to the alpha set, and if necessary, could 
be removed by the combination model. This experiment was 
conducted on the CSI300 index, and we observed the impact 
of initialization with seed alphas from the experiment by com-
paring performances based on whether the empty alpha set, 
marked as 'Non-Init,' were initialized or not. 

Figure 3 shows the experimental results when alpha set 
with a pool size of 20 was initialized using alpha set with a 
pool size of 10. Initializing with a single formulaic alpha factor 
resulted in an increase of 0.006 in IC compared to initializing 
with empty alpha set with a pool size of 20, and an increase of 
0.005 compared to a pool size of 10. When initialized with 10 
formulaic alpha factors, there was an increase of 0.016 in IC 
compared to initializing with empty alpha set with a pool size 
of 20, and an increase of 0.007 compared to a pool size of 10. 
The significant IC differences observed in experiments with 
the same pool size demonstrate that the method of initializa-
tion with the initial seed alpha set can affect model perfor-
mance. 

F. Backtesting 

In this paper, the backtesting environment for the proposed 
investment strategy utilized a Top-K/Swap-N based long only 
strategy. Top-K/Swap-N involves selecting the top K stocks 
based on the highest alpha values to form the portfolio. Daily, 
at the close of the stock market, the alpha values of stocks in 
the portfolio are compared with those not included in the 

 

Figure 3. IC change during the Test period when initializing the Alpha 

set with the created alpha set. Non-Init: Training without inserting any 

separate formulaic alpha. Blue: Original search space, Red: Expanded 
search space. Green: IC for the test set of alphas created when the pool 

size is 10. 

 

Figure 4. Cumulative return changes during the test period with the 

created mega alpha set. Set pool size to 20 and display individually after 
training five random seeds. Black: CSI300 index for the test set period. 

Blue: alpha set created with original search space, red: alpha set created 

with expanded search space, green: alpha set created after initializing with 

alpha set generated when pool size is 10. 

TABLE 5. Parameters used in backtesting. 

Parameters Value 
Top K 50 

Swap N 5 

Minimum number of holding 
days H 

20 days 

Top K enter threshold 𝐸𝐸𝑡𝑡ℎ 0.0 

Backtest dates  2020-01-01 - 2021-12-31 

Survivorship bias Not included 

Backtest platform Qlib [11] 
PPO agent seed 0, 1, 2, 3, 4 

Size of alpha pool 20 
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portfolio. Up to N stocks are then sold, and up to N new stocks 
are purchased based on this comparison. Additionally, stocks 
initially purchased must be held for at least a minimum 
number of days (H) before they can be sold. A Top-K Enter 
Threshold (𝐸𝐸𝑡𝑡ℎ)is also set, where the value must be higher 
than this threshold at the time of purchase and lower at the 
time of sale. Table 5 presents the parameters used for 
backtesting. 

Figure 4 displays the cumulative returns after backtesting 
for each technique trained with 5 random seeds. It is observed 
that the proposed technique consistently recorded higher 
cumulative returns across all seeds compared to the existing 
techniques. While some seeds in the existing methods failed 
to achieve excess returns over the CSI300 index during certain 
periods, the application of the proposed technique resulted in 
excess returns over the index for all seeds. 

IV. CONCLUSION 

In this paper, we explored the efficiency of using 
reinforcement learning to generate synergistic formulaic alpha 
collections, and confirmed the potential of reinforcement 
learning in creating formulaic alpha factors from a vast search 
space, demonstrating its capability to produce alpha set with 
high IC. We found that initializing with pre-generated 
formulaic alphas led to the creation of superior performing 
alpha set. Additionally, we expanded the search space to 
integrate various operators and operands, and confirmed that 
this expansion contributed to improved results. However, 
there are limitations due to the complexity arising from the 
formula length restriction inherent in the model structure. To 
address this, we proposed the use of predefined auxiliary 
indicators. We also identified a problem where IC deteriorated 
at the beginning of the training process due to not resetting the 
experience buffer, suggesting the need to simultaneously 
initialize the alpha set and experience buffer in future to 
resolve this issue. 

Finally, we proposed the necessity of observing 
performance in other markets. While this paper conducted 
experiments using the CSI300, further experiments in various 
financial markets like the CSI500, NASDAQ, and KOSPI are 
planned to additionally verify the universality of our approach. 
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