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Abstract—Due to the evolution of vehicles, most of them
have some amount of computational capacity. Vehicular Edge
Computing (VEC) has been introduced in recent years due to
its augmentation of computational capacity. With the advance
of VEC, vehicles are used to reduce latency and improve the
quality of service (QoS) of network-based information services.
In this paper, vehicles are used as edge servers and are grouped
as clusters depending on the service groups that contain popular
application services. Whenever a mobile device requests a service
to the base station, the edge gateway in the base station sends the
request to the cluster that has the requested service. This paper
provides the load distribution mechanism within the cluster using
the Deep Q Network. Moreover, the total processing time on the
edge servers is compared with that of the cloud servers. It was
shown that processing in the edge server is better than the cloud
server when the length of the request message is short, or the
wireless transmission speed is fast.

Index Terms—vehicular edge computing, Deep Q Network,
edge server, cloud server

I. INTRODUCTION

Vehicles and the mobile communication infrastructures
such as Roadside Units (RSUs) and Base Stations can con-
tribute computational resources. They form the Vehicular Edge
Computing System [1]∼ [3] which can process tasks from
autonomous driving systems and various applications from
pedestrians’ mobile devices.

Due to resource constraints, mobile devices need the help of
a cloud server when running resource-intensive applications.
Therefore, as the number of service requests to the cloud server
increases, the network traffic also exacerbates. These situations
can get worse when billions of devices are deployed worldwide
[4] [5]. To satisfy the required Quality of Service (QoS) is
another challenge for cloud server.

To address these issues, Vehicular Edge Computing (VEC)
is utilized as a middle layer between mobile devices and cloud
server. Hou et al. [6] were the first to introduce the concept
of Vehicular Fog Computing (VFC) as an architecture that
can be used to enable multiple end-user or edge devices to
collaborate to carry out computation and communication tasks.
VEC furthers the benefits yielded by cloud computing services
to the edge of the network [7]∼ [9]. The increasing number
of vehicles on the road also motivates to create an efficient
collaboration among vehicles and the concept of VEC where

vehicles are utilized as edge servers and can serve the role of
service providers [10] [11].

In VEC, the processing of the task takes place in the edge
server (vehicle) which is in proximity to the mobile devices
on behalf of the cloud server. As the processing of the task is
provided close to the mobile device, better QoS is offered by
the edge server than the cloud server.

In [12], RSUs serve as edge servers and whenever the
edge servers receive any request from end devices (vehicles),
the available resources are checked. If these resources in the
requested edge servers are not enough resources to process
the task, then the offloading is requested to SDN controller
(edge gateway). The authors used Deep Q network-based
reinforcement learning to select the resources-rich edge server
in VANET and proposed that the estimation of vehicle’s next
location can help in the optimal offloading of processing
requests in current edge servers [12]. In [13], a cluster-enabled
capacity-based load-balancing approach is described to operate
performance-aware vehicular edge distributed computing for
efficiently processing IoT jobs, and a clustering approach that
considers the position, speed, and direction of vehicles (edge
servers) to form their clusters that act as the pool of computing
resources.

In this paper, vehicles serve as edge servers and the base
station works as an edge gateway, which dispatches the task
requests from mobile devices to an appropriate edge server.
Moreover, unlike [13], the clustering is based on the services
that are already installed in the edge servers. When a service
task is requested from the mobile device to the edge gateway,
the edge gateway finds the cluster for the requested service and
chooses the two optimal edge servers in that cluster using Deep
Q Network. If no cluster has the service of the task or both of
the two optimal edge servers in the cluster are overloaded, the
edge gateway will send the task directly to the cloud server. In
[12], Deep Q Network is used to select the optimal edge server
to offload the task from the current edge server, which is too
overloaded to process the tasks requested by the vehicles. In
our proposed design, Deep Q Network reinforcement learning
is used to distribute the loads among the edge servers in the
clusters and to select the optimal edge server in the cluster
when the mobile devices request the tasks. In [12], the state
vectors used in Deep Q Network are slightly different from
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our proposed design, and it is explained in detail in Section
2.

Our work aims to utilize the aggregate mobility behavior
of vehicles to select reliable vehicle nodes and avoid service
failure and give better performance than cloud servers.

The rest of the paper is organized as follows: Section 2
presents the problem formulation of our proposed design.
Section 3 formalizes the total processing time using Edge
Computing and Cloud server. In Section 4, we show the
numerical results to compare the total processing time between
Edge Computing and Cloud Server. Section 5 includes the
conclusion of our study paper.

II. PROBLEM FORMULATION

The cloud servers are generally far away from end devices
or mobile devices, therefore, the time to complete the re-
quested tasks tends to be long due to the congestion, latency
of the network, and queueing delay at the cloud server. In
order to reduce the time to process the requested task, the
edge layer serves the requests of mobile devices instead of
the cloud server.

Vehicles will serve as edge servers in this paper although
vehicles have limited computation and storage capability com-
pared with cloud server. An edge gateway is another important
component that intelligently classifies the applications to be
processed on the edge or in the cloud depending on the
requirements of computing resources. When a mobile device
requires more computational resources to process a task, it
sends the task to the nearest edge gateway. Then the edge
gateway selects the cluster of edge servers that have the service
of the task and chooses the optimal edge server in the selected
cluster using Q-learning based dispatch algorithm.

In our proposed design, we assume that there are N number
of services provided by the cloud server and n applications
among those N are popular services (N>n), so n services
may be processed by edge servers. We divide n services into
K groups of services and pre-installed them to the public
buses/taxis. For example, when there are 100 popular services
and they are divided into 20 groups of services (service group
1, service group 2, . . . , service group 20), then every edge
server has all 5 services of a service group among 20. We
assume that service groups are 20 equally distributed and pre-
installed into edge server vehicle.

The edge gateway can collect the information on which edge
server (bus/taxi) has what kind of service group. After that, the
edge gateway creates clusters of edge servers with the same
service groups and within the same cellular area of the edge
gateway. When a service request comes to the edge gateway,
it selects the cluster that matches the service of the task. For
every cluster, there will be a Deep Q Network run in the edge
gateway to choose the best edge server to process the task.
Then the edge gateway sends the task (service request) to the
chosen edge server.

The overview architecture design is shown in Fig. 1. The
edge gateway acts as the agent in DQN, which senses the state
vectors from the edge devices.

Fig. 1. Overview architecture of clustering the vehicles in Edge Computing

We consider public transportation (buses and taxis) as edge
servers in this paper because they run at stable moving speeds
and are evenly distributed in a cell area, moreover, they are
also used for public purposes. It is easier and more consistent
to collect the state vectors and decide the action vector for
the edge gateway in Deep Q Network. We use the predicted
future position of the edge servers in Deep Q Network. We
can get that information from the fixed route information of
the buses and the navigation system of taxis.

In the edge gateway, the state, action, and reward vectors
for Deep Q Network of each service are defined as follows.

State vector: The edge gateway collects the state informa-
tion as follows: 1. Workload of the requested task from mobile
devices 2. Deadline of the task 3. Current workload of the
edge servers (cluster members) 4. Current location and moving
speed of the edge servers (cluster members) 5. Predicted future
position of the edge servers (cluster members)

Action Vector: The edge gateway decides the action after
analyzing the states of the environments. The action is to
choose the two suitable (the best and the second best) edge
servers in the cluster and dispatch the requested task.

Reward Vector: The edge gateway looks for the reward
for the edge server if one of the chosen edge servers is not
overloaded and both the requested mobile device and the
chosen edge server are in the range of the edge gateway (after
processing the task). If the action satisfies these conditions,
the reward is gained. Otherwise, the penalty is imposed in
DQN agent. As an example, a reward means that the edge
server processed the tasks instead of the cloud server; thus,
that edge server should be given the reward. In the real world,
if the mobile user is subscribed to cloud resources or mobile
services, the cloud or the mobile operator should give some
percentage of the monthly rate to that edge server as a reward.

A. Creating the cluster of services in Edge Gateway

Edge gateway needs to collect the information of all edge
servers to create clusters with edge servers that have the same
service. Basically, the edge gateway has the information of all
edge servers when they are in the range of the edge gateway,
that is in the cell area of the base station. If there is only
one member in the cluster, the edge gateway does not need to
deploy or train the Deep Q Network, but if there are multiple
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cluster members, the edge gateway needs to deploy and train
the Deep Q Network for each service.

The workflow for creating the clusters depends on services
in the edge gateway, as shown in Fig. 2.

Fig. 2. Workflow for Creating the Clusters in Edge Gateway

B. Deep Q Network for each cluster in Edge Gateway

When a mobile device sends the task to the nearest edge
gateway, the edge gateway selects the cluster that has the
service of the task. Then, the edge gateway chooses the
two optimal cluster members(edge servers) inside the cluster
using the DQN network. The proposed Deep Q- Network
algorithm in [12] is an efficient solution to offload the request
optimally, which improves the overall performance of the
network. According to [12], the authors used the DQN state
vectors as the current workload of the edge server that has
been assigned the service request, the number of tasks to be
offloaded, the number of tasks remaining in the queue of the
current edge server, and the future predicted position of the
vehicles. In our proposed Deep Q Network, the edge gateway
serves as a DQN agent, and the state vectors of DQN are
already explained in detail in the previous page. As the DQN
agent, the edge gateway utilizes these state vectors to find Q
values and selects the action with the two highest predicted Q
values.

at = max(Q(st, at)) + noise (1)

The proposed technique efficiently utilizes the resources of
the network and has better performance in case of noise in
the network between the mobile device and the edge server
that will perform the task. After choosing the edge server, the
edge gateway calculates not only the reward vector but also the

targeted Q value and loss function to get the updated parameter
θ and update the parameter θ in the Q Neural Network and
Target Neural Network. Targeted Q Value is defined as follows:

QT = rt + γmax(Q1(st+1, at), . . . , (Q
N(st+1, at)) (2)

The Loss Function uses the mean square error function
between the targeted Q value and the predicted Q value.

L(θ) = (QT −QP)2 (3)

The workflow of DQN for each service in the edge gateway
is constructed in Fig. 3 [12].

Fig. 3. Workflow of DQN for each service in Edge Gateway

C. Task Allocation at Edge Gateway

When a mobile device sends a service request to the edge
gateway, the edge gateway looks for the cluster that has the
service of the task. If there is no cluster with the service of
the task, the edge gateway sends the task to the cloud server.
If there is only one cluster member in the cluster, the edge
gateway sends the task directly to that edge server.

Otherwise, the edge gateway chooses the two suitable edge
servers using the DQN technique. The first chosen edge server
is preferred to process the task, but if it is overloaded, i.e., if
the CPU utilization of the chosen edge server is above a certain
level, the second one will process the task. After processing
the task, the edge server sends back the result of the task to
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the mobile device through the edge gateway and informs the
edge gateway to calculate the reward vector.

In the case that both of the two chosen edge servers using
DQN are overloaded or there is only one edge server in the
cluster and that edge server is overloaded, the edge gateway
sends the task to the cloud server to process the task.

We define the workflow of task allocation at the edge
gateway as in Fig. 4.

Fig. 4. Workflow of Task Allocation at Edge Gateway

III. PERFORMANCE MODELS OF EDGE COMPUTING

We compare the total processing time of a service when it
is processed by an edge server with the time processed in a
cloud server. Notations used in the performance models are
defined as in the table. The data transfer time refers to the
amount of time required to transfer a certain amount of data
from one location to another and is calculated using the size of
the data being transferred and the transfer speed or bandwidth
[14]. In real-world situations, the actual data transfer time is
also affected by propagation delay, representing the time taken
for a signal to travel a specific distance in a medium at a given
propagation speed [15]. Thus, the total data transfer time can
be computed using

tM,EG = (Data/dtM,EG) + PDM,EG (4)

tEG,CM = (Data/dtEG,CM) + PDEG,CM (5)

tEG,Cloud = (Data/dtEG,Cloud) + PDEG,Cloud (6)

Notation Description
te The execution time to process the task in the server
twc The waiting time in a queue of cloud server.
tM,EG The data transfer time between mobile device and edge gateway
tEG,CM The data transfer time between edge gateway and cluster member.
tEG,Cloud The data transfer time between the edge gateway and cloud server.
tM,Cloud The data transfer time between mobile device and cloud server
Data Data size of the task.
dtM,EG Data transfer rate between mobile device and edge gateway.
dtEG,Cloud Data transfer rate between edge gateway and cloud server.
dtEG,CM Data transfer rate between edge gateway and cluster member.
tM,EG Time to transfer data from mobile device to edge gateway.
tEG,Cloud Time to transfer data from edge gateway to cloud server.
tEG,CM Time to transfer data from edge gateway to vehicle.
PDcloud Propagation Delay between cloud server and mobile device.
PDM,CM Propagation Delay between mobile device and cluster member.
PDM,EG Propagation Delay between mobile device and edge gateway.
PDEG,CM Propagation Delay between edge gateway and vehicle.
PDEG,Cloud Propagation Delay between edge gateway and cloud server.

In the 5G network, dtM,EG and dtEG,CM are the same. Thus,
we denote dtEG as

dtM,EG = dtEG,CM = dtEG (7)

For PDEG, CM and PDEG, Cloud, the distance between the
edge gateway and cloud server are usually longer than the
distance between the edge gateway and edge server. However,
the propagation speed between the edge gateway and the
cloud server is much higher than the speed between the edge
gateway and the edge server because the transmission medium
is usually optical fiber between the edge gateway and the cloud
server. Then we can assume that PDEG, Cloud and PDM, EG are
almost the same. We also assume that PDM,EG and PDEG,CM
are the same.

PDM,EG = PDEG,CM = PDEG,Cloud = PD (8)

Thus, the data transfer time from the mobile device to the
edge server (cluster member) can be written as

tM,CM = tM,EG + tEG,CM = 2(Data/ dtEG) + 2PD (9)

Furthermore, the data transfer time from mobile to a cloud
server can be written as

tM,Cloud = tM,EG + tEG,Cloud
= (Data/ dtEG)+(Data/ dtEG,Cloud)+2PD (10)

In the cloud server or the edge server, the request may wait
in a queue after it arrives at the server until it is processed.
Still, the waiting time at the edge server is much less than
at the cloud server due to the cloud server being accessed by
many clients at the same time. Thus, we will assume that the
waiting time at the edge server is negligible.

According to Little’s Law, the waiting time at a queue in
the cloud server can be given by

twc = ρ/(µ(1− ρ)) (11)

where ρ = the traffic intensity λ/µ, µ = service rate at a cloud
server, λ = arrival rate at a cloud server
We will assume that the data size of the requested task and
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the result data of the requested task after processing are the
same.

When using an edge server, it takes additional time to select
an appropriate edge server using Deep Q Network. Thus, the
total processing time of the task at the chosen edge server can
be written in the form of

ttotalE = te +2tM,CM = te +2(2(Data/dtEG)+ 2PD)+ tDeepQ
(12)

The total processing time of the task on the cloud server
can also be defined as

ttotalC = te + twc + tM,Cloud
=te+twc+2((Data/ dtEG)+(Data/ dtEG,Cloud)+2PD)

(13)

IV. NUMERICAL RESULTS

In 5G mobile environment, the data transfer speed is higher
than 1Gbps (Gigabits per second). And the fastest-ever 5G
data transmission rate in a stationary environment is 7.5 Gbps
[16]. Thus, we regard the average data transfer rate of 5G
environment as 3Gbps.

dtEG = 3Gbps = 375 MBps (Mega Byte per second)

Some common assumptions for data transfer rates in a fiber
optic connection between a base station and a cloud server
could be:

1. Moderate assumption: A data transfer rate of 1 Gbps.
This assumes a reasonably high-speed fiber optic connection
that can handle 1 billion bits of data per second.

2. High-end assumption: A data transfer rate of 10 Gbps.
This assumes a high-capacity fiber optic connection capable
of transferring 10 billion bits of data per second.

Thus, we will define the average data rate from the base
station to the cloud server as 5 Gbps.

dtEG,Cloud = 5 Gbps = 625 MBps

According to our simulation result, the time to select an
edge server using Q Network is 0.004 second.

tDeepQ = 0.004 second

Here, we will assume the execution time as 1 second and
the propagation delay PD as 0.001 seconds in both the cloud
server and the chosen edge server.

Fig. 5 illustrates the relation between the arrival rate at a
server and the waiting time at the queue of the server according
to (11). The more the arrival rate (request rate) increases, the
longer the waiting time increases when the service rate µ is
122. Thus, in the case of cloud server, there are many clients
accessing the cloud server at the same time in real life and
the more clients access the cloud server, the longer the waiting
time according to the number of accesses.

A. Case 1 analysis

We compare the total time to process a task at the cloud
server and an edge server according to the data size of the
task with the value twc fixed.

Fig. 5. Waiting Time depends on arrival rate λ

We set the average arrival rate as 120 requests per second
and the average service rate as 122 at a cloud server. Then,
the waiting time at a cloud server according to (9) will be as
follows. This is almost the same as the value shown in Fig. 5.

te twc PD
1 second 0.4918 second 0.001 second

TABLE I. Initial Parameters for Figure 6

Fig. 6. Total Processing Time at the cloud server and cluster member
according to Data Size

Fig. 6 shows the total turnaround time of service by the
cloud server and by an edge server concerning the variable data
size of the task using the parameters of Table 1. Turnaround
time, equivalent to the total processing time, is the duration
between the service request made by a mobile device and
the arrival of the service result back to the device. In Fig. 6,
we observe that the turnaround times for the cloud server are
consistently higher compared to those of the edge server. As
the data size increases, the total processing time gap narrows,
particularly at lower data transfer rates like 1Gbps or 2Gbps in
a 5G environment. Thus, processing the task at the edge server
is better than the cloud server when the requested task size is
not too big. However, when the data transfer rate is 3Gbps,
the turnaround time of the task in the edge server is always
better than the cloud server as we can see from both lines of
the edge server (3G) and cloud server (3G). These days, the
data transfer rate of 5G environment is getting higher, so if
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the data transfer rate exceeds 3Gbps, the processing time at
the edge server will be superior to that of the cloud server.

B. Case 2 analysis

In this experiment, we compare the total time to process
a task at a cloud server and cluster member concerning the
arrival task at the cloud server and the fixed data size of the
task.

Data Size te PD
15 MB 1 second 0.002 second

TABLE II. Initial Parameters for Figure 7

The total time to process that task at the cloud server will be:

ttotalC = 1 + twc + 2((15/ 125) + (15/625)) + 0.004

Fig. 7 compares the total turnaround time of the cloud
server and the edge server with respect to the arrival rate
(request rate) at the cloud server. As the arrival rate increases,
the total turnaround time at the cloud server also increases
significantly. At a lower arrival rate, the processing time at the
edge server may be higher than that at the cloud server but as
the arrival rate grows, the turnaround time of the edge server is
better than the cloud server. This is because the waiting time
at the cloud server increases as the arrival rate of requests
becomes higher. Though using the edge server when the
wireless communication speed is 1Gbps is not advantageous
in turnaround time, it shows similar or better performance than
the cloud server when the wireless communication speed is 2
and 3Gbps.

Fig. 7. Total Processing Time at the cloud server and cluster member
according to Arrival Rate at the cloud server

V. CONCLUSION

This paper showed the architecture of the vehicular edge
computing system, where the edge servers are managed by
the edge gateway in the base station. And the proposed DQN
algorithm is an efficient solution to distribute the workload
among the edge nodes (vehicles), which improves the overall
performance within the cluster. We also modeled the time to
process a service request from a mobile user. We compared the
total processing time of the task requested to the edge server
with the time of the cloud server.

According to the Case 1 analysis, we can notice that if
the data size is bigger than 40 MB during the 1Gbps data
transfer rate or 103 MB during the 2Gbps data transfer rate,
the processing of the task on the edge server is worse than
on the cloud server. But when the data transfer rate is over
3Gbps, the processing on the edge server is almost always
better than on the cloud server since we can see that the lines
in the graph for the data transfer rate of 3Gbps are parallel
to each other. Furthermore, we found out that the more the
arrival rate increases at the cloud server, the processing time
at the cloud server becomes larger and larger according to the
case 2 analysis.
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