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Abstract—In literature, most existing performance models of
the IEEE 802.11 networks assume a saturated traffic load, where
every station always has a frame to send. Some other models
capture a specific case of an unsaturated traffic load, where
each station can buffer at most one frame at a time. There are,
however, few works that model the performance for an arbitrary
traffic load and buffer size using a three-dimensional Markov
chain. But those models are very complex due to the huge number
of transitions between the states with different queue sizes. In this
work, we propose a new and much simpler performance model
for arbitrary traffic loads and buffer sizes. The model is based on
a very simple but valid assumption, which decreases the number
of transitions in a three-dimensional chain, making it more
readable and easier to calculate. The performance evaluations
show that the proposed model has better accuracy than other
well-known models under both unsaturated and saturated traffic
loads.

Index Terms—802.11, 802.11a, 802.11ac, 802.11ax, 802.11b,
802.11g, 802.11n, WLAN, performance model, throughput,
Markov chain.

I. INTRODUCTION

TODAY, it is difficult to imagine our daily lives without
IEEE 802.11 wireless local area networks (WLANs), also

known as Wi-Fi. Since they are very easy to deploy and use,
we widely use them in homes, public places, and offices for
broadband access to the Internet and to other local services,
such as shared printers or file servers.

Early WLAN technologies such as IEEE 802.11a/b/g use
the distributed coordination function (DCF) protocol that is
based on carrier-sense multiple access with collision avoid-
ance (CSMA/CA) [1]–[3]. Later technologies such as IEEE
802.11n/ac were improved by higher order modulation and
coding rates, multiple input/multiple output (MIMO), frame
aggregation, and block acknowledgment mechanisms [4]–
[9]. The most recent, IEEE 802.11ax, introduced orthogonal
frequency division multiple access (OFDMA) [10]. But the
medium access mechanism of modern 802.11n/ac/ax tech-
nologies still uses the CSMA/CA-based DCF protocol with
some changes. Therefore, the correct performance modeling
of the basic DCF protocol is the key to obtaining more accu-
rate performance models of later technologies such as IEEE
802.11n/ac/ax. However, the existing performance models of
the DCF protocol have the following major drawbacks:

• Most existing models consider saturated traffic only [3],
[11]–[15], where the stations always have at least one
frame to send. Such models are a good tool to analyze
saturation throughput, but in real-world applications, the
stations have unsaturated traffic loads most of the time.

• Some other works model a very specific case of unsatu-
rated traffic assuming a bufferless station, i.e., a station
can have at most one frame at a time [16]–[19]. This is
an impractical assumption, since 802.11 stations usually
have a queue at least for a few dozens of frames. Thus,
these models underestimate the probability of collision
and overestimate the system’s performance.

• However, there are some works that model a more general
case where stations have an arbitrary load and buffer size
[20]–[23]. These models are based on a three-dimensional
(3-D) Markov chain and produce better accuracy. But
they are overly complex due to the enormous number of
transitions between different states and the lack of concise
equations for steady-state probabilities.

In this work, we propose a new and much simpler per-
formance model of IEEE 802.11 WLANs for a general case
where stations have an arbitrary traffic load and buffer size.
Our model is also based on a 3-D Markov chain, but unlike
other 3-D models, it is much simpler and easier to calculate.
We make a very simple assumption, such that new frame
arrivals are taken into account immediately after the current
head-of-line frame is served. This assumption does not affect
the normal operation of the protocol but greatly decreases the
number of transitions between different states. Performance
evaluations show that the proposed model has better accuracy
than other well-known models in both the unsaturated and
saturated regions of the offered traffic load.

II. BACKGROUND AND RELATED WORK

A. The distributed coordination function (DCF) protocol

DCF is a medium access control (MAC) protocol, a funda-
mental component of the IEEE 802.11 standard. It is based
on CSMA/CA, which means that stations listen to the channel
before transmitting to see if it is busy. If the channel is busy,
the station waits a random amount of time and then transmits.
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The sender station, which has a frame to send, continuously
monitors the channel. If the channel is idle for a period called
DCF inter-frame space (DIFS), it randomly extracts a new
backoff counter from the [0,W0) range, where W0 is the size
of the contention window at the backoff stage 0. The sender
decrements the counter at the end of every idle backoff slot
and freezes the counter if the channel is detected to be busy.
The backoff counter decrementing is resumed only after an
idle DIFS period and an idle backoff slot.

When the backoff counter expires, that is, becomes 0, the
sender transmits its frame. If the receiver successfully receives
the frame, it replies with an acknowledgement (ACK) frame
after a period called short inter-frame space (SIFS). If the
sender receives the ACK within a timeout, it resets its backoff
stage to 0. Otherwise, the sender concludes that its frame was
not received due to a collision and therefore increments its
backoff stage.

When the backoff stage is incremented, the sender doubles
the size of its contention window to decrease the probability
of the collision, that is, Wi = min (2i ×W0,Wmax) where
i ∈ [0, r]. After an idle DIFS period, the sender randomly
extracts a new backoff counter from the [0,W1) range and
retransmits the frame after the counter expires. However, if
the ACK is not received even after transmission from the last
backoff stage r, the data frame is eventually dropped, and the
sender resets its backoff stage [1]–[3], [6].

B. Existing performance models

Performance modeling of IEEE 802.11 WLANs has long
been a hot research topic. Existing performance models in the
literature can be divided into three categories. The models in
the first category assume that stations always have saturated
transmit buffers and thus always compete for channel access.
First, in [3], Bianchi proposed a new two-dimensional (2-D)
Markov chain model of backoff stage and backoff counter
evolution with the following assumptions: all stations have
saturated buffers, each transmission encounters the collision
with constant probability regardless of the backoff stage value,
ideal channel conditions, and infinite retransmission attempts.

In the following years, many papers improved various
aspects of Bianchi’s model by relaxing different assumptions.
For example, in [11], the authors improved Bianchi’s model
by making the retransmission attempts finite. Vishnevsky et
al. improved Bianchi’s model by accounting for channel errors
[12]. In [13], Raptis et al. extended previous models to obtain
a more accurate distribution of access delay under saturated
traffic conditions. In [14], [15], the authors improved the
original Bianchi model, taking into account the more correct
rule for decrementing the backoff counter. Models in the first
category can be a handy tool to analyze the upper limits of
saturation throughput, but in real-world applications, stations
have unsaturated traffic loads most of the time.

The works in the second category relax Bianchi’s saturated
buffer assumption. They model a very specific case of un-
saturated traffic assuming a bufferless station, i.e., a station
can have at most one frame at a time [16]–[19]. With such

an assumption, the authors effectively avoid introducing a
third dimension (for queue size evolution) in their Markov
chains. However, this is an impractical assumption since
802.11 stations usually have a buffer at least for a few dozens
of frames, and, at any given time, queues may have multiple
pending frames. Moreover, due to such an assumption, these
models underestimate the probability of collision, leading to
overestimated throughput [20].

The works in the third category extend the previous models
to a general unsaturated traffic case [20]–[23]. For example,
in [20], Liu et al. introduce a third dimension in the Markov
chain to track changes in queue length. In [21], Sutton et al.
extend Liu’s model to include channel errors and the capture
effect. In [22], [23], Martorell et al. extended Liu’s model
by accounting for a more correct rule for decrementing the
backoff counter. Using these models, one can calculate system
throughput, collision probability, and access delay with greater
precision. However, the biggest drawback of these models is
their extremely high complexity. They have too many possible
states and a huge number of transitions between the states with
different queue sizes, which makes it difficult to formulate the
steady-state probabilities in terms of concise equations.

III. SYSTEM MODEL

As in [3], [11], [13]–[17], [20], we also assume that every
station is within range of each other, the channel is ideal,
and thus the receivers fail to decode the frames due only to
collisions. However, we also introduce a new assumption, such
that new frame arrivals are taken into account immediately
after the service of the current head-of-line (HOL) frame
finishes. This assumption helps to simplify the complexity
problems that exist in conventional 3-D Markov chain model-
ing approaches such as [20]–[23]. In these models, new frame
arrivals are accounted for at the end of each slot, i.e., the
queue size can change after each slot, resulting in an enormous
number of transitions between the states of the different queue
sizes [9]. This approach complicates the performance model,
making it less understandable and difficult to estimate.

Generally, when a frame becomes HOL, the station imme-
diately starts the backoff process, i.e., starts the service of this
frame. The service ends when the station either receives an
acknowledgement (ACK) for this frame or drops it due to an
exhausted retry limit. According to our new assumption, the
queue size does not change during the service. This does not
mean that new frames cannot arrive during this period, but
new frame arrivals are accounted for right after the service
finishes. That is, the queue size can change only at the end
of slots in which the station either successfully delivers the
frame or drops it due to an exhausted retry limit. This approach
greatly decreases the number of transitions and simplifies the
3-D chain, making it easier to understand and estimate.

A. New 3-D Markov Chain Model

As in [3] and other related works, our model is based on
a discrete and integer timescale, where time indexes t and
t + 1 correspond to the beginning of two consecutive slots.
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Fig. 1. Proposed Markov-chain of queue size, backoff stage, and backoff counter.

Fig. 1 depicts the newly proposed 3-D Markov chain, which is
composed of stochastic processes of the queue size (q(t)), the
backoff stage (s(t)), and the backoff counter (c(t)). A generic
state in the chain is represented by {n, i, k}, where n, i, and k
are random variables representing the current queue size, the
backoff stage, and the backoff counter, respectively. There is
also a special state {e}, representing the case where the station
does not have any frames in the queue, that is, the empty state.
Due to the lack of space and for better readability, Fig. 1 shows
only the states of queue size n and m, and the empty state e.
Furthermore, the figure depicts only (i) incoming transitions
to states with queue size m from states with queue size n and
the state {e} and (ii) incoming transitions to the state {e} from
the states with queue size n. We believe that readers can get
any transition from/to states with any queue size. Note that
Wi is the size of the contention window at backoff stage i,
and r is the retry limit.

B. One-step state transition probabilities

Let us start deriving the probabilities of incoming one-step
transitions into state {e} that are given in (1).




P{e|e} = q0

P{e|n, i, 0} = (1− p) · qn,i→0, i ∈ [0, r]

P{e|n, r, 0} = p · qn,drop→0

. (1)

The first expression is the probability of the incoming transi-
tion from {e} itself, where qn is the probability of n new frame
arrivals during the average slot duration denoted by Es and

will be discussed later in more detail. The second expression is
the probability that the station successfully transmits the frame
from state {n, i, 0} and then finds no frame in the queue, where
p is a conditional collision probability introduced in [3] and
qn,i→m is a probability that the queue has m frames after a
successful transmission in the state {n, i, 0}. Finally, the last
expression is the probability that the retransmitted frame from
state {n, r, 0} encounters a collision and there is no frame in
the queue, where qn,drop→m is a probability that the station
has m frames in its queue after dropping/discarding the HOL
frame due to the exhausted retry limit.

Transition to stage 0 is triggered whenever the queue is busy
right after the service of the HOL frame finishes, and then
the backoff counter is selected randomly from [0,W0). The
transition probabilities to the state {m, 0, k} are given in (2),
where k ∈ [0,W0), n,m ∈ [1, Q], and Q is the queue/buffer
size limit (in frames). The first equation is the probability that
m frames arrive into an empty queue during Es. The second
is the probability that the station has m frames in its queue
immediately after successfully transmitting a frame. Finally,
the last is the probability that the station has m frames in its
queue right after it drops a frame upon failure at the final retry.




P{m, 0, k|e} = qm
W0

P{m, 0, k|n, i, 0} = 1−p
W0

· qn,i→m, i ∈ [0, r]

P{m, 0, k|n, r, 0} = p
W0

· qn,drop→m

. (2)

We now examine one-step transition probabilities between
the states of the same queue size, given in (3). The first
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equation represents the probability that the station decrements
its nonzero backoff counter at the end of idle slots. The
second is the probability that the transmitted frame encounters
a collision and, as a result, the sender increments its backoff
stage and selects a new backoff counter k.
{
P{n, i, k − 1|n, i, k} = 1, i ∈ [0, r], k ∈ [1,Wi)

P{n, i, k|n, i− 1, 0} = p
Wi

, i ∈ [1, r], k ∈ [0,Wi)
.

(3)

C. Steady-state probabilities

Let πn,i,k be the steady state probability of state {n, i, k}.
Using (3), we can derive the following relationships for n ∈
[1, Q], i ∈ [0, r], and k ∈ [0,Wi),{

πn,i,k = Wi−k
Wi

πn,i,0

πn,i,0 = πn,0,0 · pi
. (4)

After applying (1) to the balance equation of the state {e},
we can obtain the following expression for the steady-state
probability of the state {e} denoted by πe,

πe =
1

1− q0

Q∑
n=1

πn,0,0

(
(1− p)

r∑
i=0

pi · qn,i→0

+ pr+1 · qn,drop→0

) . (5)

Using (2) and (4), we can derive the steady-state probability
of state {n, 0, 0} as follows

πn,0,0 = πe · qn +

Q∑
m=1

πm,0,0

(
(1− p)

r∑
i=0

pi · qm,i→n

+ pr+1 · qm,drop→n

).

(6)
By utilizing that the sum of the all steady-state probabilities
is one, the following relationship is derived.

Q∑
n=1

πn,0,0 =
2 · (1− πe)
r∑

i=0

pi(Wi + 1)
. (7)

D. Transmission probability and throughput

A station transmits the HOL frame whenever its backoff
counter expires and thus the transmission probability τ is given
by

τ =

Q∑
n=1

r∑
i=0

πn,i,0 =
2 · (1− pr+1) · (1− πe)

(1− p)
r∑

i=0

pi · (Wi + 1)
. (8)

As in [3], the conditional collision probability is given by

p = 1− (1− τ)N−1, (9)

where N is the number of stations in the network.
A generic time slot is idle if none of the stations transmits;

it contains a successful transmission if only one of the stations
transmits; if two or more stations transmit simultaneously,
a time slot contains a collision. Thus, the probability of

idle slot is Pi = (1 − τ)N , the probability of successful
transmission is Ps = N · τ · (1 − τ)N−1, and the probability
of collision is Pc = 1 − Ps − Pi. The duration of idle slot,
Ti, simply equals the duration of standard slot duration σ.
In the basic access scheme, the durations of slots contain-
ing successful transmission and collision can be obtained as
Ts = Tc = Tframe + δ + TSIFS + TACK + δ + TDIFS ,
where Tframe = Tpreamble + Theader + Tpayload is the
time spent while transmitting the data frame, and Tpreamble,
Theader, TSIFS , TACK , and TDIFS are the durations of
preamble, header, short inter-frame space (SIFS), ACK, and
distributed inter-frame space (DIFS), respectively. Tpayload

denotes the transmission time of a single data payload. Then,
the normalized system throughput is calculated as the average
time for successful payload transmission over the average slot
time.

S =
Ps · Tpayload

Pi · σ + Ps · Ts + Pc · Tc
. (10)

E. Offered load and service time relationship

To calculate the throughput S, we need τ and p, which
require qm, qn,i→m, qn,drop→m for all n,m, i.

Let λ denote the frame arrival rate at each station. Assuming
Poisson traffic, let us denote the probability of j frame arrivals
during the interval θ by αj(θ) = ((λ ·θ)j ·e−λ·θ)/j!. Then the
probability that an empty queue will have m frames during an
interval Es can be obtained as follows

qm =




αm(Es), m ∈ [0, Q)

1−
Q−1∑
j=0

qj , m = Q
. (11)

On the other hand, when a frame is transmitted successfully
in the state {n, i, 0} where n ∈ [1, Q], the average service

time of the frame is Tn,i = Es

i∑
j=0

(Wj − 1)/2 + i · Tc + Ts.

Then, the probability that a queue has m frames right after
this successful transmission, qn,i→m, is

qn,i→m =




αm(Tn,i), m ∈ [n− 1, Q)

1−
Q−1∑

k=n−1

qn,i→k, m = Q

0, otherwise

. (12)

Let Tn,drop be the average time to drop a frame due to

exhausted retry limit, Tn,drop = Es

r∑
j=0

(Wj−1)/2+(r+1)·Tc.

Then, the probability qn,drop→m can be also calculated using
(12) but by replacing Tn,i with Tn,drop.

Next, we should get Es, which is the average slot duration
when all other stations except the tagged station compete for
channel access. Es was first used in [13] and is calculated as
Es = Pi·σ+Ps·Ts+Pc·Tc, where Pi = (1−τ)N−1 denotes the
probability that none of the remaining N−1 stations transmit,
Ps = (N − 1) · τ · (1− τ)N−2 represents the probability that
only one of the N −1 stations transmits in the given slot, and
Pc = 1 − Ps − Pi denotes the probability that two or more
stations simultaneously transmit in the given slot.
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TABLE I
PARAMETER SETTINGS

Preamble duration (Tpreamble) 192 µs
Propagation delay (δ) 2 µs
Idle slot duration (σ) 20 µs
DIFS duration (TDIFS ) 50 µs
SIFS duration (TSIFS ) 10 µs
ACK frame duration (TACK ) 30 µs
frame payload duration (Tpayload) 745 µs
Header duration (Theader) 45 µs
Minimum contention window size (W0) 32
Maximum contention window size (Wmax) 1024
Retry limit (r) 7
Queue/buffer size limit (Q) 10 frames

Fig. 2. Conditional collision probability.

Now, by numerically solving the equations from (5) to (9),
we can get τ , p, πe, and πn,0,0 for n ∈ [1, Q]. Then, we easily
calculate the system throughput.

IV. PERFORMANCE EVALUATION

We compare the performance of our newly proposed model
with the other well-known models proposed by Malone et
al. (further referred to as Malone’s model) [17] and Liu et
al. (further referred to as Liu’s model) [20]. We used the
NS-3.40 simulator to validate the results produced by our
model. Script files can be found in our GitHub repository
[24]. TABLE I includes the simulation and model parameter
settings.

A. Discussions on collision probability

Fig. 2 shows the comparison of the conditional collision
probability of different models and the measured / empirical
collision probability in the simulation for different numbers
of nodes (N ). The horizontal axis represents the normalized
total/network offered load.

We can roughly divide the offered load values into two
regions: unsaturated and saturated offered load regions. In
the unsaturated region, the station buffers are not always
filled with frames. In saturated region, however, all buffers
are always busy with at least one frame.

The unsaturated region in Fig. 2 approximately corresponds
to the region Λ ≤ 0.65, where Λ represents the normal-

Fig. 3. Normalized system throughput.

ized network offered load. At small offered loads, such that
Λ ≤ 0.4, the stations have fewer frames to send and thus a
smaller probability of transmission (τ ). Clearly, the probability
of collision (p) is also small due to its relationship with
τ given in (9). All three models show similar performance
for small offered loads. As Λ increases, τ also increases,
and consequently, so does the p. When N increases, p also
increases, but the amount of increase is not noticeable for
such small loads. Surprisingly, the simulator shows a much
higher collision probability compared to the models. We also
observed the same situation in [20], [22], [23].

As Λ increases beyond 0.40, the probability of collision
increases dramatically, indicating that the network is becom-
ing saturated with transmissions. The proposed model and
Liu’s model correctly reflect this process by producing sharp
increases in collision probability. Malone’s model, however,
shows a much slower increase since it has a bufferless station
assumption, so buffers can have at most one frame at a time.
Such an assumption decreases the actual input traffic load, the
number of transmissions, and consequently the probability of
collisions. However, in the proposed and Liu’s models, the
stations can buffer more than one frame and thus produce
more realistic collision probabilities for high offered loads.
Note that the proposed model shows a more accurate colli-
sion probability compared to Liu’s model, showing a smooth
transition from unsaturated region to saturated region.

In the saturated region, all buffers are always busy with at
least one frame; therefore, stations always compete for channel
access, and thus the network is fully saturated with transmis-
sions, which corresponds to the traffic condition modeled in
[3], [11]–[15] and many others. An additional increase in the
offered load does not increase the transmission probability or
the collision probability due to (9). Therefore, the proposed
and Liu’s models produce constant collision probabilities even
when the load increases. The empirical collision probability,
however, fluctuates, but it does so around some mean value. In
contrast, the collision probability produced by Malone’s model
still continues to increase. It will converge with the other two
models and simulation at some very high value of the offered
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load, which is not included in Fig. 2.

B. Discussions on system throughput

Fig. 3 shows the performance comparison for system
throughput. In the unsaturated region, where Λ ≤ 0.4, the
network can serve all frames well, and thus the network
throughput is the same as the offered load in all models and
simulator. As Λ increases, the throughput curves start reaching
their maximum. The exact value of the offered load, which
results in the maximum throughput, depends on the number of
nodes and was analyzed in [25]. After reaching maximum, the
throughput starts decreasing, and this continues until saturation
point, which occurs at Λ ≈ 0.65.

Malone’s model produces significantly higher throughput
than the simulator and other models. Due to a bufferless
station assumption, the actual offered load and the proba-
bility of collision increase slower; therefore, the throughput
also increases slower but eventually achieves a much higher
maximum compared to two models and a simulator. Liu’s
model produces higher maximum and follow-up throughput.
We suspect this is due to its additional assumption, which
ignores more than one frame arrival during a system slot time.
Note that a system slot can be either an empty idle slot, a
collision slot, or a success slot. On the contrary, our model
predicts the maximum and follow-up decline in throughput
with more precision.

In the saturated region, the throughput is supposed to stay
constant since the number of nodes is fixed and the buffers
are (almost) full all the time, so the increase in the offered
load will only increase frame drops due to buffer overflow. We
can confirm this from the simulation results, where throughput
fluctuates around some mean value. Liu’s model produces a
constant but a little higher throughput than the simulator. Mal-
one’s model produces even higher throughput. The proposed
model, on the other hand, produces more accurate saturation
throughput.

V. CONCLUSION

Existing 3-D Markov chain-based performance models of
the IEEE 802.11 DCF protocol for arbitrary traffic load and
buffer size are overly complex due to the huge number of
transitions between states of different queue sizes. In this work,
we proposed a new 3-D chain-based performance model with
the assumption such that new frame arrivals are taken into
account immediately after the current HOL frame is served.
Our 3-D chain is much simpler due to the extremely decreased
number of transitions between the states with various queue
sizes. Performance evaluation showed that the proposed model
has better accuracy than other well-known models in both
unsaturated and saturated regions of the offered traffic load.
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