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Abstract—Advancements in smartphone technology have led 

to an increase in the usage of various location-based services 
(LBS). This resulted in a lot of trajectory data being generated. 
LBSs provide personalized services for users through continuous 
queries. However, there is a problem that the user’s sensitive 
information can be inferred through such continuous queries. 
Although various methods have been proposed to protect personal 
information, traditional personal information protection methods 
cannot provide absolute personal information protection when 
user location information itself, such as LBS, is required. In 
particular, if sensitive points visited by the user are exposed, this 
may lead to additional information leakage. Therefore, this paper 
guarantees anonymity by protecting sensitive points visited by 
users through the class conditional synthesis of ACGAN, and 
proposes a synthetic trajectory generation model for generating 
highly useful trajectory data through the combination of attention 
mechanisms. Furthermore, the usability and anonymity aspects of 
the synthetic trajectory data generated by the proposed are 
compared with those of existing models to verify the performance 
of the proposed. 

Keywords—generative adversarial network, auxiliary classifier 
GAN, location based system, trajectory privacy protection, privacy, 
attention mechanism 

 

I. INTRODUCTION  
Advancements in smartphone technology have led to an 

increase in the usage of various location-based services (LBSs). 
Users submit queries related to their location to the LBS server, 
and the LBS provides different types of personalized services, 

such as in providing restaurant recommendations, directions, 
and traffic notifications [1, 2]. However, if the LBS server is 
hacked, the private and personal information of users may be 
leaked. For example, attackers track and analyze users’ 
trajectory data through continuous queries to infer their home 
and office addresses. Furthermore, other personal information 
such as specific disease types can be inferred by checking 
whether users have visited certain locations such as hospitals [3]. 
Trjaectory data can be highly utilized in various fields, but since 
trajectory data contains sensitive information, there is a high risk 
of personal information leakage, and many studies are being 
conducted to ensure personal information protection while 
maintaining the usefulness of data. 

Methods for de-identifying data include k-anonymity and l-
diversity. K-anonymity is a data protection method that makes 
it indistinguishable from at least k-1 individuals when disclosing 
personal information [4]. Wang et al. [5] proposed a positional 
recombination mechanism LRM that captures the probabilistic 
and geographical features of the trajectory and satisfies k-
anonymity while maintaining the availability of data. L-
diversity is a method of protecting both sensitive and general 
attributes by ensuring that personal information cannot be 
identified from at least L other individuals in the dataset based 
on sensitive attributes [6]. Temuujin et al. [7] proposed an 
efficient l-diversity anonymization algorithm that can more 
efficiently protect privacy by identifying the limits of data 
privacy for dynamically evolving datasets. Jeon et al. [8] 
proposed an l-diversity anatomy de-identification method for 
resource description frameworks (RDFs) that overcomes the 
limitations of k-anonymity and ensures stronger privacy. 
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However, the above de-identification methods cannot guarantee 
absolute privacy protection. K-anonymity is a privacy method 
that does not take into account the attacker’s background 
knowledge, and l-diversity only works when there are at least l 
unique values for each sensitive property in the dataset.  

For this reason, when dealing with meaningful data, such as 
trajectory data, many studies aim to maintain both usefulness 
and anonymity by generating synthetic data using generative 
models. Rao et al. [9] proposed LSTM-TrajGAN, a synthetic 
trajectory generation model that preserves temporal and spatial 
information of trajectory data by combining LSTM (Long Short-
Memory) and GAN. Shin et al. [10] proposed a synthetic 
trajectory generating model TCAC-GAN that combines LSTM 
and ACGAN to randomly change points with sensitive 
categories. Song et al. [11, 12]  proposed a synthetic trajectory 
generation model that protects sensitive points by allocating 
conditions that should not be included in the outputs generated 
by GAN. Xiong et al. [13] proposed ADGAN(Auto-Driving 
GAN), a GAN-based image-to-image conversion method to 
prevent the problem of leaking the location and trajectory of the 
vehicle through the camera of an autonomous vehicle. 

In this paper, we propose a synthetic trajectory generation 
model that can efficiently protect sensitive points through the 
synthesis of class conditional synthesis of ACGAN and increase 
usefulness through combination with attention mechanism. We 
also measure the usefulness and anonymity of synthetic 
trajectory data generated for performance demonstration and 
compare them with previous research models. 

 

II. BACKGROUND 
GAN is a generation model that is in the spotlight in the field 

of image generation [14]. Fig. 1 shows the GAN architecture. 
The GAN consists of two models: the generator and the 
discriminator. The generator is responsible for generating the 
image, and the discriminator is responsible for determining the 
authenticity of the image. The object function of the GAN model 
is expressed shown in Eq. (1): 

 

min max ,   ~
 ~ log 1                 1 

 
D represents the discriminator, and G represents the 

generator.   represents real data, and ~  represents 
data sampled from the probability distribution of the entire real 
data.   uses real data as input of the discriminator to 
determine real data.  represents noise, and ~ represents 
random noise sampled from Gaussian distribution.  
represents fake data generated by a generator that took noise as 
an input, and  represents a discriminator that took fake 
data as an input. G aims to minimize the Eq. (1), and D aims to 
maximize it.  

ACGAN is a class conditional image synthesis model that 
uses improved training methods for image synthesis [15]. The 
Fig. 2 shows the ACGAN architecture. ACGAN consists of two 

models: generator and discriminator. The generator generates a 
class conditional image through a label, and the discriminator 
determines the authenticity of the image and class prediction. 
The log likelihood of the correct source  is expressed shown 
in Eq. (2): 

 

    |
                       2 

 

 represents the sum of estimates that distinguish between 
real data and fake data. The log likelihood of the correct class  
is expressed shown in Eq. (3): 

 

    |
                               3 

 

  represents the sum of the estimates that distinguish 
between the real class and fake class. D is trained to maximize 
the sum of Eq. (2) and Eq. (3). This means that from the 
perspective of the D, the object is to determine the source of the 
data well and to predict the class well. G is trained to maximize 
the difference between Eq. (3) and Eq. (2). This means that from 
the perspective of the G, the object is for the D to predict the 
class well and not determine the source.  

 
Fig. 1. GAN architecture 

 

 
Fig. 2. ACGAN architecture 
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III. METHODS 

A. Generate labels 
The generated labels are used as input for the proposed 

model along with the original trajectory data. The trajectory data 
used in the model consists of location, date, time, and category 
data points. Location data consists of the latitude and longitude; 
date data indicate the day of the week denoted by a number: 0–
6. Time data indicates the hour of the day denoted by a number: 
0–24. Category data indicate the properties of points denoted by 
a number: 0–9. Because the labels generated are used to hide the 
category value of sensitive points, they are also represented by 
a number 0–9. Fig. 3 shows an example of a label generated for 
hiding sensitive points. Assuming that a point of trajectory data 
has four points, as shown in Fig. 3, each point contains location, 
date, time, and category information. The third point is assumed 
to be a sensitive point with the hospital category. The label of 
the third point is then randomly changed to a value between 0 
and 9. Accordingly, the generator approximates the trajectory 
data to a point with the category value corresponding to the 
label, thereby protecting the sensitive point. 

 

 
Fig. 3. Example of encoding process. 

 

B. Trajectory encoding process 
Fig. 4 shows an example of encoding one of the points. If we 

consider trajectory data with four points, as shown on the left, 
then we normalize the location data using the deviation value 
from the centroid (star) of all points to each point. This process 
allows the deviation between points to be learned more 
effectively. Additionally, date data are one-hot encoded using a 
dimension of 7, time data using a dimension of 24, and category 
and label data using dimensions of 10. 

 

 
Fig. 4. Example of generating a label. 

 

C. Trajectory generation 
Fig. 5 shows the generator architecture. A generator consists 

of four layers: embedding, feature fusion, attention and LSTM, 
and decoding. The embedding layer vectorizes the trajectory 
data input using a multilayer perceptron (MLP). Location data 
are embedded into a 64-dimension vector, and other data types 
are embedded into a vector with the dimension of the vocab. The 
feature fusion layer converges feature vectors corresponding to 
one point into a 100-dimension vector. This process facilitates 
temporal and spatial learning between feature vectors. The 
attention and LSTM layer focuses on a specific location of a 
previous layer when modeling each location point of the 
trajectory. Accordingly, trajectory modeling can be more 
accurate and practical, and the spatial relation between points 
can be represented more effectively. Other feature vectors in 
addition to the location vector are modeled while maintaining 
their spatial characteristics through the many-to-many LSTM 
layer. Finally, the decoding layer decodes the synthetic 
trajectory data. The location vector is decoded into latitude and 
longitude using the tanh activation function, and other features 
are decoded using the softmax activation function. 

 

 
Fig. 5. Generator architecture. 

 

The synthetic trajectory data generated by the generator and 
original trajectory data are used as input for the discriminator. 
Fig. 6 shows the discriminator architecture. The discriminator 
consists of four layers: embedding, feature fusion, LSTM, and 
classification and prediction. The overall process is identical to 
the generator; however, the discriminator discerns the 
authenticity of the trajectory data and predicts classes. 
Therefore, noise is not added to the output of the embedding 
layer and only the many-to-many LSTM layer is used instead of 
the attention layer. The last hidden state in the LSTM layer 
discerns the authenticity of the trajectory using the sigmoid 
activation function. In addition, the final output of the LSTM 
predicts the class (label) of the trajectory using the softmax 
activation function. 
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Fig. 6. Discriminator architecture. 

 

IV. EXPERIMENTS 

A. Experiment design 
The hyperparameters set for the model training were 2,000 

epochs, a batch size of 256, learning rate of 0.01, and Adam 
optimizer. The LSTM-TrajGAN and TCAC-GAN models were 
used to compare their performances. 

 

B. Datasets 
This study used Foursquare’s weekly trajectory dataset for 

New York City (NYC) [16]. Table I summarizes the Foursquare 
NYC weekly trajectory dataset. The dataset’s attributes 
comprise the User ID, Trajectory ID, Location (Latitude and 
Longitude), Day, Hour, Category, Price Tier, Rating, and 
Weather; we removed the Price Tier, Rating, and Weather 
attributes. In addition, we did not encode the User or Trajectory 
IDs because they indicate only the user and trajectory, 
respectively, of the data point. The location data that deviated 
from the latitude and longitude ranges of NYC were removed. 
Consequently, the entire dataset contained 193 users, 3,079 
trajectories, and 66,962 points. Two-thirds of the dataset was 
used as training data and one-third as test data. 

 
TABLE I. SUMMARY OF THE FOURSQUARE NYC WEEKLY TRAJECTORY 

DATASET 
Attribute Number/Range 

Trajectory ID 3,079 
User ID 193 
Latitude (40.550852, 40.988332) 
Longitude (-74.269644, -73.685767) 
Hour 24 
Day 7 
Category 10 

 

C. Usefulness measurement 
The usefulness of the three models was measured using the 

Hausdorff distance. The Hausdorff distance was used to measure 
the similarity between two sets of data, based on the distance 
between the points of the original trajectory data and the 
trajectory data generated by the model. The measured items 

include the MIN, MAX, AVG, and MEAN; lower values 
indicate a higher similarity between the original and synthetic 
trajectory data. Table 2 presents the Hausdorff distances 
measured by the three models. The proposed model achieved 
lower values for all measurements compared with LSTM-
TrajGAN and TCAC-GAN. This implies that the synthetic 
trajectory data generated by the proposed model are more 
similar to the original data compared with that of the other 
models, and more useful.  
 

TABLE II. HAUSDORFF DISTANCE RESULTS 

 
 

D. Anonymity measurement 
The trajectory-user linking (TUL) test was performed to 

measure the anonymity of the three models. The TUL test 
measures the prediction accuracy of a user’s trajectory in which 
a lower accuracy indicates that the possibility of identifying a 
user is low, and a higher accuracy implies that the possibility of 
identifying a user is high. Therefore, the lower the accuracy, the 
higher the anonymity. The measurement items of the TUL test 
include ACC@1, ACC@5, Macro-Precision, Macro-Recall, 
and Macro-F1 Score.  ACC@1 means Top1-Accuracy, and an 
index that is calculated when the highest value in the output of 
softmax is the correct answer. ACC@5 means Top5-Accuracy, 
calculating the proportion of predicted classes among the five 
upper classes in the softmax output. Table 3 presents the TUL 
accuracy. The Macro-Precision of the proposed model is slightly 
higher than that of TCAC-GAN. This indicates that the attention 
mechanism was applied to a point approximated to the label, 
which resulted in a slight decrease in the average precision. 
However, the proposed model has a lower TUL accuracy than 
other models in all items excluding the Macro-Precision. This 
implies that the proposed model can effectively prevent the 
identification of a user’s trajectory. 

 
TABLE III. TUL-TEST RESULTS 

 
 

V. CONCLUSION 
The growing scope of LBSs has enabled users to utilize more 

useful services, resulting in the creation of a large amount of user 
trajectory data. However, the trajectory data extensively contain 
sensitive information, which highlights the importance of 
protecting personal information. However, traditional data 
protection methods cannot provide absolute privacy protection. 
Therefore, this study examined a model capable of protecting 
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personal information of users while maintaining the usefulness 
of the trajectory data. The proposed model, which is a synthetic 
trajectory generation model based on ACGAN, was 
experimentally proven to control the output of sensitive and 
insensitive points and be capable of executing more practical 
trajectory modeling using an attention mechanism. Using the 
trajectory data generated by the proposed model can help protect 
personal information from attackers and heighten the usefulness 
of the trajectory data. As future research, we plan to conduct to 
introduce differential privacy, a mathematically provable 
privacy protection method, when conducting statistical queries 
using the trajectory data generated by the proposed model. 
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