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Abstract—This paper details a 2-step tactic for implementing
an odd-order (OO) variable-bandwidth (VBW) filter with ab-
solutely guaranteed stability. The design scheme minimizes the
Lp-norm of weighted amplitude-response-error vector, and the
OO-VBW filter coefficients are formed using polynomials in the
bandwidth (BW)-varying parameter. Since those coefficients have
variable function values, the designed OO-VBW filter possesses
variable amplitude response. Another crucial issue discussed in
this paper is about stability guarantee. Since changing the filter
coefficients (in terms of the polynomial-function values) may
cause instability, the stability must be ensured during online
tuning. A coefficient-conversion (CC) technique is employed for
achieving this objective. A bandpass OO-VBW filter is simulated
for validating the presented 2-step tactic as well the stability
guarantee.

Keywords—Digital filter, variable digital filter, odd-order (OO),
variable-bandwidth (VBW), stability.

I. INTRODUCTION

Variable-bandwidth (VBW) filters possess the capacity to
vary frequency bandwidths such as passband width, stopband
width, and transition bandwidth. Such VBW filters are needed
in a wide range of fields, which include various signal pro-
cessing fields and digital communications. For instance, such
VBW filters are required in selecting frequency bands accord-
ing to the practical needs. With such tunable bandwidths, one
can flexibly change the bandwidths on demand. A recursive
variable filter requires much less computational complexity
and much less hardware-realization cost than its nonrecursive
counterpart [1]-[10], but has the possibility to become unstable
[11]-[17]. For this reason, the first priority in recursive VBW
filter design is to guarantee its stability such that the online
tuning process will not risk the instability. If the stability is not
guaranteed, the VBW filter is not applicable to the real-time
tuning. An unstable VBW filter is useless because it makes
filtering outputs diverge.

In this paper, a coefficient-conversion (CC) technique is
employed in the process of designing a stable odd-order (OO)
VBW filter (OO-VBW filter). The CC technique carries out
coefficient conversions on the coefficients of the OO-order
recursive VBW filter in such a manner that the conversions
theoretically ensure its stability. This paper first formulates
designing an OO-VBW filter using a 2-step tactic, which
incorporates the CC technique in the 2 design steps, and the
least pth error criterion is used. The two basic steps involve
designing odd-order constant-bandwidth (OO-CBW) recursive
filters, and then fitting polynomials to the resulting coefficient

values. In the 2 steps, the CC technique is incorporated, aiming
to ensure the stability. That is, the first step with the CC
technique incorporated yields stable OO-CBW filters, and the
second step yields a stable OO-VBW filter. In both the 2 steps,
the CC technique is crucial to guaranteeing the stability (OO-
CBW filter’s stability and OO-VBW filter’s stability). This
approach can be viewed as a generalized design from the one
in [15], aiming to design a stable OO-VBW filter. A bandpass
OO-VBW filter is designed and the design results are given
for exemplifying the 2-step tactic and showing the ensured
stability of the resultant OO-VBW recursive filter.

II. STABILIZED VARIABLE MODEL

An OO-VBW filter takes the form

H(z, ρ) =
A(z, ρ)

B0(z, ρ)

N2∏
i=1

Bi(z, ρ)
(1)

with

A(z, ρ) =

N1∑
i=0

ai(ρ)z
−i

B0(z, ρ) = 1 + b01(ρ)z
−1

Bi(z, ρ) = 1 + bi1(ρ)z
−1 + bi2(ρ)z

−2.

(2)

Here, B0(z, ρ) is the first-order section of the transfer func-
tions’s denominator, and Bi(z, ρ), i = 1, 2, · · · , N2, denote the
2nd-order blocks involved in H(z, ρ)’s denominator. More-
over, ρ represents a parameter for tuning H(z, ρ)’s band-
widths, ρ ∈ [ρmin, ρmax]. Here, we notice that the coefficients

ai(ρ), b01(ρ), bi1(ρ), bi2(ρ)

are parameterized as the functions of ρ. Thus, the odd-order
model (1) has variable coefficients. The above model can be
modified to

H(z, ρ) =

N1∑
i=0

ai(ρ)z
−i

N2∏
i=0

[1 + bi1(ρ)z
−1 + bi2(ρ)z

−2]

(3)

with
b02(ρ) = 0.
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To ensure the stability of H(z, ρ), we must guarantee
⎧⎨
⎩
|bi2(ρ)| < 1

|bi1(ρ)| < 1 + bi2(ρ).
(4)

To enforce the condition in (4) to be always satisfied, we can
convert the original bi2(ρ) (except for b02(ρ) = 0), bi1(ρ) to
xi2(ρ), xi1(ρ) through the coefficient-conversions

�
bi2(ρ) = γ · C(xi2(ρ))

bi1(ρ) = γ · C(xi1(ρ))[1 + bi2(ρ)]
(5)

where the function C(x) must satisfy

C(x) ∈ [−1, 1] (6)

and the scaling factor γ must be

γ ∈ (0, 1) (7)

Like bi2(ρ) and bi1(ρ), xi2(ρ), xi1(ρ) are also the polynomials
in ρ. We can prove that the required condition (4) for stability
is always ensured if the function C(x) satisfies the condition
in (6) and γ satisfies the requirement in (7).

III. ODD-ORDER Lp-NORM DESIGN

The target of an OO-VBW filter design is to determine
a variable model (3) so as to best approximate the desired
amplitude-response Ad(ω, ρ), where 0 ≤ ω ≤ π, and ρmin ≤
ρ ≤ ρmax. This goal is achieved by adopting a two-stage
procedure employed in [15]. That is, the first stage is to
discretize the whole range of ρ such that the discrete-points
ρn, n = 1, 2, · · · , N , are obtained. Then, the discretized
Ad(ω, ρn), which is associated with ρn, is taken as the design
specification of an OO-CBW filter

H(z) =

N1�
i=0

aiz
−i

N2�
i=0

[1 + bi1z
−1 + bi2z

−2]

. (8)

Similarly, the original denominator-coefficients bi2, bi1 must
be converted to other parameters xi2, xi1 for the stability rea-
son. Specifically, bi2, bi1 are expressed by using the conversion
function C(x) as

bi2 = γ · C(xi2)

bi1 = γ · C(xi1)(1 + bi2).

Suppose that p is a predetermined number, for example,
p = 10. The coefficients {ai, xi2, xi1} are determined by
minimizing the Lp-norm

ep = �e�p (9)

with

e = W (f − g)

f =
�
f1 f2 · · · fM

�T

g =
�
g1 g2 · · · gM

�T
.

(10)

Here, e is the amplitude-error vector, f is the desired-
amplitude vector, g denotes the designed-amplitude vector, and
W is a diagonal matrix containing weighting coefficients. The
components of vectors f and g are defined by

fm = Ad(ωm, ρn)

gm = |H(ωm)|
and ωm denotes the mth sample of frequency ω, H(ωm)
denotes the mth sample of actual frequency-response H(ω).
For each n, an OO-CBW filter is designed, which results in a
set of coefficients {ai, xi2, xi1}. By repeating the above design
procedures for n = 1, 2, · · · , N , we finally yield N sets of
coefficients {ai, xi2, xi1}. The above procedures belong to the
first-stage design. Then, the second-stage is to fit an individual
polynomial in ρ to the resulting values of each coefficient of
{ai, xi2, xi1}. Performing the least-squares fit yields all the
approximating polynomials. Consequently, this second-step
gives the approximating polynomials {ai(ρ), xi2(ρ), xi1(ρ)}.

IV. ODD-ORDER EXAMPLE

Let us approximate the desired bandpass amplitude

Ad(ω, ρ) =

⎧⎪⎨
⎪⎩

0, |ω| ∈ [0, ρ+ 0.26π]

1, |ω| ∈ [ρ+ 0.32π, 0.64π − ρ]

0, |ω| ∈ [0.70π − ρ, π]

(11)

with
ρ ∈ [ρmin, ρmax] = [−0.10π, 0.10π].

Ad(ω, ρ) is best fitted by setting the design parameters

(N1, N2) = (6, 3)

γ = 0.9999

C(x) = cos(x)

(M,N) = (601, 21)

p = 10.

(12)

The weighting matrix W is set as a diagonal matrix

W = diag(w1, w1, · · · , wM ) (13)

whose components are

wm =

�
1, ωm ∈ passband and stopband

0, ωm ∈ transition band.
(14)

By using the above weights, the design errors in the transition
bands can be ignored. Therefore, the approximations of the
passband and stopband responses can be emphasized.
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Fig. 1. C(x) used for conversions.

Fig. 1 shows the CC function C(x), and Fig. 2 plots the
discretized bandpass specifications.

The OO-CBW filter corresponding to ρ1 = ρmin = −0.10π
is first designed. The initial coefficient values used for design-
ing this first OO-CBW filter are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

a3

a4

a5

a6

x12

x22

x32

x01

x11

x21

x31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.13639588308660

0.11393131352081

1.06676821135919

0.05928146052361

−0.09564840548367

−0.83234946365002

0.29441081639264

−1.33618185793780

0.71432455181895

1.62356206444627

−0.69177570170229

0.85799667282826

1.25400142160253

−1.59372957644748

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

After the first OO-CBW filter is designed, its results (co-
efficient values) are utilized for starting designing the next
one. In total, 21 OO-CBW filters need to be designed. It
should be mentioned that designing an OO-CBW filter needs
to solve a nonlinear optimization problem, which can be done
by employing fminsearch in MATLAB.
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Fig. 2. Discretized bandpass specifications (N = 21).

Fig. 3 plots the OO-CBW filter’s amplitude responses for
N = 21. The average normalized rms error and the average
maximum error are

e2 = 5.4733%

emax = 0.0618
(16)

respectively.
After designing the OO-CBW filters (N = 21), we fit

an individual third-order polynomial to the values of each
coefficient. Fig. 4 shows the plots of the approximating poly-
nomials ai(ρ), and Fig. 5 shows the plots of the approximating
polynomials xi2(ρ), xi1(ρ), where x02(ρ) = 0. Moreover,
Fig. 6 shows the amplitude responses of the OO-VBW filter,
Fig. 7 plots the amplitude-response errors with transition-band
erros being ignored. The average normalized rms error and
average maximum error are respectively

e2 = 5.5199%

emax = 0.0641.
(17)

Finally, the filter stability must be checked. Fig. 8 shows
the stability triangles along with the loci of the denominator-
coefficient pairs (bi1, bi2) when the value of ρ is changed.
The figures make it clear that all (bi1, bi2) are always moving
within the inner areas of the triangles when ρ is varied.
Therefore, the designed OO-VBW filter is absolutely stable.

V. CONCLUSION

This paper has extended the even-order Lp-norm design to
the OO-VBW filter case, and the resulting OO-VBW filter
keeps always stable when as the BW-varying parameter varies.
A bandpass example has demonstrated the filter accuracy and
the ensured stability.
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Fig. 3. Bandpass responses of the CBW filters (N = 21).
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Fig. 4. Third-order polynomials ai(ρ).
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Fig. 5. Third-order polynomials xi2(ρ) and xi1(ρ).
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Fig. 6. Amplitude responses (OO-VBW filter).
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Fig. 7. Amplitude errors (passband and stopband only).
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