
GRadient sharing A3C for Adaptive Bitrate (GRAAB): A
DRL Based Approach for Adaptive Video Streaming

Mandan Naresh, Paresh Saxena and Manik Gupta
Dept. of CSIS, BITS Pilani, Hyderabad, India

{p20180420, psaxena, manik}@hyderabad.bits-pilani.ac.in

Abstract—Recent research has shown that the deep reinforce-
ment learning (DRL) based asynchronous advantage actor-critic
(A3C), an on-policy method, is an effective tool for generating
adaptive bit rates (ABR) for video streaming and provides a high
quality of experience (QoE) for end users under varying network
conditions. However, vanilla A3C suffers from the following
issues: (i) it has biased estimates due to the use of high entropy
weights, (ii) it has a high number of computations due to the
use of near-homogeneous policies while training with a single
set of global parameters with multiple agents, and (iii) it lacks
exploration due to the use of the on-policy method. To address
the aforementioned issues, this paper presents gradient sharing
A3C for adaptive bitrate (GRAAB) to generate adaptive bitrates.
By sharing gradients and parameters among multiple workers,
GRAAB encourages exploration and produces optimal policies
without compromising long-term convergence. Using 5G traces
from the Lumos 5G dataset, we highlight the advantages of
GRAAB and demonstrate that it achieves a significantly higher
average QoE than a number of other state-of-the-art ABR
algorithms.

Index Terms—DRL, ABR, QoE, and 5G.

I. INTRODUCTION

According to the Cisco annual Internet report (2018-2023)
[1], over two-thirds of the world’s population will have Internet
connectivity by 2023. Specifically, Internet video traffic will
contribute more than any other type of Internet traffic. How-
ever, unstable network conditions may impact the quality of
experience (QoE) for end users. To improve the QoE, adaptive
bitrate (ABR) streaming enables rate adaptation during a video
session where a server encodes source video chunks with
different bitrates and a client can dynamically select the bitrate
according to the current network conditions.

By adapting video bitrate based on the underlying network
conditions, ABR algorithms strive to improve user quality of
experience (QoE). Designing an ABR algorithm is problematic
in dynamic network conditions due to sudden fluctuations in
network throughput. Tradition ABR algorithms are mainly
buffer-based, i.e., depending on the buffer occupancy at the
client, or rate-based, i.e., depending on the estimated through-
put of the network. Some examples of such ABR algorithms
include FESTIVE [2], RB [3], BB [4], BOLA [5], and
MPC [6]. However, they do not generalize well to a wide
range of network conditions since they are based on fixed
rules. Recently, deep reinforcement learning (DRL) based
asynchronous advantage actor-critic (A3C) methods Pensieve
[7], NANCY [8] have demonstrated several advantages over

fixed rule-based ABR algorithms. However, A3C based ABR
algorithms suffer from the following issues: (i) biased esti-
mates due to the use of high entropy weights, (ii) high number
of computations due to the use of near-homogeneous policies
while training with a single set of global parameters with
multiple agents, and (iii) lacks exploration due to the use of
the on-policy method.

To address the aforementioned issues, this paper presents
gradient sharing A3C for adaptive bitrate (GRAAB) to gen-
erate adaptive bitrates. By sharing gradients and parameters
among multiple workers, GRAAB encourages exploration and
produces optimal policies without compromising long-term
convergence. The main contribution of this paper is the design
and implementation of GRAAB, and its evaluation with Lu-
mos 5G network data set [9]. We have implemented GRAAB
using TensorFlow [10] and carried out comparisons under
a wide range of network conditions and QoE metrics. Our
results demonstrate the ability of GRAAB to learn network
conditions, video properties and provide a much higher QoE
than a number of state-of-the-art ABR algorithms.

The remainder of the paper is organized as follows. Section
II presents the relevant background on reinforcement learning
and actor-critic and gradient-sharing methods. Further, Section
III presents the proposed algorithm and system design. We
present the experimental setup and results in Section IV.
Finally, we conclude our work in Section V.

II. BACKGROUND

This section presents a brief overview of reinforcement
learning and the A3C methods.

A. Reinforcement Learning
Reinforcement learning [11] is the process of dynamic

learning in which an agent has limited or no prior knowledge
about the environment. For each time step t = 0, 1, 2, 3, ...,
the agent is in a state st, performs action at, moves to state
st+1 and observes a reward rt. The agent selects actions based
on a policy π(st, at), where π(st, at) is the probability that
when the agent is in a state st, and it takes action at. The
agent’s objective is to formulate a strategy that maximizes the
expected return given by V ∗(s) = max{π∈Π} V π(s) where
Π is the set of possible policies and the state-value function

V π(s) = E

[∑∞
k=0 γ

krt+k|st = s, π

]
where γ ≤ 1 is a

discount factor.

114979-8-3503-3094-6/24/$31.00 ©2024 IEEE ICOIN 2024

B. DRL empowered actor-critic methods

Actor-critic [12] methods comprise an actor neural network
π(at|st; θ) representing the policy and a critic v(st; θv) neural
network, an estimate of the value function based on the
policy generated by the actor. The gradient of the cumulative
discounted rewards with respect to the policy parameters, θ,
is given by,

∇θEπθ

[∞∑
t=0

γtrt

]
= Eπθ

[∞∑
t=0

∇θ log πθ(st, at)ψAπθ (st, at)

]

(1)
where ψ is the weight parameter for the advantage function

Aπθ (st, at) and the advantage function is given by,

Aπθ (st, at) = rt + γV πθ (st+1; θv)− V πθ (st; θv) (2)

The policy parameter (θ) is updated as follows:

∆θ ← θ+α
∑
t

∇θ log πθ(st, at)ψAπθ (st, at)+β∇θH(.|st)

(3)
where H(.) is the entropy of the policy to promote random

actions, and α is the learning rate. The parameter β is the
entropy regularization that is used to control the random
actions. The update of the critic parameter (θv) is given by,

∆θv ← θv − αv

∑
t

∇θv ψA(st, at)
2 (4)

where αv is the critic learning rate. To further speed up
the training, A3C uses multiple actors and critic networks
[13]. The multiple learning agents are created, each with their
copy of the environment with local actors and critics. These
learning agents execute in parallel and update the parameters
of a central agent asynchronously using stochastic gradient
descent. At the end of an episode, the learning agent updates
the central agent and then updates itself with the current state
of the global agent. The parallel learning can be achieved by
executing each learning agent in a separate thread.

C. Gradient sharing for A3C agents

Recently, gradient sharing is utilized by multiple A3C
agents and has shown to achieve much better performance
than vanilla A3C [14]. Some of the key components to enable
gradient sharing in A3C are as follows:

• Gradient clipping: it enables exploration using gradient
sharing operation with small learning rates on parameter
difference (D) between global parameters. It is given by:

D = |θi − θj | subject toD < |mi −mj | (5)

where θi, and θj are the global parameters, and mi, and
mj are the index of the assigned global parameters to
the workers. To support policy diversification without
compromising long-term convergence, gradient sharing
uses M sets of global parameters and asynchronously
shares gradients among N workers. Based on Equation
(5), the gradient difference among the global networks is
given by,

G = |gj − gi| < |mi −mj |,where |gi| < 1.0, |gj | < 1.0
(6)

where gi, gj are gradients in global networks.
• Reduced entropy loss: To reduce the large entropy loss in

A3C, [14] uses advantage weights with zero mean noise,
which is used to reduce the bias with a limited entropy
range. To reduce entropy loss, H(.), in Equation (4),
the zero entropy noise (ϵ) is included in the advantage
function as follows:

Aπθ
ϵ (st, at) = E

[T∑
t=0

ψA(st, at) + ϵ

]
(7)

where the policy parameter (θ) and the critic parameter
(θv) are updated as follows:

∆θ ← θ+α
∑
t

∇θ log πθ(st, at)A
πθ
ϵ (st, at)+β∇θH(.|st)

(8)

∆θv ← θv − αv

∑
t

∇θvAϵ(st, at)
2 (9)

III. GRAAB: DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of
the proposed GRAAB algorithm to generate ABR for video.

A. Methodology

Figure 1 presents the client-server system architecture with
GRAAB utilziing parallel training among M global actor and
critic parameters, as well as N local actor and critic parame-
ters. The client requests the chunks from the server in order to
download and play them. It also estimate a bit rate by utilizing
the ABR module and send it to the server. Several vanilla-
A3C based ABR methods are proposed however in case of
vanilla A3C methods, each global network has an update
method that generates near-homogeneous policies for multiple
workers. Due to the generation of near-homogeneous policies,
high entropy weights are required to encourage exploration,
and it results in less diversity among the policies.

To overcome this issue, GRAAB uses multiple agents for
training to calculate the bit rate. It relies on parallel training
among M global actor and critic parameters, as well as N
local actor and critic parameters. Each worker has information
at the chunk level, including chunk size, chunk throughput,
chunk download time, and chunk bitrate. GRAAB uses four
key steps to increase the diversity among the policies. The first
step is where each worker receives the chunk-level information
from the current state st. Second, each worker computes the
gradient, which is updated locally. Third, each worker updates
the gradients to the global networks by locking other workers.
Finally, each worker resumes training and exploration after
all locks have been removed. The inputs and outputs to the
GRAAB (ABR) are described below.

115

Fig. 1: Client-Server system architecture with GRAAB for ABR utilizing parallel training among M global actor and critic
parameters, as well as N local actor and critic parameters.

1) Inputs: After downloading each chunk t at the client
side, the GRAAB agent takes the following inputs st =
(xt, dt, nt, bt, lt) into the neural network where xt are the
throughput measurements for each of the previous k chunks,
dt are the download times for the past k chunks, nt is the
available sizes for the next video chunk, bt is the size of the
current buffer, and lt is the previous chunk’s bitrate.

2) Outputs: Given state st = (xt, dt, nt, bt, lt), the agent
selects a suitable bitrate for the next video chunk, i.e., a
corresponding action at. The policy πθ(st, at) is used to
estimate the action at.

B. GRAAB Training Algorithm

Algorithm 1 presents the GRAAB training and outlines
the critical steps. The input to the algorithm is st =
(xt, dt, nt, bt, lt) and it is initialized with M global parameter
copies and N local learning workers. The summary of the
algorithm is presented as follows:

1) Each worker i ∈ N is assigned to a global parameter
copy m ∈ M at Line 6.

2) Locks are assigned to each global parameter m ∈ M at
Line 9.

3) Each chunk is played at a specified bitrate using the
selection of the action based on the current state and
the policy and to store the corresponding reward at Line
21.

4) Map the state (st) inputs to the closest bitrate by actor-
network at Line 24.

5) Evaluate the video’s bitrate by critic network using vt
at Line 25.

6) Worker i waits till all the locks Lj , (j ∈ M) are
deactivated. Once deactivated, it activates all the locks
at Line 31.

7) Gradient sharing (termed as F) operation is done where
the worker i updates all the other global copies (j ∈ M ,
j ̸= i) using the calculated gradients at Line 32.

8) Worker i deactivates all the locks Lj , (j ∈ M) and
resumes at Line 33.

The output to the algorithm is the actor-network makes the
decision to play the chunk by chunk with a specified bitrate
at Line 38. The critic network evaluates the video’s bitrate,vt
at line 39. Finally, the actor and critic parameters are updated
based at Line 40.

IV. EXPERIMENTAL SETUP AND RESULTS

This section presents the implementation details, data sets
utilized in the experiments, training methodology, performance
metrics, and the outcome of the experiments.

A. Implementation Details

The experiments conducted follow the setup with M = 4
global actor and critic parameters, as well as N = 8 local actor
and critic parameters. In the actor-network, the final layer uses
the softmax activation function to map the input chunk size to
the closest bitrate. The critic network, on the other hand, uses
a linear neuron without an activation function. The purpose
of this design is to allow the actor-network to make decisions
based on the output of the critic network, which evaluates the
quality of the decision made by the actor-network. GRAAB
uses k = 8 past bandwidth measurements, which serve as
an input to a 1D convolution neural network (CNN) layer
with 128 filters of size 4 and stride 1 to generate the ABR.
Similarly, past k chunk download times and subsequent chunk
sizes are supplied to distinct 1D-CNNs of the same shape.
These outputs are then flattened and concatenated with the
remaining inputs. The results are subsequently transferred
through successive layers containing 256 neurons.

116

Algorithm 1 Training algorithm for GRAAB utilizing the
gradient sharing among multiple agents for adaptive video
streaming

1: Input: video samples, hyperparameters;
2: Parameters:
3: Video vi; choose a video file as a input
4: Chunk c; select the bitrate for future chunks from video

file
5: Initialize:

6: EN←N environment copies, t ← 0
7: AN←N worker threads
8: θgm ← M global actor and critic parameters
9: LM←N global locks for θgm

10: LM←unlock, initially all locks are deactivated
11: θim ← θgm for i ∈ N , for m ∈ M , copy M global

parameters to their respective assigned N local worker
parameters

12: for video vi= 1,2,3...., VI do
13: Observe initial state st;
14: for chunk c=1,2,3...., C do
15: while not optimal policy reached do
16: for all worker threads Ai, i ∈ N
17: t ← t+ 1
18: m ← index of the assigned global parameters for

Ai

19: State st provided by environment Ei to Ai

20: Action at ∼ π(at, st) performed by Ai

21: Environment Ei provides reward rt and next state
st+1

22: vt ← rt + γV πθ (st+1), compute bootstrap
23: Compute advantage A(st, at) using Equation 7
24: Map the state (st) inputs to the closest bitrate by

actor network
25: Evaluate the video’s bitrate by critic network using

vt
26: Update the actor network by policy parameter (θ)

using Equation 8
27: Update the critic network by critic parameter (θv)

using Equation 9
28: Update the assigned global parameters θgm using

the gradients.
29: Update the local parameters of the thread θgm →

θm
30: Wait till all locks Lj with j ∈ {M − m} are

unlocked
31: Lj ← lock for all locks j ∈ M
32: Gradient sharing operation F : Using accumulated

gradients update other global parameter copies θgj
with j ∈ {M −m}

33: LM ← unlock, deactivate all locks
34: end while
35: end for
36: end for
37: Output:
38: Actor network makes the decision to play the chunk by

chunk with a specified bitrate
39: Critic network is evaluates the video’s bitrate using vt
40: Update actor and critic parameters θ, ϕ

We train GRAAB and other state-of-the-art DRL-based
algorithms for 100,000 iterations and selected the model with
the maximum average reward. We have considered a discount
factor of γ = 0.99 and learning rates for actors and critics as
0.0001 and 0.001, respectively. GRAAB uses entropy regular-
ization factor (η) range from 5 to 0.005. In the early training
iterations, GRAAB employs high entropy to promote extensive
exploration. As training progresses, the GRAAB gradually
reduces the high-entropy weights, ultimately favoring more
stable configurations for the remainder of the iterations.

B. Datasets

We have used 5G network data sets [9] for the experiments.
It consists of 173 5G throughput traces that were collected at
1-second intervals. The range of throughput between 0 and
1800 Mbps is adequate for UHD video delivery over 5G
networks. Each trace file includes a timestamp (in seconds) and
throughput (in megabits per second). We utilized two different
classes of 5G traces: (i) 5G-Drive, 92 traces which consider
driving-related mobility patterns and (ii) 5G-Walk, 81 traces
which consider walking-related mobility patterns.

C. ABR algorithms, Performance Metrics, and Training
Methodology

We compare the performance of GRAAB with the following
ABR algorithms: (i) Pensieve [7]: DRL-based vanilla-A3C
method to generate ABR, (ii) PPO-ABR [15]: DRL-based
proximal policy optimized method to generate ABR, (iii)
ALISA [16]: DRL-based importance-weighted actor-learner
method to generate ABR, (iv) AL-AvgA3C [17]: DRL-based
averaged-A3C method to generate ABR, (v) AL-FFEA3C
[17]: DRL-based follow-then-forage method to generate ABR
and (vi) SAC-ABR [18]: DRL-based soft-actor-critic based
method to generate ABR.

TABLE I: Comparison of QoElin, QoEHD, and QoEV R

metrics for different DRL based ABR algorithms over 5G-
Drive and 5G-Walk traces

DRL-based ABR methods 5G-DRIVE Traces 5G-WALK Traces
QoElin QoEHD QoEV R QoElin QoEHD QoEV R

GRAAB 146.75 19.05 46.47 310.52 18.08 48.06
PENSIEVE 99.27 17.15 48.06 118.87 16.87 20.87
PPOABR 142.87 14.15 46.24 151.11 15.77 21.82
SACABR 106.92 18.82 48.23 303.95 18.85 47.52

AL-AvgA3C 88.17 18.18 30.49 106.44 16.63 20.55
ALISA 78.13 17.12 40.89 155.62 17.32 23.05

AL-FFEA3C 85.82 16.77 31.15 155.19 17.53 38.89

We compare all the ABR algorithms using QoE as a
performance metric. The QoE is given as,

QoE =

N∑
n=1

q(bn)− µ

N∑
n=1

Tn −
N−1∑
n=1

|q(bn+1)− q(bn)| (10)

where the QoE term contains the three components: (i) the
sum of all chunk’s bit rates, (ii) the penalty due to re-buffering,
and (iii) the smoothness of the video, measured using the
difference between the bit rates used to encode consecutive
chunks.

Specifically, we consider three different variations of the
above QoE metric:

117

(a) 5G-Drive traces (b) 5G-Walk traces

Fig. 2: Average value of QoELIN for 5G-Drive and 5G-Walk traces attained by various ABR algorithms.

(a) 5G-Drive traces (b) 5G-Walk traces

Fig. 3: Average value of QoEHD for 5G-Drive and 5G-Walk traces attained by various ABR algorithms.

• QoELIN : This is a generic QoE metric with the rebuffer
penalty as µ = 160 and q(bn) = bn.

• QoEHD: This metric is designed specific to evaluate QoE
for HD videos with the rebuffer penalty as µ = 192 and
q(bn) = HDrt(bn), where HDrt is assigned with the
reward values of {1, 2, 3, 12, 15, 20} when bn is {20,
40, 60, 80, 110, 160} Mbps, respectively.

• QoEV R: This metric is designed specific to evaluate QoE
for virtual reality (VR) videos with the rebuffer penalty as
µ = 400 and q(bn) = V Rrt(bn), where V Rrt is assigned
with reward values of {5, 10, 15, 20, 25, 50} when bn is
{20, 40, 60, 80, 110, 160} Mbps, respectively.

D. Results

Table I presents the average QoE for all the variants
(QoELIN and QoEHD, and QoEV R) for both 5G-Drive and
5G-Walk traces. Our results show that GRAAB consistently
obtains a higher QoE than other state-of-the-art ABR algo-
rithms for almost all cases. Specifically, GRAAB achieves
47.82% and 161.22% higher average QoE (QoELIN) than
Pensieve for 5G-Drive and 5G-Walk traces. Similar advantages
are observed when comparing GRAAB to AL-AvgA3C, AL-
FFE3C, PPO-ABR, SAC-ABR and ALISA.

Figure 2a presents the average reward values attained by
various ABR algorithms during each training epoch using the
QoELIN metric on 5G-Drive traces. As the number of training
epochs increases, our findings demonstrate that each algorithm
exhibits distinct behaviours. Notably, the GRAAB achieves a

high reward value early on in its training, demonstrating better
performance from the initial epochs. GRAAB consistently
outperforms other DRL-based ABR methods as training pro-
gresses, ultimately achieving the highest reward value. In the
case of 5G-Walk traces, as presented in Figure 2b, the GRAAB
also achieves the highest average reward value in comparison
to other DRL-based ABR algorithms. These findings empha-
size the adaptability and efficacy of each ABR algorithm in
various scenarios, highlighting the importance of selecting the
most appropriate approach based on the unique characteristics
of the network traces and the desired QoE outcomes. Figure
3a, and 3b presents the average reward value achieved by
various ABR algorithms at each training epoch using QoEHD

metric over 5G-Drive and 5G-Walk traces, respectively. For
these traces, the GRAAB outperformed compared to other
competing algorithms. We also present that GRAAB achieved
better performance compared to other ABR algorithms with
QoEV R metric for both 5G-Drive and 5G-Walk traces, as
shown in Figure 4a and Figure 4b, respectively.

To thoroughly comprehend and demonstrate the benefits of
the proposed approaches, we execute an in-depth analysis of
the QoE metrics’ individual components. This comparison of
ABR algorithms is based on 5G trace data, and their efficacy
is evaluated using three crucial metrics: average bitrate utility,
average rebuffering penalty, and average smoothness penalty.
The outcomes of our analysis are illustrated in Figure 5 for the
linear metric. Compared to other ABR algorithms, GRAAB
attains higher bitrates, reduces rebuffering occurrences, and

118

(a) 5G-Drive traces (b) 5G-Walk traces

Fig. 4: Average value of QoEV R for 5G-Drive and 5G-Walk traces attained by various ABR algorithms.

Fig. 5: Comparing PPO-ABR and SAC-ABR with existing
DRL-based ABR algorithms by analyzing their performance
on the individual components on the 5G traces using a
QoELIN metric.

maintains smoother video playback. These figures provide
valuable insight into the overall performance of GRAAB with
5G traces, ultimately resulting in an improved QoE. Similar
results are obtained for QoEHD and QoEV R metrics as well,
which are not included due to the space constraints.

V. CONCLUSIONS

In this work, we have proposed and evaluated the perfor-
mance of GRAAB in comparison to other state-of-art ABR
algorithms. GRAAB enables extensive exploration through
gradient sharing and supports variations in policies originating
from different workers and converges to better policies with
fewer working agents. Future work includes the extensive
study of GRAAB for edge-driven video delivery services.

ACKNOWLEDGMENT

This work has been supported by TCS foundation under the
TCS research scholar program, 2019-2023, India.

REFERENCES

[1] “Cisco annual internet report, 2018-2023.” [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[2] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive.” New
York, NY, USA: Association for Computing Machinery, 2012.

[3] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and
B. Sinopoli, “Cs2p: Improving video bitrate selection and adaptation
with data-driven throughput prediction.” Association for Computing
Machinery, 2016.

[4] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service.” New York, NY, USA: Association for Computing
Machinery, 2014.

[5] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal bi-
trate adaptation for online videos,” in IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications,
2016, pp. 1–9.

[6] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http.” New York,
NY, USA: Association for Computing Machinery, 2015.

[7] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
197–210.

[8] P. Saxena, M. Naresh, M. Gupta, A. Achanta, S. Kota, and S. Gupta,
“Nancy: Neural adaptive network coding methodology for video dis-
tribution over wireless networks,” in GLOBECOM 2020 - 2020 IEEE
Global Communications Conference, 2020, pp. 1–6.

[9] A. Narayanan, X. Zhang, R. Zhu, A. Hassan, S. Jin, X. Zhu, X. Zhang,
D. Rybkin, Z. Yang, Z. M. Mao, F. Qian, and Z.-L. Zhang, “A
variegated look at 5g in the wild: Performance, power, and qoe
implications,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, ser. SIGCOMM ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 610–625. [Online]. Available:
https://doi.org/10.1145/3452296.3472923

[10] M. Abadi, A. Agarwal, and P. Barham, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018.

[12] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in neural information processing systems, 2000, pp. 1008–1014.

[13] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” 2016.

[14] A. B. Labao, M. A. M. Martija, and P. C. Naval, “A3c-gs: Adaptive mo-
ment gradient sharing with locks for asynchronous actor–critic agents,”
pp. 1162–1176, 2021.

[15] N. Mandan, S. Paresh, and G. Manik, “Ppo-abr: Proximal policy
optimization based deep reinforcement learning for adaptive bitrate
streaming,” in 2023 International Wireless Communications and Mobile
Computing (IWCMC), 2023, pp. 199–204.

[16] M. Naresh, P. Saxena, and M. Gupta, “Deep reinforcement learning
with importance weighted a3c for qoe enhancement in video delivery
services,” in 2023 IEEE 24th International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2023, pp. 97–
106.

[17] M. Naresh, V. Das, P. Saxena, and M. Gupta, “Deep reinforcement
learning based qoe-aware actor-learner architectures for video streaming
in iot environments,” Computing, vol. 104, 07 2022.

[18] M. Naresh, N. Gireesh, P. Saxena, and M. Gupta, “Sac-abr: Soft actor-
critic based deep reinforcement learning for adaptive bitrate streaming,”
in 2022 14th International Conference on COMmunication Systems &
NETworkS (COMSNETS). IEEE, 2022, pp. 353–361.

119

